
University of Minnesota, School of Mathematics

Math 5705: Enumerative Combinatorics,
Fall 2018: Midterm 3

Darij Grinberg

January 10, 2019

due date: Wednesday, 12 December 2018 at the beginning of class,
or before that by email or canvas.

Please solve at most 3 of the 7 exercises!
Beware: Collaboration is not allowed on midterms!

Notations

Here is a list of notations that are used in this homework:

• As usual, N means the set {0, 1, 2, . . .} of all nonnegative integers.

• We shall use the Iverson bracket notation as well as the notation [n] for the set
{1, 2, . . . , n} (when n ∈ Z).

• If n ∈ N, then Sn denotes the set of all permutations of [n].

• A point shall mean an element of Z2, that is, a pair of integers. We depict these
points as lattice points on the Cartesian plane, and add and subtract them as vectors.
Recall the notion of a lattice path, defined in §6.1 (class notes from 2018-11-12) and
(equivalently) in UMN Spring 2018 Math 4707 Midterm 1. (Lattice paths have up-
steps and right-steps.) We abbreviate “lattice path” as “LP ”.

• A formal power series (short FPS ) shall always mean a formal power series in the
indeterminate x with rational coefficients (as defined in class).

If f is an FPS and if n ∈ N, then [xn] f shall denote the coefficient of xn in f .
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1 Exercise 1

1.1 Problem

Let n ∈ N. Let x ∈ Q and y ∈ Q.

(a) Prove that
n∑
k=0

(
n

k

)
(x+ k)k (y − k)n−k =

n∑
t=0

n!

t!
(x+ y)t .

(b) Prove that
n∑
k=0

(
n

k

)
x (x+ k)k−1 (y − k)n−k = (x+ y)n .

(Here, the “x (x+ k)k−1” expression should be understood as 1 when k = 0; this gives
it meaning even if x = 0.)

[Hint: (a) Expand (x+ k)k and (y − k)n−k by the binomial theorem, then try using
[Grinbe18, Exercise 2].

(b) Rewrite x (x+ k)k−1 as (x+ k)k−k (x+ k)k−1, thus splitting the left hand side into
two sums. Apply part (a) to both of them.]

1.2 Solution

[...]

2 Exercise 2

2.1 Problem

Let n be a positive integer.

(a) Let A be the n × n-matrix ([i 6= j])i,j∈[n]. (This is the n × n-matrix whose diagonal

entries are 0 while all its other entries are 1. For example, for n = 3, it is

0 1 1
1 0 1
1 1 0

.)

Prove that detA = (−1)n−1 (n− 1).

(b) Prove that ∑
σ∈Sn is a

derangement

(−1)σ = (−1)n−1 (n− 1) .

Darij Grinberg, 00000000 2 dgrinber@umn.edu



Solutions to midterm #3 page 3 of 9

(c) Let b1, b2, . . . , bn be any n numbers. LetB be the n×n-matrix

(
[i 6= j]

∏
h∈[n]\{i,j}

bh

)
i,j∈[n]

.

(For example, for n = 4, we have

B =


0 b3b4 b2b4 b2b3
b3b4 0 b1b4 b1b3
b2b4 b1b4 0 b1b2
b2b3 b1b3 b1b2 0

 . )

Prove that
detB = (−1)n−1 (n− 1)

∏
h∈[n]

bn−2h .

(Here, the “(−1)n−1 (n− 1)
∏
h∈[n]

bn−2h ” expression should be understood as 0 if n = 1,

even if
∏
h∈[n]

bn−2h may be undefined in this case when some of the bh are 0.)

[Hint: (a) If you need a reminder on the basic properties of determinants, see, e.g.,
[Grinbe16, Exercises 6.7 and 6.8].

(c) If you divide by some bh in your proof, make sure to argue why this is legitimate,
or separately treat the case when some of the bh are 0. (There is a combinatorial proof that
does not require any division.)]

2.2 Solution

[...]

3 Exercise 3

3.1 Problem

Let n be a positive integer. If i = (i1, i2, . . . , in) ∈ {0, 1}n and k ∈ [n], then

• we say that k is a 1-position of i if ik = 1;

• we say that k is a 10-position of i if k < n, ik = 1 and ik+1 = 0;

• we say that k is a cyclic 10-position of i if ik = 1 and ik+1 = 0, where in+1 is understood
to be i1.

