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NOTATIONS

Here is a list of notations that are used in this homework:

e As usual, N means the set {0, 1,2,...} of all nonnegative integers.

e We shall use the Iverson bracket notation as well as the notation [n] for the set
{1,2,...,n} (when n € Z).

e If n € N, then §,, denotes the set of all permutations of [n].

e A point shall mean an element of Z2, that is, a pair of integers. We depict these
points as lattice points on the Cartesian plane, and add and subtract them as vectors.
Recall the notion of a lattice path, defined in §6.1 (class notes from 2018-11-12) and
(equivalently) in UMN Spring 2018 Math 4707 Midterm 1. (Lattice paths have up-
steps and right-steps.) We abbreviate “lattice path” as “LP”.

o A formal power series (short FPS) shall always mean a formal power series in the
indeterminate x with rational coefficients (as defined in class).

If fis an FPS and if n € N, then [2"] f shall denote the coefficient of 2™ in f.

Let us recall five fundamental properties of binomial coefficients (all of which appear in

|Grinbel6l, §3.1]):


http://www.cip.ifi.lmu.de/~grinberg/t/18f/5705-2018-11-12.pdf
http://www.cip.ifi.lmu.de/~grinberg/t/18s/mt1s.pdf
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Proposition 0.1. Let m € N and n € N be such that m > n. Then,

(7)==

Proposition 0.2. Let m € Q and n € N. Then,

(@)1

Proposition 0.3. Let m € Z and n € N. Then,

(¢)es

Proposition 0.4. Let n € {1,2,3,...} and m € Q. Then,
m\ m(m-—1
n) n\n-—1)
Proposition 0.5. Let m € Q, a € N and i« € N be such that ¢ > a. Then,
m\ (it (m\(m—a
i)\a) \a i—a )
Let us also prove two more simple identities for binomial coefficients:

Lemma 0.6. Let k € N and a € N.

(a) We have
a a—1
f(, ) (02 1)
(b) Let n € Q be such that that n # a. Then,
n—a—1 E (n—a
= ) 2
( E—1 > n—a( k ) 2)

Proof of Lemma[0.6. (a) We must prove the equality . This equality is obvious in the
case when a — k < 0 (because both of its sides are 0 in this case); thus, we WLOG assume

that a — k > 0. Hence, the definition of (ai k:) yields
( a ):a(a—1)(@—2)--~(a—(a—k)+1) :a(a—l)(a—2)~~(/€+1)
a—k (a—k)! (a—k)! '

Multiplying this equality by k, we find
k(“)_¢;“W—1ﬂa—%~-%+1) ala—1)(a—2)---(k+1)-k

a—k (a—k)! - (a— k)l
:a(a—l)(a—Q)---k

(a —k)! ' 3)

On the other hand, the definition of (a : ]1) yields
(a—l) _ (a—1)(a—2)(a—3)---((a—1)—(a—k)+1) _ (a—1)(a—2)(a—3)---k
a—k (a —k)! (a —k)! '
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Multiplying this equality by a, we find

a(a—l) :a‘(a—l)(a—Q)(a—3)~~k:a-(a—l)(a—Z)(a—3)~~k
a—k (a —Fk)! (a —Fk)!
~ala—1)(a—2)---k

B (a—Fk)! ‘ (4)

a —

1
Comparing the equalities and , we obtain k( “ k) = a( k) This proves .
a/ —

Thus, Lemma (0.6 (a) is proven.
(b) We have n — a # 0 (since n # a). We must prove the equality (2). This equality is
obvious in the case when k = 0 (because both of its sides are 0 in this case); thus, we WLOG

assume that k # 0. Hence, k € {1,2,3,...} (since k € N). Hence, Proposition (applied
n—afn—a-—1

a —

to n — a and k instead of m and n) yields " ; a) = . Solving this for

k kE—1
—a—1 —a—1 _

(n I i ] ), we find " I i ] == ﬁ . " I ¢ (indeed, we are allowed to divide by
n — a, since n — a # 0). This proves (). Thus, Lemma (b) is proven. O
1 EXERCISE 1
1.1 PROBLEM

Let n € N. Let x € Q and y € Q.
(a) Prove that
" /n e " nl
S (3) @ nt oot = e
k=0 t=0

(b) Prove that

n

Z (n)aj (@+B) " =k =@ +y)",

k
k=0

(Here, the “x (z + k)k_l” expression should be understood as 1 when £ = 0; this gives
it meaning even if x = 0.)
[Hint: (a) Expand (z + k)" and (y — k)" " by the binomial theorem, then try using
|Grinbel8b, Exercise 2|.
(b) Rewrite z (z + k)* " as (z + k)* —k (z 4+ k)* ", thus splitting the left hand side into
two sums. Apply part (a) to both of them.|

1.2 REMARK

Both identities above are classical. The claim of part (a) is ascribed to Cauchy in Riordan’s
text |[Riorda68, §1.5, Cauchy’s identity|. The claim of part (b) was found by Abel in 1826
[Abel26]. More precisely, Abel found the slightly more general formula

3 (Z)w (z+ k)" (y — k2)" = (2 + )"

k=0

Darij Grinberg, 00000000 3 dgrinber@umn.edu
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for any x,y,2 € Q. But this formula can be easily derived from our part (b): When z is
nonzero, it follows by applying our part (b) to z/z and y/z instead of z and y; otherwise it
boils down to the binomial formula. See [Grinbel8al and the references therein for further

generalizations.
Of course, the assumptions “x € Q and y € Q" in the problem can be replaced by “z € R
and y € R”, where R is any commutative ring.

1.3 SOLUTION SKETCH

The solution I alluded to in the Hint is presented in full detail in [QEDMOQ9]. In fact, part
(a) of the exercise is [QEDMO09, the problem|, while part (b) is [QEDMO09, Theorem 4].
Note that [QEDMO09, Corollary 2] is precisely |[Grinbel8b, Theorem 0.2 + Theorem 0.4]E].

However, Tomoya Imaizumi found a shorter solution along the same lines; I am thus

going to show his argument instead.
We shall use the following fact (JGrinbel8bl, Theorem 0.4]):

Lemma 1.1. Let a € N and b € Q. Then,

i (—1)F (Z) (b— k)" =al.

k=0

We now come to the solution of the problem.
(a) Define z € Q by z =z +y. For each k € {0,1,...,n}, we have

r+k=(@+y)+k—-y) =2+ k—-vy)

T
and thus
k & k—t
k
vtk | =G+E-y) =) (t)zt k—vy
=z+(k—y) =0 =—(y—Fk)

(by the binomial theorem)

_ i (})+ Clo—m - S (1) vt n

=)y

Lexcept that the latter is stated for rational numbers, while the former is stated for elements of a com-
mutative ring; but this does not matter to us, since we are applying this result to rational numbers
only
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Hence,

n\ [k _ _ e
- > () e g wont
\k:O t:O/ S—— :(y,k)(k—t)-&-(‘:—k):(y,k)n—t
= > -

&

n n—t (since (k—t)+(n—k)=n—t)
\t)\k—t

(by Proposition

applied to m=n, i=k and a=t)

(k,t)€{0,1,..,n}?%; 1=0k=
t<k

t=0 k=t
~ (n t —~ (n—t k—t n—t
= -1 —k
() (2 e w-n
t=0 k=t B
:7§t n—t (_1)(k+t)7t(y—(k+t))n7t
im0 \(k+1t)—t

(here, we have substituted k+t for k in the sum)
n n n—t n ¢
t - 1 (k+t)—t (ke t
0 S M T [ ! KT
TN~ () =(y—t)—k
n—t
(")
n n . n—t n—t N -
= t ("N e - -h
——

n! ¢
- —t _
tl(n—t)! =3 (-1F 2 )((yt)k)"‘t:(nt)!
(by Proposition [0.1} applied to n and ¢ k=0 s

instead of m and n) (by Lemma|l.1} applied to a=n—t and b=y—t)

n—t

w
Il
)

n! . n! n!
— o | — ot — o t
T Y =2 g ety
t=0 ~ _/ t=0 t=0
!
:%Zz

(since z = = +y). This solves part (a) of the exercise.

(b) We can easily prove our claim in the case when n = 0. Hence, we WLOG assume
that n #£ 0 for the rest of this solution. Thus, n > 1. Hence, n — 1 € N. Thus, we can apply
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part (a) of the exercise ton — 1, x + 1 and y — 1 instead of n, x and y. We thus obtain

n—1

G L R R R R

-y (”;1)' @rv+w-1
N =D (5)

t=

[e=]

We have agreed to interpret the expression “z (z +k)*™'” as 1 when k = 0 (even

when (z + k)k_l may be undefined). Likewise, let us agree to interpret the expression
“k (¢ 4+ k)" as 0 when k = 0. Thus, every k € N satisfies

r(@+E) " =@+ k) — k@ k) (6)
|Proof of (6)): Let k € N. If k # 0, then (6] follows from
(+E) =@+ @+ =e@+kb) @+ R

Hence, it suffices to prove @ in the case when k£ = 0. But in this case, we have agreed to
interpret the expressions “x (z + k)k_l” and “k (z + k:)k_l” as 1 and 0, respectively, whereas
the expression “(z + k:)k” simply evaluates to (z +0)” = 1. Thus, in this case, the equality
@ boils down to 1 =1 — 0. This is clearly true. Hence, the proof of @ is complete. |
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Now,

:: \(g) 0 (z+ 0);;1 (y— 0)”‘j+ ; @ k(z+ k) (y — k)"
* ()

(by Proposition

applied to n and k instead of m and n)

(here we have split off the addend for £ = 0 from the sum)

S A TR

(7))

k-1
- n—1 n—k
= k —k
(o) | e ooy
= =(z+1)+(k-1) —((y=1)=(k—1))(n=D=(k=1)
(since y—k=(y—1)—(k—1)
and n—k=(n—1)—(k—1))
- n — k n
=3 (0T ) (@) ) (- 1) - (k1)
k=1
< (n—1
=0 (") @R - - e
k=0 _
n—1 (n - 1 '
=Y )’
=0 |
(by @)
(here, we have substituted k for & — 1 in the sum)
n—1 n—1
(n—1)! n-(n—1)!
S BL-CHIRIIES pha e !
t=0 ’ t=0 )
n—1 n
=Y Mty )
t=0

(since n - (n — 1)! =nl).
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Now,

(1) s w-n

k=0
=(z+k)F—k(z+k)F!
(by (é]))
- (Z) ((x + k)" —k(z+ k;)’H) (y— k)"

I
(]
R
> 3
~_
=
+
=
-
—~
Neg
|
=
i
-
|
3
N
o
~_
ol
~—~
8
+
ol
S~—
™
—
<
|
=
i
-

. nl wan!
=2 F(Hy)t =z F(Hy)t
(by part (a of the exercise) by @)
n n—1
n! n! n!
=D @ty =) Sty = = (@ty) = +y)
: n:
t=0 t=0 N~~~

This solves part (b) of the exercise.

2 EXERCISE 2

2.1 PROBLEM
Let n be a positive integer.

(a) Let A be the n x n-matrix ([i # j]) (This is the n x n-matrix whose diagonal

011
entries are 0 while all its other entries are 1. For example, forn =3, itis | 1 0
11

i,j€n]"

1]

0
Prove that det A = (—1)""" (n — 1).

(b) Prove that

€Sy is a
derangement

(c) Letby,bs,..., b, be any n numbers. Let B be the nxn-matrix ([z #7111 bh> .
h’e[n}\{lﬁ} i,je[n]
(For example, for n = 4, we have

0 bsby boby bobs
bsby O Dby bibs
baby biby O biby | )
babs bibs bibe O

B =

Prove that
det B=(—1)"""(n—1) [] op >

he(n]
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(Here, the “(=1)""" (n — 1) ] b"~” expression should be understood as 0 if n = 1,
he(n]
even if ] b2 may be undefined in this case when some of the by, are 0.)
he[n]

[Hint: (a) If you need a reminder on the basic properties of determinants, see, e.g.,
[Grinbel6l, Exercises 6.7 and 6.8].