(The first two of these concepts have already been defined in Homework set #2 Exercise
5. The concept of a “cyclic 10-position” differs from that of a “10-position” only in that we
consider the n-tuple to “wrap around”.)

Let k ∈ N and a ∈ {0, 1, . . . , n− 1}. Prove the following:

(a) The number of n-tuples i ∈ {0, 1}n having exactly a 1-positions and exactly k 10-

positions is
(
a

k

)(
n− a
k

)
.
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(b) The number of n-tuples i ∈ {0, 1}n having exactly a 1-positions and exactly k cyclic

10-positions is
n

n− a

(
a− 1

a− k

)(
n− a
k

)
(this expression should be interpreted as [k = 0]

when a = n).

(c) The number of n-tuples i ∈ {0, 1}n starting with a 0 and having exactly a 1-positions

and exactly k cyclic 10-positions is
(
a− 1

a− k

)(
n− a
k

)
.

3.2 Remark

1. You can rewrite the “
(
a

k

)
” in part (a) as “

(
a

a− k

)
” in order to make the similarity

to the other two parts more glaring. Likewise, you could rewrite the “
(
a− 1

a− k

)
” in

parts (b) and (c) as
(
a− 1

k − 1

)
when a > 0, but not in the border case when a = 0.

2. Sanity check: By summing over all a, we conclude from part (a) that the number of
n-tuples i ∈ {0, 1}n having exactly k 10-positions is

n∑
a=0

(
a

k

)(
n− a
k

)
=

(
n+ 1

2k + 1

)
(by a simple application of Proposition 2.21 in the class from 2018-09-26). This is
exactly the result of Homework set #2 Exercise 5.

3. Part (b) has an application to counting (a, b)-legal paths in the sense of §6.4 from
class.

Indeed, let a and b be two coprime positive integers. We say that an LP v is (a, b)-legal
if each (x, y) ∈ v satisfies ax ≥ by. Proposition 6.7 in the class from 2018-11-14 shows

that the number of (a, b)-legal paths from (0, 0) to (b, a) is
1

a+ b

(
a+ b

a

)
. (This is a

so-called rational Catalan number 1.)

Now, let us define a left turn of an LP v = (v0, v1, . . . , vn) to be an i ∈ [n− 1] such
that the i-th step of v is a right-step (i.e., we have vi− vi−1 = (1, 0)) but the (i+ 1)-st
step of v is an up-step (i.e., we have vi+1 − vi = (0, 1)). For instance, the LP from
(0, 0) to (8, 5) depicted in

1 The word “rational” refers to the fact that the line ax = by has a rational (not integer in general) slope;
the rational Catalan number is still an integer.
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is (5, 8)-legal and has the left turns 2, 5, 9 and 12.

Now, given k ∈ N, we claim that the number of (a, b)-legal LPs from (0, 0) to (b, a)

having exactly k left turns is
1

b

(
a− 1

a− k

)(
b

k

)
(this is a so-called rational Narayana

number). Indeed, set n = a+ b; then, every LP from (0, 0) to (b, a) can be encoded as
an n-tuple i ∈ {0, 1}n with a 1-positions (by encoding each right-step as a 0 and each
up-step as a 1). If a given LP is encoded by an n-tuple (i1, i2, . . . , in), then its shift
(defined as in the proof of Proposition 6.7 in the class from 2018-11-14) is encoded
by the n-tuple (i2, i3, . . . , in, i1). As we know, each cycle of S (again, see the proof of
Proposition 6.7 in the class from 2018-11-14 for the definition of S) has size a+ b and
contains exactly one (a, b)-legal LP; this (a, b)-legal LP clearly starts with a right-step
and ends with an up-step; hence it is easy to see that its left turns are in bijection
with the cyclic 10-positions of the corresponding n-tuple2. It is now easy to conclude
from part (b) that the number of (a, b)-legal LPs from (0, 0) to (b, a) having exactly

k left turns is
1

n− a

(
a− 1

a− k

)(
n− a
k

)
=

1

b

(
a− 1

a− k

)(
b

k

)
.