(c) If you divide by some by, in your proof, make sure to argue why this is legitimate,
or separately treat the case when some of the by, are 0. (There is a combinatorial proof that
does not require any division. )|

2.2 SOLUTION SKETCH

(a) There are several ways to do this. Here is one of the most elementary:
We shall use the following simple fact:

Lemma 2.1. Consider an n x n-matrix.

(a) If we add a multiple of one of its rows to another of its rows, then its determinant
does not change.

In particular:

(b) If we add one of its rows to another of its rows, then its determinant does not
change.

(c) If we subtract one of its rows from another of its rows, then its determinant does
not change.

Proof of Lemma[2.1. (a) See |Grinbel€, Exercise 6.8 (a)] for a proof of Lemma [2.1| (a).
(b) This follows from Lemma (a), because adding a row r is the same as adding 1
times the row 7.
(c) This follows from Lemma [2.1] (a), because subtracting a row r is the same as adding
—1 times the row r. [

Now, let us solve the problem. The n x n-matrix A looks as follows:

011 .- 1
101 --- 1
A=11 10 1
111 -0

(with the diagonal entries all being 0, while all the other entries are 1).
Subtract the first row of A from each of the other rows; let A’ be the resulting n x n-
matrix. Then, A’ looks as follows:

0 1 1 1
1 -1 0 0
A=11 0 -1 0
1 0 0 - -1
(with the diagonal entries being 0, —1, —1, ..., —1, while the off-diagonal entries in the first

row and first column are 1, and all the remaining entries are 0). The matrix A’ was obtained
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from A by several steps of the form “subtract a row from another row”; thus, det (A") = det A
(since any such step preserves the determinan‘rﬂ).

Next, add each of the last n — 1 rows of A’ to the first row; let A” be the resulting
n X n-matrix. Then, A” looks as follows:

n—1 0 0 0
1 -1 0 - 0
A" = 1 0 -1 ... 0 (8)
1 0 O -1
(with the diagonal entries being n — 1, —1,—1,..., —1, while the off-diagonal entries in the

first column are 1, and all the remaining entries are 0). The matrix A” was obtained from
A’ by several steps of the form “add a row to another row”; thus, det (A”) = det (A’) (since
any such step preserves the determinantﬂ).

But shows that the matrix A” is lower-triangular. Hence, its determinant equals the
product of its diagonal entries. Since the diagonal entries of A” are n —1,—1,—1,...,—1,
we can rewrite this as follows:

det (A") = (n=1) - (=1)- (=1)----- (=1) = (n = 1) - (=1)" " = (=1)" " (n = 1).

Vv
n—1 times

Comparing this with det (4”) = det (4’) = det A, we obtain det A = (=1)""" (n — 1). This
solves part (a) of the exercise.

(b) This is just the claim of part (a) in disguise. Indeed, if Ay, As, ..., A, are any n

statements, then [] [A;j] = [A; for all ¢ € [n]]. Hence, for each permutation o € S, we
1€[n]
have

H [i #£ 0 (i)] =i # 0 (i) forall i € [n]] = [o (i) # i for all i € [n]]

1€[n]

= [0 is a derangement] (9)

(since o (i) # i holds for all i € [n] if and only if o is a derangement). Now, recall that
A= ([i # j]); jejn- Hence, the definition of det A yields

det A=Y (=1)7 []i#c)

c€Sy i€[n]
=[o is a derangement)]
(by (@)
= g (—1)7 [0 is a derangement)]
G’GSTL
= E (—1)7 [0 is a derangement] + E (—1)? [0 is a derangement]
- v - g
oESy is a : oE€Sy is not a ;’0
derangement (since o is a derangement) derangement (since o is not a derangement)

(since each o € S, is either a derangement or not)

= > DT Y (pTo= T (-1

oESy is a o€Sy is not a og€ES, is a
derangement derangement derangement
NG ~~ >y
=0

by Lemma [2.1] (c)
3by Lemma (b)
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Thus,
Y (1) =det A= (=1)""(n—1)

o€S, is a
derangement

(by part (a) of the exercise). This solves part (b) of the exercise.

(c) We have

B=|[i#j] H on
hem]\{i,j} i,j€[n]

Hence, the definition of det B yields

detB=> (-7 [] (li#c@)] T[] ¢t

€Sy Z‘e[n] hen)\{i,o(i)}

<,m¢¢a(z‘n> (n n bh>
i€[n] i€[n] he[n]\{i,o (i)}
=S 0 (TTl#c | {TT TI o

o€Sy . i€[n] ) i€[n] he[n]\{i,o (i)}
—[o is a derangement]
(by ()
= Z (—1)7 [0 is a derangement)] H H by,
o€Sh i€[n] he[n]\{é0(0)}
= Z (—1)7 loisa derangement H H by,
oESn is a i€[n] he[n]\{i,0 (i)}

derangement (since o is a derangement)

+ Z (1) [a is a derangement H H bn,

o€S, is not a i€[n] he[n]\{i,0(i)}
derangement (since o is not a derangement)

(since each o € S, is either a derangement or not)

= > I I wr X ool IT w

drangement T RERMET @Y gement. Sl el ()
=0
= > I II o (10)
c€Sy is a 1€[n] he[n]\{4,0(¢)}
derangement

Now, we aim to simplify the right hand side of this equality. Let o € S,, be a derange-
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ment. Then,

I I w

i€ln] hen\{i,o()}

he[nl;
h#i and h#o(1)

-1 I

i€[n] he[n];
N h#i and h;éa(iz
- e 11
he[n] i€[n];
h#i and h#0(1)
=11 II o (11)
€ 1€[n];

he(n]
h#i and h#0 (i)
Now, let h € [n]. Then, o (h) # h (since o is a derangement) and thus o' (h) # h

Hence, [{o~! (h),h}| = 2. Thus,
Hn] \ {a’l h}| = \ \ — HJ ,h}’ (since {a’l (h) ,h} C [n])
%,_/
—n—2. (12)
Furthermore, for any i € [n], we have the following chain of logical equivalences
(h#iand h # o (1))
< |i#hand o(i)#h (i#handi#o " (h) < [i¢ {h,o7"(h)}
a’—/
> (i#o~1(h) ={o=1(h),h}

— (i¢ {0 (h),h}).

Hence, we have the following equality between product signs

i =10 = 1 -
i€[n]\{o = (h),h}

i€ln); i€ln);
he#i and hto(i)  ig{o=1(h)h}

Therefore,
[n\{o=1(h),h n—
oMW ey @), (13)

I o= JI tu=0
i€ln); i)\ {o 1 (h),h}
h#i and h#o(i)
Now, forget that we fixed h. We thus have proven that holds for each h € [n]

Thus, becomes
(14)

I II =»=11 1I bh:hg]bg—z.

1€[n] he[n]\{i,0(¢)} heln] ‘ i€[n]; .
h#i and h#o(1)

:bn72

(by (13))

dgrinber@umn.edu
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Now, forget that we fixed . We thus have proven the equality for each derangement
o€ S,. Now, becomes

detB= > )7 II == >_ NS

o€Sy is a i€[n] he[n]\{i,0(¢)} o€Sy is a he(n]
derangement N -~ v derangement
— H bn—Q
he(n] h
(by (14))
1
= RSVl I | R Co Vi N O || [
o€Sy is a he(n] he(n)
derangement

=(=1)""(n—1)
(by part (b) of the exercise)
This solves part (c) of the exercise.
[The above solution of part (c¢) may have made you somewhat dizzy, as it seems to
involve negative powers of the b,’s when n = 1. But it’s all right: If n = 1, then there are no
derangements o € S, and thus the equalities and (| . are vacuously true (since they

both depend on a derangement o € S,,), Whereas the expression (—1)""" (n —1) ] b2
heln]

should be understood as 0 due to the vanishing n — 1 factor.|

2.3 REMARK

(a) There are various other ways to solve part (a) of the exercise, particularly if you know
some linear algebra. For example, it is easy to find the eigenvalues of A: Namely, A has

1
. . . . . . . 1 .
the eigenvalue n — 1 with multiplicity 1 (with eigenvector . |), and the eigenvalue —1
1
U1
. T . . L U2 e
with multiplicity n — 1 (with eigenspace consisting of all vectors ) € Q" satisfying
U’Vl

vy +v9 + -+ + v, = 0). Here, “multiplicity” can mean either algebraic multiplicity or
geometric multiplicity (our matrix A is sufficiently nice that these are the same). These
two eigenvalues are distinct and their multiplicities add up to 1 + (n — 1) = n, so that
we know that we have found all the eigenvalues of A, and therefore we conclude that
det A= (n—1)-(-1)- (=1)----- (—-1) (since the determinant of a matrix is the product of

—
n—1 times

its eigenvalues). This yields a new solution to part (a).

(c) A different way to solve part (c) proceeds as follows: Assume first that all n numbers
b1, b, ..., b, are nonzero. For each i € [n], multiply the i-th row of the matrix B by b;. Next,
for each j € [n], multiply the j-th column of the resulting matrix by b;. Denote the resulting
n X n-matrix by C. Then, it is easy to see that

C=(G#5]] o = II &

he(n) ijenl he(n]
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Hence,

n

detC=det [ [ JTon]| -A)=|(]T]0]| - det A
he[n] he(n] =(-1)""Y(n-1)
(by part (a) of the exercise)
=TIt 0 -1 =C0"" 1) [ I] tn
he[n] heln]

But if we recall how C was constructed from B, we easily observe that

det C= | JLoi|-(]]0i] detB

Nselnl /) il
= ﬁr bn = l:[r bp,
he(n] heln]
2
- th : th ~det B = th - det B.
hen) heln) he[n]

Comparing these two equalities, we find
2 n

[Ion] -detB=(=D)""(n=1)-| [] tw
he[n]

he(n]

2

Dividing this equality by ( IT bh> (this is allowed, since all n numbers by, by, ..., b, are
heln]

nonzero), we obtain

n—2
det B=(—1)""(n—1)- [ J] on = ()" (n-1)- ] o>
he[n] heln]
Thus, part (c) of the exercise is solved under the assumption that all n numbers by, by, ..., b,

are nonzero. How do we get rid of this assumption? Using the polynomial identity trick.
Indeed, we have to apply the polynomial identity trick n times (or, more formally, use
induction), each time arguing that our claim is an equality between two polynomials in the
variable b; (while all other n — 1 variables by, by, ..., b;_1,b;11,bi19,. .., b, are kept constant)
that holds for infinitely many values of b; (indeed, for all nonzero values) and therefore must
also hold for all values of b; (including 0). We leave the exact details to the reader. Lots of
identities can be proven this way.

3 EXERCISE 3

3.1 PROBLEM

Let n be a positive integer. If i = (iy,4a,...,1,) € {0,1}" and k € [n], then
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e we say that k is a I-position of i if 1, = 1;
e we say that k is a 10-position of i if k <mn, i, = 1 and i, = 0;

e we say that k is a cyclic 10-position of i if i, = 1 and iy = 0, where 7, is understood
to be 5.

(The first two of these concepts have already been defined in Homework set #2 Exercise
5. The concept of a “cyclic 10-position” differs from that of a “10-position” only in that we
consider the n-tuple to “wrap around”.)

Let k € Nand a € {0,1,...,n — 1}. Prove the following;:

(a) The number of n-tuples i € {0,1}" having exactly a 1-positions and exactly & 10-

it . a n—a
positions is f P

(b) The number of n-tuples i € {0,1}" having exactly a 1-positions and exactly k cyclic

~1 _
10-positions is Y e (this expression should be interpreted as [k = 0]
n—a\a—k k

when a = n).

(c) The number of n-tuples i € {0,1}" starting with a 0 and having exactly a 1-positions

1 _
and exactly £ cyclic 10-positions is (a k;) (n i a).
a JR—

3.2 REMARK

a a
1. You can rewrite the “ < k:)” in part (a) as “< k:) ” in order to make the similarity
a E—

3

a—1
to the other two parts more glaring. Likewise, you could rewrite the “( k) in
a _—

-1
parts (b) and (c) as (Z 1) when a > 0, but not in the border case when a = 0.

2. Sanity check: By summing over all a, we conclude from part (a) that the number of
n-tuples i € {0,1}" having exactly k 10-positions is

()= ()

(by a simple application of Proposition 2.21 in the class from 2018-09-26). This is
exactly the result of Homework set #2 Exercise 5.

3. Part (b) has an application to counting (a,b)-legal paths in the sense of §6.4 from
class.

Indeed, let a and b be two coprime positive integers. We say that an LP v is (a, b)-legal
if each (x,y) € v satisfies az > by. Proposition 6.7 in the class from 2018-11-14| shows

1 b
that the number of (a,b)-legal paths from (0,0) to (b,a) is (a * ) (This is a

a+b\ a
so-called rational Catalan numberf])

4The word “rational” refers to the fact that the line ax = by has a rational (not integer in general) slope;
the rational Catalan number is still an integer.
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Now, let us define a left turn of an LP v = (vg,v1,...,v,) to be an i € [n — 1] such
that the i-th step of v is a right-step (i.e., we have v; —v;_1 = (1,0)) but the (i + 1)-st
step of v is an up-step (i.e., we have v;4; —v; = (0,1)). For instance, the LP from
(0,0) to (8,5) depicted in

AN

\ 4

N
N
g
>
A 4
A 4

A 4
\ 4

-
-
-
-
-

Y

is (5, 8)-legal and has the left turns 2, 5, 9 and 12.

Now, given k£ € N, we claim that the number of (a, b)-legal LPs from (0,0) to (b, a)
having exactly £ left turns is %(Z li) (Z> (this is a so-called rational Narayana
number). Indeed, set n = a + b; then, every LP from (0,0) to (b, a) can be encoded as
an n-tuple i € {0,1}" with a 1-positions (by encoding each right-step as a 0 and each
up-step as a 1). If a given LP is encoded by an n-tuple (iy,is,...,4,), then its shift
(defined as in the proof of Proposition 6.7 in the class from 2018-11-14)) is encoded
by the n-tuple (is, 13, ...,i,,71). As we know, each cycle of S (again, see the proof of
Proposition 6.7 in the class from 2018-11-14 for the definition of .S) has size a + b and
contains exactly one (a,b)-legal LP; this (a, b)-legal LP clearly starts with a right-step
and ends with an up-step; hence it is easy to see that its left turns are in bijection
with the cyclic 10-positions of the corresponding n-tupld’] It is now easy to conclude
from part (b) that the number of (a,b)-legal LPs from (0,0) to (b,a) having exactly

I Loft ¢ . 1 a—1 n—a _1 a—1 b
vt o\ k) Tv\a—k) k)

4. It may be easiest to solve the problem starting with part (c).

5. T have smuggled a correction into the problem: The assumption “a € N” has been
replaced by “a € {0,1,...,n — 1}". Indeed, the problem would be false otherwise: For
example, when a > n, there are no n-tuples i € {0,1}" having exactly a 1-positions

at all, but the number (Z) <n ; a) may be nonzero (so that part (a) of the problem

would fail in this case).

3.3 SOLUTION SKETCH

Forget that we fixed n, k and a.

Let P = {1,2,3,...} be the set of all positive integers.

Let us recall the following easy counting result (which was Theorem 2.34 in (class notes
from 2018-10-03):

®Indeed, if we define “cyclic 01-positions” in the obvious way, then the left turns of our (a, b)-legal LP are
exactly the cyclic 01-positions of the corresponding n-tuple. But the latter are in bijection with the
cyclic 10-positions, because the cyclic 01-positions and the cyclic 10-positions alternate.
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Proposition 3.1. Let n € N and k € N. Then,
(the number of all (x1, s, ...,x;) € P¥ satisfying xy + xo 4 - - + 13 = n)

—1
_ (Z_l) ifn>1;
[k=0], ifn=0.
Let us bring this proposition into a more convenient (and slightly more general) form:
Corollary 3.2. Let n € Z and k € N. Then,
n—1
{20, zp) €PF | o+ ap 4+ =n}| = (n—k>

Proof of C’omllary (sketched). If n < 0, then both sides of the claimed equality are

0 (indeed, the left hand side is 0 because there exists no (xy,zs,...,7;) € PF satisfying

1+ x9 + -+ + xp = n, whereas the right hand side is 0 because n — _k < n < 0), and
>0

therefore the equality holds. Hence, Corollary is true when n < 0. Thus, for the rest of
this proof, we WLOG assume that n > 0. Hence, n € N.
If n > 1, then the symmetry of the binomial coefficients yields

(o) = (o) = (5) w

(since (n — 1) — (n — k) = k — 1). On the other hand, if n = 0, then
(n—l) B (0—1) B (—1) 1, itE=0;
n—k) \0—k) \—k) )0, ifk>0

this is easy to see by distinguishing cases:

-1 —1
=0, then (7, ) = (5) =1

whereas otherwise f =0dueto — k<0

1, ifk=0; since k > 0 holds if and only if £ #£ 0
0, ifk#0 (because k € N)

=[k=0].
Combining this equality with , we obtain
n—1
— if n > 1;
(")) - (i) o= (16
ne [k=0], ifn=0.
Now,

|{(x1,x2,...,xk)€]P>k | I1+x2+"'+xk=n}’
= (the number of all (zy, s, ...,7;) € P¥ satisfying @y + 2o + - + 23 = n)

-1
(" ) if n > 1; .
= k—1 (by Proposition [3.1])
k=0], ifn=0

B (Z:}c) (by (T6)) -

This proves Corollary [3.2] O
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In the following, we shall use the following notation: If g € {0,1} and m € N, then ¢g*™
shall denote g, g, ...,g. Thus, for example, (1*) = (1,1,1,1) and (1*°) = () and
—_—

m times
(0*%,1*%,0"",1*) = (0,0,0,1,1,0,1,1,1).

(Professional combinatorialists often write g™ instead of ¢*™, but we prefer to avoid this out
of an abundance of caution.)
Let n be a positive integer. The following claim is cleai;

Claim 1: Let i € {0,1}" be an n-tuple.

(a) If i starts with a 0 and ends with a 0, then i can be uniquely represented

as
] — *P1 *q1 *p2 *q2 *Ph 1*qh *Ph+1
i= (07FL, 1%% Q"2 1% (*Ph 1* (*Phi1)

for some h € N and some positive integers pi,po,...,phe1 and qi1,qo, ..., qn
satisfying (p1 + p2+ -+ pns1) + (1 + g2+ -+ + qu) = n. Moreover, the h in
this representation is the number of cyclic 10-positions of i, and also is the
number of 10-positions of i. Furthermore, ¢; + ¢2 + - -+ + ¢, is the number of
1-positions of i.

(b) If i starts with a 0 and ends with a 1, then i can be uniquely represented

as
i = (0%, 1%0 QP2 1% (*Ph 1)

for some h € N and some positive integers pi,po,...,pn and qi,qo, ..., qy sat-
isfying (p1 +p2+---+pn) + (@1 + ¢+ -+ qn) = n. Moreover, the h in this
representation is the number of cyclic 10-positions of i, whereas h — 1 is the
number of 10-positions of i. Furthermore, ¢; + ¢» + - - + ¢, is the number of
1-positions of i.

(c) If i starts with a 1 and ends with a 0, then i can be uniquely represented

as
1= (1*!11,0*1017 1*!127 0*1027 . I*Qh’ O*ph)

for some h € N and some positive integers py, po,...,pn and q1,qo, - .., qn sat-
isfying (p1 +p2+---+pn) + (1 + @ + - - + qn) = n. Moreover, the h in this
representation is the number of cyclic 10-positions of i, and also is the number
of 10-positions of i. Furthermore, ¢; + g2 + - - - 4+ ¢ is the number of 1-positions
of i.

(d) If i starts with a 1 and ends with a 1, then i can be uniquely represented

as
1= (1*(11’ 0*101’ 1*!12’ 0*p2’ . 1*%’ O*ph’ 1*<1h+1)

for some h € N and some positive integers pi,po,...,pn and qi1,qs, ..., qri1
satisfying (p1 +p2+---+pn) + (1 + ¢+ -+ + gny1) = n. Moreover, the h in
this representation is the number of cyclic 10-positions of i, and also is the
number of 10-positions of i. Furthermore, ¢; + g2 + - - - 4 gp+1 is the number of
1-positions of i.

6The idea behind it is known as “run-length encoding”.
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[Proof of Claim 1 (sketched): Intuitively this should be obvious — just record the lengths of the
runs of i (where the runs of i = (i1, 42, ...,iy,) are defined to be the inclusion—maxima][] intervals
[u,v] C [n] such that i, = 41 = -+ = 4p). If you want to make this rigorous: The existence
of the representations in all four parts of Claim 1 can be proven by induction on n, where in the
induction step you remove the last entry from your n-tuple to obtain an (n — 1)-tuple (but you
have to prove parts (a) and (b) together, since you don’t know what your (n — 1)-tuple will end
with after you remove the last entry; likewise, you have to prove parts (c) and (d) together). The
uniqueness of these representations is easy to see (e.g., in part (a), you just need to observe that
P1,q1,D02,q2, - -y Phs Ghs Pht1 are the lengths of the runs of i from first to last). The claims about
10-positions, cyclic 10-positions and 1-positions are obvious.]

We can use Claim 1 to count the n-tuples with given first and last entries and given
numbers of 1-positions and cyclic 10-positions:

Claim 2: Let a € N and k € N.
(a) The number of n-tuples i € {0, 1}" starting with a 0 and ending with a 0 and

—a—1 —1
having exactly a 1-positions and exactly k cyclic 10-positions is noa “ .
n—a—k—1/\a—k

(b) The number of n-tuples i € {0, 1}" starting with a 0 and ending with a 1 and

—a—1 -1
having exactly a 1-positions and exactly k cyclic 10-positions is (n " k:) <a k;) :
n—a— a —

(c) The number of n-tuples i € {0,1}" starting with a 1 and ending with a 0 and

n—a—1\/a—1
having exactly a 1-positions and exactly k cyclic 10-positions is ( k) ( k) .
n—a— a —

(d) The number of n-tuples i € {0, 1}" starting with a 1 and ending with a 1 and

—a—1 1
having exactly a 1-positions and exactly k cyclic 10-positions is noa ¢ .
n—a—k)\a—k—1
[Proof of Claim 2: Let P = {1,2,3,...} be the set of all positive integers.
(a) Claim 1 (a) shows that

e cvery n-tuple i € {0,1}" starting with a 0 and ending with a 0 can be uniquely

represented as
1= (0*131’ 1*(11’ O*pz’ 1*(12’ L ’O*Ph’ 1*%7 0*ph+1)

for some h € N and some positive integers pi, po, ..., ppe1 and qq, qo, - . ., qp satisfying
(Pr+p2t-Hp) H@+ et +a)=mn

e furthermore, the A in this representation is the number of cyclic 10-positions of i,
whereas q; + g2 + - - - + ¢, is the number of 1-positions of i.

Consequently, every n-tuple i € {0, 1}" starting with a 0 and ending with a 0 and having
exactly a 1-positions and exactly k cyclic 10-positions can be uniquely represented as

1 — *p1 *q1 *p2 *q2 *Dk *qk *Pr+1
i= (071, 150 Q%P2 1702 . (*Pk, 170k (*PR+1)

for some positive integers py, pa, . . ., Pr+1 and g1, Go, - - . , qx satisfying (p1 + pe + -+ + pry1) +
(g1 +q+ -+ q) =nand ¢1+qo+- - -+qr = a. Note that the condition “(p; + pa + « -+ + pra1)+
(1 +q+ --+q) =nand ¢ + ¢ + -+ g = a’ can be equivalently rewritten as

"“Inclusion-maximal” means “maximal with respect to inclusion” (i.e., not being subsets of larger such
intervals).

Darij Grinberg, 00000000 19 dgrinber@umn.edu



Solutions to midterm #3

page 20 of

“pr+pe+ -+ prrr=n—aand ¢ + ¢+ -+ q. = a’. Thus, every n-tuple i € {0,1}"
starting with a 0 and ending with a 0 and having exactly a 1-positions and exactly k cyclic
10-positions can be uniquely represented as

for some (p1, pa, . . .

i= (0*1}17 1*q17 0*1’27 1*Q27 . 70*101@’ 1*%7 0*Pk+1)

P* satisfying g1 + qo + - - + @1 = a.
Thus, there is a bijection

P : {(P17P27-~-7pk+1) EP | prdpot D :n—a}

 {(q1.q25 - i) eP" | Gt et +ag=a}
— {i € {0,1}" starting with a 0 and ending with a 0 and having

exactly a 1-positions and exactly k cyclic 10-positions}

,Prr1) € P satisfying pi+po+- - -+pry1 = n—a and some (qq, g, . . -

7q/€) €

sending each ((p1,p2, -, Dr+1), (q1, Q25 -« -, qx)) to (0FPL 1*¥0 QP2 1792 (Q*Pk 1*0k (*Prt1),
The existence of this bijection entails that

|{i € {0,1}" starting with a 0 and ending with a 0 and having
exactly a 1-positions and exactly k cyclic 10-positions}|
= ‘{(plap% k1) €PN pidpo 4+ pen = n—al
x{(q1,q2, - k) EP* | i+ @2+ + qp = a}|
= {p1.p2- i) €PN | prtpot A =n—a}|
( n—a—1 )
n—a—(k+1)
(by Corollary [3.2] applied to n—a and k+1 instead of n and k)
: H(Q1,Q27-~,Qk) P | Q1+QQ+"'+(]k:CLHj

-~

a—1
a—k

(by Corollary [3.2] applied to a and k instead of n and k)

() G- GG

This proves Claim 2 (a).
(b) The proof of Claim 2 (b) is analogous to the proof of Claim 2 (a), with the only
difference that we now need to apply Claim 1 (b) instead of Claim 1 (a).
(c) The proof of Claim 2 (c) is analogous to the proof of Claim 2 (a), with the only
difference that we now need to apply Claim 1 (c) instead of Claim 1 (a).
(d) The proof of Claim 2 (d) is analogous to the proof of Claim 2 (a), with the only
difference that we now need to apply Claim 1 (d) instead of Claim 1 (a).]
[Remark: The number in Claim 2 (b) equals the number in Claim 2 (c). Thus, you should
suspect that there is a bijection from the set

to the set

{i € {0,1}" starting with a 0 and ending with a 1 and having

exactly a 1-positions and exactly k cyclic 10-positions}

{i € {0,1}" starting with a 1 and ending with a 0 and having

exactly a 1-positions and exactly k cyclic 10-positions} .
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And indeed, it is easy to find such a bijection: It sends each
(0*?1’ 1+ , O*P2’ 1*(127 . ’O*Pk’ 1*%) to (1*!11 , O*Pl’ 1*(127 O*Pz’ e 1*%7 O*Pk)

(where p1,p2, ..., Dk, q1,92, - - - , g are supposed to be positive).|
Let us next state an analogue of Claim 2 in which cyclic 10-positions are replaced by
(regular) 10-positions:

Claim 8: Let a € N and k € N.

(a) The number of n-tuples i € {0,1}" starting with a 0 and ending with a 0 and
—a—1 1
having exactly a 1-positions and exactly k£ 10-positions is noa ¢ .
n—a—k—1)\a—k
(b) The number of n-tuples i € {0, 1}" starting with a 0 and ending with a 1 and
—a—1 1
having exactly a 1-positions and exactly k£ 10-positions is noa ¢ :
n—a—k—1/\a—k—1
(c) The number of n-tuples i € {0, 1}" starting with a 1 and ending with a 0 and
—a—1\fa—1
having exactly a 1-positions and exactly k 10-positions is noa ¢ .
n—a—=k)\a—k
(d) The number of n-tuples i € {0, 1}" starting with a 1 and ending with a 1 and
—a—1 1
having exactly a 1-positions and exactly k£ 10-positions is noa “ .
n—a—k)\a—k—1

[Proof of Claim 3: (a) If an n-tuple i € {0,1}" starts with a 0 and ends with a 0, then
its 10-positions are precisely its cyclic 10—positionsﬂ Thus, the n-tuples i € {0,1}" starting
with a 0 and ending with a 0 and having exactly a 1-positions and exactly k& 10-positions
are the same as the n-tuples i € {0,1}" starting with a 0 and ending with a 0 and having
exactly a 1-positions and exactly k cyclic 10-positions. Hence, Claim 3 (a) is equivalent to
from Claim 2 (a), and therefore must hold (since Claim 2 (a) has already been proven).

(c) The proof of Claim 3 (c) is analogous to the proof of Claim 3 (a).

(d) The proof of Claim 3 (d) is analogous to the proof of Claim 3 (a), with the only
difference that this time, the fact that n cannot be a cyclic 10-position of i follows from the
assumption that i starts with 1 (rather than the assumption that i ends with 0).

(b) This is a bit trickier.

If an n-tuple i € {0,1}" starts with a 0 and ends with a 1, then n is a cyclic 10-position
of i ﬂ, but of course is not a 10-position of i. Hence, if an n-tuple i € {0, 1}" starts with
a 0 and ends with a 1, then the number of its cyclic 10-positions is by 1 larger than the
number of its 10-positions. Thus, such an n-tuple i has exactly k& 10-positions if and only
if it has exactly k& + 1 cyclic 10-positions. Thus, the n-tuples i € {0,1}" starting with a
0 and ending with a 1 and having exactly a 1-positions and exactly & 10-positions are the
same as the n-tuples i € {0,1}" starting with a 0 and ending with a 1 and having exactly
a l-positions and exactly k + 1 cyclic 10-positions. Thus, Claim 2 (b) (applied to k + 1
instead of k) shows that the number of such n-tuples is

(n —na_—a(;i1)> (a —a(;rm) - (ni;i;i 1) (ai;i 1)'

81n fact, the only difference between its 10-positions and its cyclic 10-positions is that n may be a cyclic
10-position without being a 10-position. But this can never happen for an n-tuple i € {0,1}" that ends
with a 0 (because for n to be a cyclic 10-position, the n-tuple must end with a 1). Thus, there is no
difference between the 10-positions and the cyclic 10-positions of i.

9Indeed, if we write i as i = (i1,42,...,i,), then we have i,, = 1 (since i ends with a 1) and 4,41 =i; =0
(since i starts with a 0); but these two equalities tell us precisely that n is a cyclic 10-position of i.

Darij Grinberg, 00000000 21 dgrinber@umn.edu



Solutions to midterm #3 page 22 of

This proves Claim 3 (b).]

We can now finally solve the exercise:
Fix ke Nanda € {0,1,...,n—1}. Hence,a > 0and a <n—1,sothat n—a >1>0.
Better yet, we have n —a — 1 > 0 (since n —a > 1).

(a) Recall that n is positive. Hence, any n-tuple i € {0, 1}" must start with either 0 or
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1, and must end with either 0 or 1. Thus,

(the number of n-tuples i € {0,1}" having exactly a 1-positions and exactly k 10-positions)

= (the number of such n-tuples starting with a 0 and ending with a 0)

N S

B n—a—T a—1
\n—a—k—1)\a—k

(by Claim 3 (a))

+ (the number of such n-tuples starting with a 0 and ending with a 1)

B n—a—lv a—1
\n—a—-k—1/\a—-k—-1

(by Claim 3 (b))

+ (the number of such n-tuples starting with a 1 and ending with a 0)

n—a—ﬂi a—1
\n—a—-k)\a—k

(by Claim 3 (c))

+ (the number of such n-tuples starting with a 1 and ending with a 1)

N\ J

-~

7n—a—1 a—1
\n—a—k)\a—k—-1
(by Claim 3 (d))

B n—a-—1 a—1 n n—a—1 a—1
T \n—a—-k—-1)\a—k n—a—k—1/)\a—k—-1
n n—a—1 a—1 n n—a—1 a—1

n—a—=~%)\a—k n—a—k/\a—k—1
n—a—1 a—1 a—1
= +
(n—a—k—l) ((a—k) (a—k—l))

(by the recurrence relation of the binomial coefficients)

o) (G0t

-~

a
a—k

(by the recurrence relation of the binomial coefficients)

gl CISPRRy [ ) A | Y
- (L) G) GO

(")

(by the recurrence relation of the binomial coefficients)

:<nﬁ;ik><aik)
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Comparing this with

() (7.

(by the symmetry of the binomial coefficients, (by the symmetry of the binomial coefficients,
since a>0) since n—a>0)

()G = () )

(the number of n-tuples i € {0,1}" having exactly a 1-positions and exactly k 10-positions)
_(a\(n—a
- \k k)

This solves part (a) of the exercise.

we obtain

(b) We have a € {0,1,...,n— 1}, thus a < n —1 < n, thus @ # n. In other words,
n # a.

Recall that n is positive. Hence, any n-tuple i € {0,1}" must start with either 0 or 1,
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and must end with either 0 or 1. Thus,

(the number of n-tuples i € {0,1}" having exactly a 1-positions
and exactly k cyclic 10-positions)

= (the number of such n-tuples starting with a 0 and ending with a 0)

(. J

B n—a—\i a—1
“\n—a—-k—1/\a—k

(by Claim 2 (a))

+ (the number of such n-tuples starting with a 0 and ending with a 1)

n—a—T a—1
\n—a—k)\a—k

(by Claim 2 (b))

+ (the number of such n-tuples starting with a 1 and ending with a 0)

(e (e

(by Claim 2 (c))

+ (the number of such n-tuples starting with a 1 and ending with a 1)

n—a—lv a—1

:(n—a—k)(a—k‘—l)
(by Claim 2 (d))

B n—a—1 a—1 n—a—1\[(a—-1
B (n—a—k—l)(a—k)+(n—a—kz)(a—k)
n—a—1\[(a—-1 n—a—1 a—1

+(n—a—k’)(a—k‘)+(n—a—k:)(a—k—l)
B n—a—1 n—a—1 a—1
B \((n—a—k)+(n—a—k—1>)l (a—k)

(")

(by the recurrence relation of the binomial coefficients)

) (Co)-m )

a
a—Fk
(by the recurrence relation of the binomial coefficients)

n—a a—1 . n—a—1 a

n—a—=k a—Fk n—a—=k a—Fk
S———— SN————
n—a n—a—1
(n—a)—(n—a—k) m—a—1)—(n—a—k)
(by the symmetry of the binomial coefficients, (by the symmetry of the binomial coefficients,

since n—a>0) since n—a>0)
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(oo o e ) o) a0 ) ()

-~

(7 (o)

(by @)

o G i R o T o G B A G e {

G R e (s Y O [ Y (wﬂiaa)

_(n—a\fa—1 no_on a—1\[/n—a
Sk a—k)n—a mn—a\a—k k)
This solves part (b) of the exercise.

(c) Recall that n is positive. Hence, any n-tuple i € {0,1}" must end with either 0 or

Darij Grinberg, 00000000 26 dgrinber@umn.edu




Solutions to midterm #3

page 27 of

1. Thus,

(the number of n-tuples i € {0,1}" starting with a 0 and having

exactly a 1-positions and exactly &k cyclic 10-positions)

= (the number of such n-tuples ending with a 0)

(& J/

n—a—t a—1
\n—a—-k—1/\a—k

(by Claim 2 (a))

+ (the number of such n-tuples ending with a 1)

(.

(2 (o))

(by Claim 2 (b))

Sy S [y B o G
oo (e ) Ry ) I

J/

~~

(")

(by the recurrence relation of the binomial coefficients)

n—a

totaon) (03

- (n:ik) (Z:D:K(n—a)

(oo )

(by the symmetry of the binomial coefficients,
since n—a>0)

_(n—a\(fa—1\ f(fa—-1\(n—a
\k J\a—k) \a—k)\ k )
This solves part (c) of the exercise.

3.4 REMARK

Other solutions exist. Here is a sketch of one such solution to part (a):

(

-~

n—a

k

)

(a) Here is an algorithm that constructs each n-tuple i € {0,1}" having exactly a

1-positions and exactly k£ 10-positions:

e Begin with the a-tuple (1,1,...,1) (with a entries). This a-tuple already contains all
the 1’s that i will contain (since i should have exactly a 1-positions); thus, all we need

to do is to insert » — a many 0’s into this a-tuple.

e Among the ¢ many 1’s that our a-tuple has, we choose the k many 1’s that will be
followed by 0’s. (We know that we want exactly k£ many 1’s to be followed by 0’s,

a
since i should have exactly k& 10-positions.) This choice can be made in | many

ways (since we have to choose k among a many 1’s). We color the k chosen 1’s red.

e We insert a nonnegative amount of 0’s at the beginning of our tuple. Furthermore,
after each of the k red 1’s, we insert a positive amount of 0’s, taking care that we
insert exactly n — a many 0’s in total (including the ones that have been inserted at
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n—a
k
choice boils down to choosing a (k + 1)-tuple (y, x1, s, ..., xx) of nonnegative integers
satisfying (z; > 0 for all i € [k]) and y + 71 + 22+ -+ 2 =n—a [ and it is not

hard to check that the number of such (k + 1)-tuples is (n ; a) .

the beginning of our tuple). This can be done in ) many ways, because our

a\(n—a

k k
problem. A similar argument can be made for part (c). Part (b) can be derived from part
(c) by rotating the n-tuple cyclically — do you see how this works?

Thus, the total number of such n-tuples is . This solves part (a) of the

4 BEXERCISE 4

4.1 PROBLEM

An integer formal power series (short IFPS) shall mean a formal power series whose coef-

ficients all are integers. For example, 1 — 22 + 322 — 423 & - - - is an IFPS, while 1 — lx is
not.

If m is an integer, and if a and b are two [FPSs, then we say that a = b mod m if and
only if there exists an IFPS ¢ such that a — b = mec. (This is completely analogous to the
definition of congruence modulo m for integers.) The following facts hold:

(A1) Two IFPSs a and b and an integer m satisfy a = b mod m if and only if each n €
N satisfies [z"]a = [2"]b mod m (that is, each coefficient of a is congruent to the
corresponding coefficient of b modulo m).

(A2) Each integer m and each IFPS a satisfy a = a mod m.

(A3) If m is an integer, and if a and b are two IFPSs satisfying a = b mod m, then b = a
mod m.

(A4) If m is an integer, and if a, b and ¢ are three IFPSs satisfying a = b mod m and b = ¢
mod m, then a = ¢ mod m.

(A5) If m is an integer, and if a, b, ¢ and d are four IFPSs satisfying a« = ¢ mod m and
b=d mod m, then

a+b=c+d modm, a—b=c—d modm, and ab = cd mod m.

(A6) If m is an integer, and if a and b are two IFPSs with constant terms +1 (that is,
(2] @ = 1 and [2°] b = +1) satisfying a = b mod m, then

a'=b"" modm.

OTndeed, in this (k + 1)-tuple, the entry y is the number of 0’s that we insert at the beginning of our tuple,
whereas the entry x; is the number of 0’s that we insert after the i-th red 1 counted from the left.

UFor example, you can achieve this by finding a bijection between these (k + 1)-tuples and k-element
subsets of [n — a].
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(A7) If mis an integer and n is a nonnegative integer, and if a and b are two IFPSs satisfying
a =b mod m, then
a"=b" mod m.
Furthermore, if @ and b have constant terms +1, then this also holds for negative n.

(You can use all these seven facts without proof, but if you are curious: Fact (A1) is
essentially obvious; facts (A2)—(Ab) are proven just as for integers. Fact (A6) follows by ob-
serving that ™' — b1 = —a~'0~! (a — b), since the assumption on the constant terms forces
a~! and b~! to be well-defined IFPSs. Finally, fact (A7) is proven by forwards induction for
n > 0 and then by backwards induction for n < 0.)

Now, let p be a prime.
(a) Prove that (1+z)” =1+ 2? mod p.

(b) Prove Lucas’s congruence: Any a,b € Z and ¢,d € {0,1,...,p— 1} satisfy

()= ()

(c) Prove that if m € N, and if @ and b are two IFPSs satisfying a = b mod m, then
a™ =b" mod m?.

(d) Prove that any a,b € Z satisfy

()= G)

[Hint: (a) What do you remember about (Z) ?

(b) (14 2)™" = ((1 +2)")* (1 4+ 2)°. Tt is helpful to define [2"] f = 0 for any negative
n and any FPS f.
(c) Write a as b+ mc for some IFPS ¢. The same congruence holds for integers. |

4.2 REMARK

The claim of part (a) is a particular case of the following fundamental fact (sometimes
known as “Freshman’s Dream” or “Idiot’s Binomial Formula”): If R is a commutative ring,
and if u and v are any two elements of R, then (u + v)” = u? + v mod p, where the relation
“a = b mod p” (for two elements a and b of R) is defined exactly as you would expect
(namely, it means that there exists some ¢ € R satisfying a — b = pc). The solution I will
give below for part (a) can be easily adapted to prove this fact.

Part (b) of the problem is the famous Lucas’s congruence. See |Grinbel8c, proof of
Theorem 1.11] for a more elementary proof of it as well as for a few references (though most
sources only prove it in the case when a and b are nonnegative).

Part (c) of the problem is a particular case of the “exponent lifting principle”. In a
slightly more general form, it says that if R is a commutative ring, and if m, a and b
are three elements of R satisfying @ = bmodm, then a™ = b™ modm?. (Here, again, the
congruence “a = b mod m” has to be understood as “there exists some ¢ € R satisfying
a—b=mc.)

Part (d) of the problem is another famous congruence, sometimes ascribed to Charles
Babbage (though I don’t know if he ever stated it). See [Grinbel8dc, proof of Theorem 1.12]
for an elementary proof of it and some references (which references, again, only prove it for
a and b nonnegative).
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4.3 PARTIAL SOLUTION

We shall use the following fact (which was Theorem 1.24 in our classwork from 2018-09-10,
and also appears in |Grinbel8d, Theorem 1.2|):

Theorem 4.1. Let p be a prime number. Then, the binomial coefficient <£) is divisible
by p for every k € {1,2,...,p— 1}.

Let us next make a few further general observations. Fact (A5) shows that we can add,
subtract and multiply any two congruences between IFPSs modulo m (where m is an inte-
ger). Thus, we can also add, subtract and multiply any finite number of congruences between
IFPSs modulo m. In other words, if m € Z and u € N, and if a1, as, ..., ay,b1,bs,...,b, are
any 2u [FPSs satisfying

ap = bymodm  for each k € [u],
then . . . .
ap = Zbkmodm and Hak = kumodm.
k=1 k=1 k=1 k=1

This can be proven by straightforward induction on u. We shall use this tacitly below.
Furthermore, facts (A2), (A3) and (A4) show that congruences between IFPSs modulo m

can be “chained together” If we have an integer m € Z and finitely many IFPSs a1, as, . .., a,
satisfying

a; = a; 41 modm for each i € [u — 1],
then any two of the IFPSs ay, as, ..., a, are congruent to each other modulo m (that is, we

have a; = a;modm for each i, j € [u]). In such a situation, we write
a1 =as = -+ = a, modm,

and speak of a “chain of congruences”; so, just as for a chain of equalities, once we have
shown that each two adjacent “links” of the chain are congruent, we can conclude that any
two “links” of the chain are congruent. Again, this will be used tacitly in the following.

Next, let us recall Newton’s binomial theorem (Theorem 8.8 in our classwork from 2018-
11-28):

Theorem 4.2. We have

(1+2)" = Z (Z) " for each n € Z.

keN

Proof of Theorem[4.2 1 seem to have forgotten to prove this in class, so let me do it now.
Recall that

1+z) "= —1k<n+k_1>xk for each n € N. 18
R R S i G (13)
(Indeed, this is Theorem 8.9 in our classwork from 2018-11-28.)

Now, fix n € Z. We are in one of the following two cases:

Case 1: We have n > 0.

Case 2: We have n < 0.
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Let us first consider Case 1. In this case, we have n > 0. Thus, n € N. Hence,

n

1+2)"=(x+1)"= Z (:) xk 1k (by the binomial theorem)
k=0 =1

I
bl
3
o
RS
> 3
~_—
)
'??‘

Comparing this with

(since n<k)

keN
Let us next consider Case 2. In this case, we have n < 0. Thus, —n > 0, so that —n € N.

Hence, (applied to —n instead of n) yields

(1+2) " =>" (-1 (_” +kk_ 1)xk. (19)

keN

we obtain (1+z)" = > (Z) z*. Hence, Theorem is proven in Case 1.

But each k € N satisfies

k k
1y (—n i 1> 20)

(since k —n—1=—n+k—1). Now, n = —(—n), so that

-1
(n> = (-1)* (k " ) (by Proposition (applied to n and k instead of m and n))

I+2)"=1+2)" =) (-1 (_" +kk B 1) aF (by ([19))

keN _

-~

n
_ (Q
(by (20))
Hence, Theorem is proven in Case 2.
We have now proven Theorem in both Cases 1 and 2. Thus, the proof of Theorem
4.2|is complete. [

-y (Z)xk

keN

Let us now solve parts (a) and (c) of the exercise.

(a) For each k € {1,2,...,p— 1}, we have p | (i) (by Theorem and thus (g) =

0O mod p and thus
<Z> ¥ = 0modp
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indeed, fact (A5) above shows that we can multiply the congruences P = 0O mod p and
y g e

¥ = 2% mod p, thus obtaining Z) 2¥ = 02F = Omod p). If we sum up these congruences

over all k € {1,2,...,p — 1}, then we obtain

p—1 p—1
(Z)xk = ZO = O mod p.
1

k=

The binomial theorem yields

(1+a)f ;() @\x;;r:zxi)x’w@xp

N———
=0mod p

here, we have split off the addends for £ = 0 and for k = p
from the sum (since 0 # p)

=1

=140+ 2" =14 2’ mod p.
This solves part (a) of the exercise.

(c) Let m € N. Let a and b be two IFPSs satisfying a = bmod m. From a = bmodm,
we conclude that there exists an IFPS ¢ such that a — b = mc. Consider this c.

We must prove that a™ = ™ mod m?. If m = 0, then this is obvious (because if m = 0,
then the FPSs a™ = a° = 1 and ™ = b’ = 1 are equal, and therefore congruent to each
other modulo any integer). Thus, for the rest of this proof, we WLOG assume that m # 0.
Hence, m > 1 (since m € N).

We have a — b = me, thus a = mc + b. Hence,

(me+0b)" = Z ( ) b pmk (by the binomial formula)
k=0
: (o)@vb () (D)
~—— =1 =bm ——~ =mc k=2 —mk ok
=1 =m

here, we have split off the addends for £k =0 and k =1
from the sum (these addends both exist, since m > 1)

o m m—1 - m k kim—k
="+ mmecb +Z(k) m b

=m?2cbm~1=0mod m?2 k=2 —m2mk— 2
=0mod m?
(since k>2 and

thus m*—2¢€7)

=" +0+ Z (TIZL) 0 b™* = p™ mod m>.
k=2
-0

This solves part (c) of the exercise.

[ have yet to write up solutions to parts (b) and (d). Actually I am at a loss at how to
solve part (d) using IFPSs; I had the impression such a solution was easy when I posed the
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problem, but this impression has revealed to be a fata morgana. Thus, for the time being,
I refer to |Grinbel8c| for the solutions to both parts (b) and (d) (solutions that don’t use
IFPSs, however).

]

5 EXERCISE 5

5.1 PROBLEM
For each n € N, we define two FPSs P, and S,, by

n n

P, = H (1—27) and S, = Z (—1)° 5B3s+1)/2.

s=1 s=—n
(For example,
Pi=(1-2)(1-2*)(1-2")(1-2")=1-2—2"+22° — 2% — 2" + 2™

and
Si=1—z—a?+2°+2" — 2 — 2 + 22 4 2%, )

(a) Show that S, is well-defined, i.e., that all of the exponents s (3s 4+ 1) /2 are nonnegative
integers (even when s < 0).

(b) Set
n P,
F, = Z (—1)° Fﬁ”*s(s“w for each n € N.
s=0 s

Show that F;,, = .5, for each n € N.

[Hint: (b) Induction on n. In the induction step, use P, = P,,_1 — 2" P, to split the
sum defining F;, into two subsums after first splitting off the s = n addend. This leads to
F,—F,_1= Sn - Snfl-]

5.2 REMARK

If we take the limit n — oo in the claim of part (b) (see [Loehrll] §7.5] for the meaning of
“limit” here), then we quickly obtain

o0

H (1 - l‘s) _ Z (_1)3 xs(3s+1)/2.

s=1 S=—00

P, )
(Indeed, each of the addends (—1)° Fﬁ"*s(s“)/? for s > 0 tends to 0 when n — co.) This

is Euler’s pentagonal number theorem again.
Part (b) of this exercise is the main result of [Shanks51].
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5.3 SOLUTION SKETCH

(a) We must prove that s (3s + 1) /2 is a nonnegative integer for each s € Z.
So let s € Z. We must prove that s (3s+ 1) /2 is a nonnegative integer.

Proposition (applied to s and 2 instead of m and n) yields (;) € Z. Thus,

en_(;

) € Z. Now, a simple calculation shows that

2 2
2 s(s—1)
sBs+1)/2=_5" +_s -
€L EZ H/_/Z
S

Thus, s (3s+ 1) /2 is a sum of three integers, and hence is an integer.

1 1
Another simple calculation shows that s(3s+1) = 3 (S + 6) B >3-

>0
(since squares of real numbers
are nonnegative)

1 1
0— B="13" —1. Since s(3s+ 1) is an integer, this yields s(3s+1) > =14+ 1 = 0.
Hence, s(3s+1)/2 > 0 as well. In other words, s(3s+ 1) /2 is nonnegative. Hence, we

have shown that s (3s + 1) /2 is a nonnegative integer. This solves part (a) of the problem.

[Remark: The solution to part (a) that I just gave is perhaps the shortest. There are
various other approaches. For example, in order to prove that s (3s + 1) is nonnegative, one
can show that the two numbers s and 3s + 1 have the same sign (i.e., either both are > 0,
or both are < 0). Also, the integrality of s(3s+ 1) /2 can be proven by observing that at
least one of the two integers s and 3s + 1 is even.|

(b) The following solution to part (b) is exactly the argument of Shanks [Shanks51|
(just with more details).
Let us first observe that

P,=P,1—2"P, for each integer n > 1. (21)

[Proof of (21)): Let n > 1 be an integer. Thus, n — 1 € N. The definition of P,_; yields
n—1

P, 1 =[] (1 —2*). Now, the definition of P, yields

s=1
n n—1
B o n s here, we have split off the factor
Pn—ll(l—x)—(l—x >1i[1(1_x> (fors:nfromtheproduct, since n > 1 )
A/_/

=Pp_1
= (]_ —ZEn> 'Pn—l = Pn—l —(L’npn_l.

This proves ]

n
For any n € N, the formal power series P, = [] (1 — z*) has constant term 1 (indeed,

s=1
it is a product of the n formal power series 1 — z* for s € {1,2,...,n}, each of which
has constant term 1), and thus is invertible. In other words, all the formal power series

Py
Py, P, Py, ... are invertible. Hence, quotients like the 2 in the definition of F,, are well-

defined. B
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We can now restate (21)) as follows: If @) is any formal power series, then

PnQ_1 =(1—-2")- P for each integer n > 1. (22)
[ Proof of .' Let @ be any formal power series. Let n > 1 be an integer. From ,
we obtain P, = P, 1 — 2"P,_; = (1 — 2") P,_;. Multiplying both sides of this equality by

PO we obtain P (1—2z")- % This proves (22)).]

We must prove that
F,=S5, for each n € N. (23)

We shall prove this by induction on n:
Induction base: The definition of Fy yields

0
_ § : s Fo sO0+s(s+1)/2 _ o Fo 0-0+0(0+1)/2 _
=1 =~

s=0 =20=1

=1
The definition of Sy yields

0
Sy = ZO (_1)8:Es(35+1)/2 _ (_1)0 x0(3~00+1)/2 — 1.
§=— —1 =zY=1
Comparing these two equalities, we obtain Fy = Sy. In other words, holds for n = 0.
This completes the induction base.

Induction step: Let m be a positive integer. Assume that holds for n =m — 1. We
must prove that holds for n = m.

We have assumed that holds for n = m — 1. In other words, we have F},,_1 = .5,,_1.
Note that m > 1 (since m is a positive integer), thus m —1 > 0. Also, m # —m (since
m>1>0).

Applying (21)) to n = m, we find P,, = P,_1 — 2™ Pp,_1.

The definition of F,, i yields

m—1
I e e kil
s=0 $ :xsm<:sr(s—l)/2
(since s(m—1)+s(s+1)/2=sm+s(s—1)/2)
m—1
P,
_ (_1)8 5 1 sm+s(s—1)/2 (24)
s=0 s
The definition of F,, yields
- P
F o= -1 s -~ m _ sm+s(s+1)/2
m ( ) PS T
s=0
P = P
_ (_1)m im xmm+m(m+1)/2 + (_1)8 _mxsm+s(s+1)/2
\P;n./ :xm(Sm+1)/2 s=0 PS

=1 (since mm+m(m+1)/2=m(3m+1)/2)

(here, we have split off the addend for s = m from the sum)

m—1
P
—(—1 mxm(3m+1)/2+ —1) mxsm—&-s(s-‘rl)/?‘
(-1) > g
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Subtracting (—1)" 2™3™+D/2 from both sides of this equality, we find

F, — (_1)77’1 xm(3m+1)/2

-1

3

m—1

= (_1)8 im x3m+s(s+1)/2 _ Z (_1)3 P, —mepm—l wsm+s(s+1)/2
s=0 \/s/ s=0 . j J/
D1 — 2" P Py P N
P P, P,
(since Pm=Pp_1—2"™Pp_1)
m—1
Pm—l Pm—l
— —1)® . m sm+s(s+1)/2
s=0 ( ) ( Ps PS ’
N (s Dt smeas(sr2 _ N (1) Dol m smes(s1)/2
_70( 1) o 22(1) 5a"e : (25)

Let us rewrite the first sum on the right hand side of this equality:

m—1
Py
1o sm+s(s+1)/2
(-1 2 :
s=0 —gst(sm+s(s—1)/2)
(since sm—+s(s+1)/2=s+(sm+s(s—1)/2))
m—1 m—1
s Pm—l s+(sm+s(s—1)/2) s Pm—l s sm+s(s—1)/2
=2 () gttt A=) () &l e
s=0 —gsgpsmts(s—1)/2 s=0 :1—(1—335)
m—1
P,
_ (_1)5 tm—1 (1 . (1 _ {L‘S)) xsm—l—s(s—l)/Q
Py
s=0
m—1 P m—1 P
= —1 s Zm—l_smts(s—1)/2 _1)® m—1 1 — 7° Q:strs(sfl)/2
(-1 22 (-1 2t )
s=0 , s=0 ,
—Fpy P m—1 P,
by (24)) —(_1)\0 _ 20 0m+0(0-1)/2 _1)8 8 )gsmts(s—1)/2
(by @4) (1) 7, (1-29) +s§1( 1) P, (1—z%)
(here, we have split off the addend for s=0 from the sum,
since m—1>0)
P, il P
_ L —1)° m—1 1 — 20) LOm+0(0-1)/2 + _1)¢ m—1 1 — %) gsmts(s—1)/2
m—1
(-1 == (1=4") ;()PS()
(since this product contai:sothe factor 1—20=1—1=0) =(1—z%)- Pm_l
Py
m—1 P
=Fp— Y (-1 (1-2°)- %*Ism“@—l)/?. (26)
s=1 $
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Let us now take a closer look at the second sum on the right hand side of :

(_1)3 Pgl xmxsm-i—s(s—i-l)/Q
| —
s=0 § —gpmt+(sm+s(s+1)/2) —p(s+1)m+s(s+1)/2
(since m+(sm+s(s+1)/2)=(s+1)m+s(s+1)/2)
m—1
_ ) (st Dmts(s41)/2
s=0 S
m—1 Pm—1 ((m=1)+1)m+(m—1)((m—1)+1)/2
=D 5 — z .
m—1 :xm(;;—l)/Q
=1 (since ((m—1)4+1)m+(m—1)((m—1)+1)/2=m(3m—1)/2)
m—2
+ Z s (s+1)m+s(s+1)/

ere, we have spht off the addend for s = m — 1 from the sum,
sincem—12>0

:( 1)m 1 m3m 1)/2+Z s (s+1)m+s(s+1)/

— (_1>m—1 xm(3m 1)/2

m—1
P
1381 m—1 ((s—=1)+1)m+(s—1)((s—1)4+1)/2
+> (1) o z “ y
s=1 :7(71)5 \\S;__/ psmts(s—1)/2
mel (since ((s— 1)+1)m+(s 1)((s—1)+1)/2=sm+s(s—1)/2)

—(1—a%).
s
(by , applied to Q=P,, 1

and n=s)

(here, we have substituted s — 1 for s in the sum)

m—1

P,
— (1 m—1_m(3m—1)/2 _ 1) (1 — %) . ™ 1 sm+s(s—1)/2‘ 27
(=D" = ;()(ﬂf)—Psl’ (27)
Now, becomes
F, — (_1)m xm(3m+1)/2
m—1 m—1
_ s m 1 sm+s(s+1)/2 _ Z s m 1 mm5m+5(5+1)/
m—1 o Pm,:l e PWL71
=F_1— ;1( 1) (1 T ) msm+s(s—1)/2 :(_1)mflmm(3m—l)/2 Z ( 1) (1 zs). xsm+s(s—1)/2
by @) ) )
m—1 P
(- S e )
m—1 P
. _1 m—1_m(3m—1)/2 _ 1) (1 — 25) - m—1 _sm+s(s—1)/2
= Fpq — (1)t gmBm=D2 — p 4 (—1)™ gmBmD)/2
~——
——
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Adding (—1)™ 2mBm+1/2 to both sides of this equality, we find

Fp= Fp_y + (—=1)"gmBm=1/2 4 (_q)m gmBm+1)/2
s
—Pm-—1

=S, 1 + (_1)m xm(3m—1)/2 + (_l)m xm(3m+1)/2. (28)

On the other hand, the definition of S,,_; yields

m—1 m—1
S = Z (—1)° 25 Bs+D/2 = Z (—1)* 25Gs+1)/2 (29)
s=—(m—1) s=—m+1

(since — (m — 1) = —m + 1). But the definition of S, yields

Sm
— Z (_1)81,5(38-1—1)/2
s=—m
m—1
= Z (—1)SZES(3S+1)/2—|— (_1)fm gj(—m)(i&tm)—l—l)/% +(—1)mfl}m(3m+1)/2
f:—m-i-l m —pm(3m—1)/2

—g (since —m=m mod 2) (since (—=m)(3(=m)+1)=m(3m~1))
—Om—1
(by @9)
here, we have split off the addends for s = —m and for s =m
from the sum (indeed, these are two distinct addends, since m # —m)

=S, 1+ (_1)m xm(Bmfl)/Z + (_1)m xm(3m+1)/2.

Comparing this with , we obtain F,, = S,,. In other words, holds for n = m. This
completes the induction step.
Thus, is proven by induction. In other words, part (b) of the exercise is solved.

6 EXERCISE 6

6.1 PROBLEM

Recall that we are using the following notations:

e A partition means a weakly decreasing sequence of positive integers. (Thus, a partition
is the same as a partition of some n € N.)

e Given any n € Z, we let p (n) denote the number of all partitions of n. (This is 0 when
n <0.)

e Given any n € Z and k € N, we let p; (n) denote the number of all partitions of n into
k parts.

Prove the following:
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(a) Any n € N satisfies

3

np(n)=p o(k)p(n—Fk),

k=1

where o (k) denotes the sum of all positive divisors of k.

(b) Any n € N satisfies
> kpe(n) =3 0(k)p(n—k),
k=0 k=1

where 0 (k) denotes the number of positive divisors of k.

(c) Let a:{1,2,3,...} - Q be any map. For any partition A = (A, Ay, ..., \g), we let
a (A) denote the sum a (A1) + a (A2) + -+ a(\y). Then, any n € N satisfies

n

daN=> D a@d|pn—k).

AFn k=1 \ dlk

2

Here, the summation sign “» " means “sum over all partitions A of n”, whereas the

AFn
summation sign “» 7 means “sum over all positive divisors d of k”.
dlk

[Hint: Parts (a) and (b) are particular cases of (c). Particular cases are not always
easier to prove than generalizations.|

6.2 SOLUTION
We begin by introducing a notation (which is actually standard):

Definition 6.1. Let A = (A1, A, ..., A\x) be any partition. Let d be a positive integer. Then,
mg (A) shall denote the number of all i € [k] satisfying \; = d. (In other words, m, (\) is
the number of times that the number d appears in X.) We refer to mg (\) as the multiplicity
of d in A. Note that mg4 (A) € N.

Example 6.2. If A = (5,3,3,3,3,2), then
my (A\) =0, ma (A) =1, mg (N\) = 4, my (A) =0, ms (A) =1
and mg (\) = 0 for all d > 5.

We notice that if A = (A, Ag,..., \g) is a partition, then all but finitely many positive
integers d satisfy my () = 0 (because A has only finitely many entries, and any positive
integer other than these entries doesn’t appear in A at all).

Let us now solve the problem. We begin with part (c), since it is the easiest part to
solve.

(c) Let n € N. We begin with the following simple claims:

Claim 1: Let X\ be any partition. Then, a(A) = >  mg(A) a(d). (Here, the
d>1
infinite sum »_ mg4 (A\) a (d) is well-defined, since all but finitely many positive
d>1
integers d satisfy my (A) = 0.)
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[Proof of Claim 1: Write A in the form A = (Ay, Aa, ..., A\g). Then, the definition of a (\)
yields

a(\)=aA)+ae)++ah) = a(X)

i€lk] d>1 iclk); I
A

]
.
{+

(since \; is a positive integer for each i € [k])

=Y, D ald) =) iclk | Ahi=di a(d) =2 ma(Na(d).

d=1 i€[kl; d=1 =(the number of all i€[k] satisfying \;=d) d=1
=ma(})
(since this is how mg(\) was defined)

Ai=d

——
=|{i€[k] | Xi=d}|-a(d)
This proves Claim 1.]

Claim 2: Let p € N. Then, p = > [p > i]. (Here, the infinite sum »_ [p > 1] is
i>1 i>1
well-defined, since all but finitely many positive integers i satisfy ¢ > p and thus

[p>i=0.)

[Proof of Claim 2: We have

p p
SUETES SENNTEY SRS SUNEY S S Y
i>1 i=1 ~ i>p+1 ~ i=1 i>p+1

(since p>i (because i<p)) (since we don’t have p>i ~—
(because i>p+1>p)) =0

221:p~1:p.

=1

This proves Claim 2.]
In the following, the notation “\ = n” shall stand for “\ is a partition of n”. (This is in

line with how we defined the summation sign “» " in the statement of the exercise.)
AFn

Claim 3: Let d and ¢ be positive integers. Then,

{Abn | me(N) =i} = p(n—di).

[Proof of Claim 3: Let X\ be a partition of n satisfying mg (A) > i. Recall that mg (\)
is the number of times that the number d appears in A (by the definition of mg4 ())). This
number is > i (since my () > i). Thus, the number d appears at least i times in A. Thus,
we can remove 7 entries equal to d from the partition \ H The result will be a partition of
n — di (since removing i entries equal to d has the effect of decreasing the sum of all entries
by di).

Now, forget that we fixed A\. We thus have shown that if A is a partition of n satisfying
mq (A) > i, then we can remove i entries equal to d from the partition A\ and obtain a
partition of n — di. Thus, we obtain a map

A:{AEn | mg(\) >i} — {partitions of n — di}

121t does not matter which i entries equal to d we remove (in case there are many options, i.e., in case A
has more than i entries equal to d); the resulting tuple will always be the same.
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which sends each A to the result of removing ¢ entries equal to d from .

On the other hand, if p is a partition of n — di, then we can insert ¢ entries equal to d
into p (in such a way that the resulting tuple will still be weakly decreasingED; the result
will be a partition of n (because inserting i entries equal to d has the effect of increasing the
sum of all entries by di). Hence, we obtain a map

B : {partitions of n — di} — {A\Fn | mgq(\) >}

which sends each u to the result of inserting 7 entries equal to d into p.

It is straightforward to see that the maps A and B are mutually inverse. Thus, they are
bijections. Hence, there is a bijection from {partitions of n — di} to {\Fn | mg(\) > i}
(namely, the map B). Therefore,

HAFEn | mg(X) >i}| = [{partitions of n — di}|
= (the number of all partitions of n — di) = p (n — di)

(since p (n — di) is defined as the number of all partitions of n — di). This proves Claim 3.]

Claim 4: Let d and ¢ be positive integers. Then,

S lma(N) 2 1] = p(n - di).

AFn

[Proof of Claim 4: This is an easy consequence of Claim 3 using the standard “counting
by roll call” technique. In more detail: We have

S omaN) =il = Y [ma(N) =i+ Y [mq (A) > i
AFn AbFn; T Abn; T
ma(A) =i (since mg(A)>i) 10t Mmq(A)2i (since we don’t have mg(\)>i)

= > 1+ > 0= > 1=[{Atn | m(N)=i}-1

AFn; AFn; AFn;
ma(A)>i not mgq(A)>i ma(A)>i
—_——

=0
=|{AFn | mg(A) >i}| =p(n—di) (by Claim 3).
This proves Claim 4.]
Claim 5: Let k be an integer such that & > n. Then, p(n — k) = 0.

[Proof of Claim 5: From k > n, we obtain n — k < 0. Now, recall that p(m) = 0
whenever m is a negative integer (because there are no partitions of m when m is negative).
Applying this to m = n — k, we obtain p (n — k) = 0. Claim 5 is proven.|

Now,
Yoooaly) = >N ma (N a(d) =" ma(\) a(d)
An > m"()\)a(d) AFn d>1 d>1 Mn
_d21 d N——
(by Claim 1) =2 X

d>1AFn
(this interchange of summation signs
is legitimate, since one of them is
a finite sum (indeed, there are only
finitely many partitions A of n))

=Y a(d)d ma(n). (30)

d>1 AFn

13 Again, there might be several ways to perform this insertion (in the sense that there are several spots in
which we can insert these entries), but the result will always be the same.
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But each positive integer d satisfies

Z mq (/\)

N——
A = [ma(\)i]

i>1
(by Claim 2, applied to p=mg()\))

= >y ma () = =33 ma () 2]

A i>1 i>1 An .

—— TV R

=> > =p(n—di)
i>1AFn (by Claim 4)

(this interchange of summation signs
is legitimate, since one of them is
a finite sum (indeed, there are only
finitely many partitions A of n))

= Zp (n—di)= Zp (n—k) (here, we have substituted k for di in the sum)

i>1 k>1;
dlk

S SRR RS S
k>1; k>1; =
d|k; dlk; aim
k‘gn k|>n (by O 2
~~—~

ke{1,2,...,n};
dlk

(since each positive integer k satisfies either £ < n or k > n, but not both)

= > p-k+d 0= ph-k).

ke{1,2,...,n}; k>1; ke{1,2,...,n};
dlk d|k; d|k
k>n
0

Hence, becomes

San=Ya@ Ym0 =Xa@ 3 pn-k

AFn d>1 AFn d>1 ke{1,2,...n};
——— d|k
= 2 p(n—k)
ke{l1,2,...,n};
dlk

= > > a(d)p(n—k)

d>1 ke{1,2,...n};
dlk

ke{1,2,...,n} d>1;
dlk
(this interchange of sums was legitimate, since
there are only finitely many pairs (d,k) such that
d is a positive integer and k€{1,2,...,n} satisfies d|k)

= Z Za(d)p(n—k)zzza(d)])(n_k)

ke{1,2,...n} d>1; k=1 d|k
~—— d|k

I
[
IS
=
3
£
|
=
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This solves part (c) of the exercise.
(a) If k is any positive integer, then

o (k) = (the sum of all positive divisors of k) (by the definition of o)

=> d (31)

dlk

(since the summation sign “3 " means “sum over all positive divisors d of k7).
dlk
Let a: {1,2,3,...} — Q be the map that sends each i € {1,2,3,...} toi. Thus, a (i) =i
for each i € {1,2,3,...}.
Let n € N. Each partition A = (A\q, Ag, ..., \x) of n satisfies

a(A)=a(M)+a(r)+--+a(\) (by the definition of a (1))
=AM+ X+ + N (since a (i) =i for each i € {1,2,3,...})

=n (since (A1, Ag,...,Ax) is a partition of n).

g a(X\) = g n = (the number of all partitions of n)-n =p(n)-n=np(n).
_ AFn h . g
=n =p(n)

(by the definition of p(n))

Thus,

np (n) = Z a() = Z a(d) p(n—k) (by part (c) of the exercise)
AFn k=1 | dk e
(sincga(i):i
for each i€{1,2,3,...})

n

=Y (| pe-k =Y e mpn-).

k=1 \ dlk
———
=o(k
(by )
This solves part (a) of the exercise.
(b) If k£ is any positive integer, then

0 (k) = (the number of positive divisors of k) (by the definition of 0)

=>1 (32)

d|k
Mgince
Z 1= Z 1 = (the number of positive divisors of k) - 1
d|k d is a positive

divisor of k

= (the number of positive divisors of k)

Darij Grinberg, 00000000 43 dgrinber@umn.edu



Solutions to midterm #3 page 44 of

Let a : {1,2,3,...} — Q be the map that sends each : € {1,2,3,...} to 1. Thus,
a(i) =1 foreach i € {1,2,3,...}.

Let n € N. If X is a partition of n into k parts (for some k € N), then

a(N) =k (33)
[
But every k € N satisfies
pi (n) = (the number of all partitions of n into k parts) (34)
(by the definition of py (n)). Hence,
pr(n) =0  for each integer k > n (35)

[

Now, each partition A of n is a partition of n into k£ parts for a unique k£ € N. Hence,

15 Proof of : Let £k € N. Let X\ be a partition of n into k parts. Thus, we can write A in the form
A= ()\1, /\2, ey /\k) Hence,

a(N)=a(M)+aA)+---+a(lp) (by the definition of a (A))
=14+1+---41 (since a (i) =1 for each i € {1,2,3,...})
—
k times

=k.

This proves .

16 Proof of : Let k£ > n be an integer. Let A = (A1, A2, ..., Ax) be a partition of n into k parts. Since A
is a partition of n, we have A\; + Ay + -+ - + A\ = n, so that

n=M=+X+-FA\>1+14+---+1 (since \; > 1 for each i € [k])
—_—

k times

=k>n.

This is clearly a contradiction.

Forget that we fixed A\. We thus have obtained a contradiction for each partition A
(M, A2,...,Ar) of n into k parts. Thus, there exists no such partition.
(the number of all partitions of n into k parts) = 0. Thus,

In other words,

pi (n) = (the number of all partitions of n into k parts) = 0.
This proves (35).
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the summation sign “>_” can be replaced by “ > > ”. 'We thus find

A-n keN X is a partition
of n into k parts

Sew=Y ¥ =% S

AFn keN ) is a partition - keN A is a partition
of n into k parts (byf) of n into k parts

=(the number of all partitions of n into k parts)-k

= Z (the number of all partitions of n into k parts) -k = Zpk (n)-k

keN o) keN
(by (34))
=D k()= kpe(m)+ Yk pi(n)
keN k=0 k>n+1 v

=0
(by (35), since k>n+1>n)
n

= kak(n)+ Z kO = kak.(n)
k=0

k>n+1 k=0
=0
Thus,
D ke () = ja()
k=0 Abn
= Z a(d) p(n—k) (by part (c) of the exercise)
k=1 | dlk 1

(since a(i)=1
for each i€{1,2,3,...})

3

S| p—k) =S 0k p(n—k).

k=1 \ dlk k=1

—(k)
(by (32))

This solves part (b) of the exercise.

6.3 REMARK

Parts (a) and (b) of this exercise reveal the connection between partitions and divisors.
Results in a similar vein can be found in [BiFoFo95].

Part (a) of the exercise has also been discussed in https://mathoverflow.net/questions/
127000/ .

Part (b) of the exercise also appears in https://math. stackexchange.com/questions/
2864176 (in a slightly modified VersionED, where a proof using generating functions is given.

n n
1"Note that if n is a positive integer, then py (n) = 0, and thus Y kpy (n) can be rewritten as > kpy (n).
k=0 k=1

Also, the sum Y 9 (k)p(n — k) can be rewritten as >, p(n—rs).
k=1 r>1; s>1;
rs<n
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7 EXERCISE 7

7.1 PROBLEM

Let n be an even positive integer.

(a) For each o € S, prove that there exist two distinct elements ¢ and j of [n] such that
o(i)—i=0(j)—j mod n.

(b) If n people are seated around a table at lunch, and the same n people are seated around
the same table at dinner, then prove that you can find two distinct people which have
the same distance at the lunch as they have at the dinner. (The distance between two
people means the number of persons sitting between them, counted along the shorter
arc, plus 1. For instance, two neighbors will have distance 1.)

(c) Prove that both (a) and (b) are false if n = 5.
(d) What about n =77

[Hint: (a) If there are no such ¢ and j, what can you say about the remainders of

the n numbers o (1) — 1,0 (2) — 2,...,0(n) — n modulo n, and what can you say about
n

2 (o (i) =) 7]

=1

7.2 REMARK
Part (b) of this exercise is [AndFen04, Example 0.3].

7.3 SOLUTION SKETCH

(a) Let 0 € S,,. Thus, o is a bijection from [n] to [n]. Hence, we can substitute i for o (i)
in the sum > o (). We thus obtain

i€[n]
do)y=) i (36)
i€[n] i€[n]

For each integer z, we let 2%n denote the remainder of z when divided by n.
Assume (for the sake of contradiction) that the n numbers

(o (1) =1)%n, (0 (2) —2)%n, Cey (o (n) —n)%n (37)
are distinct. Thus, the map
[n] = {0,1,...,n— 1}, i— (o (i) —1)%n

[ is injective. Therefore, by the Pigeonhole Principle for Injections, this map must also
be bijective (since it is an injective map between two finite sets of the same size). In other

18This map is well-defined, because for each i € [n], we have (o (i) —i)%n € {0,1,...,n—1} (since
(o (i) — 1) %n is a remainder of a division by n).
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words, it is a bijection. Hence, we can substitute (o (i) — 7) %n for j in the sum > j.
j€{0,1,....n—1}
We thus find
S =Y (e =)%n) =3 (@)= i)=Y o)=Y i=0modn
j€{0,1,...,.n—1} i€[n] ~ i€[n] icln] iem]

=o(i)—imodn
(because z%n=zmodn
for each integer z)

(by (36)). In view of

Z j:0—|—1+-~—i—(n—1):(n_l)(<n_l)+1) (by Little Gauss)

, 2
je{0,1,....n—1}
(n—=1)n
= TR
-1 -1
this rewrites as u = Omodn. In other words, n | u In other words,
-1
u/n is an integer.
(n—=1)n n—1. : . . : :
But ———/n = is not an integer, because n — 1 is odd (since n is even). This

2
contradicts the fact that

This contradiction proves that our assumption was false. Hence, the n numbers listed
in are not all distinct. In other words, there exist two distinct elements i and j of [n]
such that (o (i) —4) %n = (0 (j) — j) %n. These i and j must then satisfy

(n—1)
2

n . .
/n is an integer.

o(i)—i= (o) —1)%n (since z = z%nmodn for each integer z)
o (§) = 7) %on
=0 (j)—jmodn (since z%n = zmod n for each integer z).

Thus, we have shown that there exist two distinct elements ¢ and j of [n] such that o (i) —i =
o (j) —j mod n. This solves part (a) of the exercise.

(b) The following solution is taken from [AndFen04, Example 0.3].

Label the n people by 1,2,...,n in the order in which they are seated at lunch (going
around the table in clockwise order, starting somewhere — it does not matter where exactly).
Then, at dinner, the n people at the table are o (1),0(2),...,0(n) for some permutation
o € S, (again we are listing them by going around the table in clockwise order, starting
somewhere). Consider this 0. Part (a) of this exercise shows that there exist two distinct
elements ¢ and j of [n]| such that o (i) —i =0 (j) —j mod n. Consider these i and j.

We have o (i) —i = 0 (j) — 7 mod n. In other words, j —i = o (j) — o (i) mod n.
Thus, the integers j — i and o (j) — o (7) leave the same remainder when divided by n. In
other words, (j — 1) %n = (o (j) — o (i)) %n.

Therefore, the distance between the two people o (i) and o (j) at dinner is equal to the
distance between these two people at lunchﬁ. So these two people have the same distance
at the lunch as they have at the dinner. This solves part (b) of the exercise.

YTndeed, their distance at dinner is min{(j — i) %n, n — (j — i) %n}, whereas their distance at lunch
is min{(o (j) — o (4)) %n, n— (o (j) — o (i)) %n}. These two numbers are equal, since (j —i)%n =

(0 (j) = o (i) %on.
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(c) Since part (b) follows from part (a) (as we have just seen), it suffices to prove that
part (b) is false for n = 5. This is not hard: Let the seating arrangement at lunch be
1,2,3,4,5, and let the seating arrangement at dinner be 1,3,5,2,4. This means that they
are seated as follows:

lunch dinner

It is easy to see that there are no two people that have the same distance at the lunch as
they have at the dinner: Indeed,

e any two people having distance 1 at the lunch have distance 2 at the dinner;

e any two people having distance 2 at the lunch have distance 1 at the dinner.
So part (b) of the problem fails for n = 5. Thus, part (a) also fails for n = 5.

(d) Again, both parts (a) and (b) are false for n = 7. The proof of this is similar
to part (c): Again, it suffices to prove that part (b) is false for n = 7. This is not hard:
Let the seating arrangement at lunch be 1,2,3,4,5,6,7, and let the seating arrangement at
dinner be 1,3,5,7,2,4,6. It is easy to see that there are no two people that have the same
distance at the lunch as they have at the dinner: Indeed,

e any two people having distance 1 at the lunch have distance 3 at the dinner;
e any two people having distance 2 at the lunch have distance 1 at the dinner;

e any two people having distance 3 at the lunch have distance 2 at the dinner.

So part (b) of the problem fails for n = 7. Thus, part (a) also fails for n = 7.

7.4 REMARK

Part (b) of the exercise can be restated as follows: For each o € S,,, prove that there exist
two distinct elements i and j of [n] such that

o(i)—o(j)=i—j modn  or o(i)—o(j)=j—1i mod n.

This shows once again that it is a weaker statement than part (a).

Parts (c) and (d) can be generalized: If n is any odd number not divisible by 3, then
parts (a) and (b) of the exercise are false. To prove this, one merely needs to generalize the
construction we did to solve parts (c) and (d) (that is: let the seating arrangement at lunch
be 1,2,...,n, and let the seating arrangement at dinner be 1,3,5,...,7n,2,4,6,...,n — 2).

J

TV TV
all odd numbers all even numbers
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Part (a) fails for all odd numbers n. Indeed, just take o to be the permutation whose

one-line notation is | 1,3,5,...,n,2,4,6,...,n— 2 |, and check that the claim of (a) does

Vv vV
all odd numbers all even numbers

not hold for this o.

More interestingly, part (b) of the exercise holds not only when n is even, but also
when n is divisible by 3. This is supposedly a result of Polya from 1918, and appears with
proof in Klgve’s article [Klove77|. See https://math.stackexchange.com/a/281468/ for
an outline of this proof.
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