4. It may be easiest to solve the problem starting with part (c).

3.3 Solution

[...]

4 Exercise 4

4.1 Problem

An integer formal power series (short IFPS ) shall mean a formal power series whose coef-

ficients all are integers. For example, 1− 2x + 3x2 − 4x3 ± · · · is an IFPS, while 1− 1

2
x is

not.
If m is an integer, and if a and b are two IFPSs, then we say that a ≡ b mod m if and

only if there exists an IFPS c such that a − b = mc. (This is completely analogous to the
definition of congruence modulo m for integers.) The following facts hold:

(A1) Two IFPSs a and b and an integer m satisfy a ≡ b mod m if and only if each n ∈
N satisfies [xn] a ≡ [xn] b mod m (that is, each coefficient of a is congruent to the
corresponding coefficient of b modulo m).

(A2) Each integer m and each IFPS a satisfy a ≡ a mod m.

(A3) If m is an integer, and if a and b are two IFPSs satisfying a ≡ b mod m, then b ≡ a
mod m.

(A4) If m is an integer, and if a, b and c are three IFPSs satisfying a ≡ b mod m and b ≡ c
mod m, then a ≡ c mod m.

2 Indeed, if we define “cyclic 01-positions” in the obvious way, then the left turns of our (a, b)-legal LP
are exactly the cyclic 01-positions of the corresponding n-tuple. But the latter are in bijection with the
cyclic 10-positions, because the cyclic 01-positions and the cyclic 10-positions alternate.
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(A5) If m is an integer, and if a, b, c and d are four IFPSs satisfying a ≡ c mod m and
b ≡ d mod m, then

a+ b ≡ c+ d mod m, a− b ≡ c− d mod m, and ab ≡ cd mod m.

(A6) If m is an integer, and if a and b are two IFPSs with constant terms ±1 (that is,
[x0] a = ±1 and [x0] b = ±1) satisfying a ≡ b mod m, then

a−1 ≡ b−1 mod m.

(A7) Ifm is an integer and n is a nonnegative integer, and if a and b are two IFPSs satisfying
a ≡ b mod m, then

an ≡ bn mod m.

Furthermore, if a and b have constant terms ±1, then this also holds for negative n.

(You can use all these seven facts without proof, but if you are curious: Fact (A1) is
essentially obvious; facts (A2)–(A5) are proven just as for integers. Fact (A6) follows by ob-
serving that a−1− b−1 = −a−1b−1 (a− b), since the assumption on the constant terms forces
a−1 and b−1 to be well-defined IFPSs. Finally, fact (A7) is proven by forwards induction for
n ≥ 0 and then by backwards induction for n < 0.)

Now, let p be a prime.

(a) Prove that (1 + x)p ≡ 1 + xp mod p.

(b) Prove Lucas’s congruence: Any a, b ∈ Z and c, d ∈ {0, 1, . . . , p− 1} satisfy(
ap+ c

bp+ d

)
≡
(
a

b

)(
c

d

)
mod p.

(c) Prove that if m ∈ N, and if a and b are two IFPSs satisfying a ≡ b mod m, then
am ≡ bm mod m2.

(d) Prove that any a, b ∈ Z satisfy(
ap

bp

)
≡
(
a

b

)
mod p2.

[Hint: (a) What do you remember about
(
p

k

)
?

(b) (1 + x)ap+c = ((1 + x)p)
a
(1 + x)c. It is helpful to define [xn] f = 0 for any negative

n and any FPS f .
(c) Write a as b+mc for some IFPS c. The same congruence holds for integers.]

4.2 Solution

[...]
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5 Exercise 5

5.1 Problem

For each n ∈ N, we define two FPSs Pn and Sn by

Pn =
n∏
s=1

(1− xs) and Sn =
n∑

s=−n

(−1)s xs(3s+1)/2.

(For example,

P4 = (1− x)
(
1− x2

) (
1− x3

) (
1− x4

)
= 1− x− x2 + 2x5 − x8 − x9 + x10

and
S4 = 1− x− x2 + x5 + x7 − x12 − x15 + x22 + x26. )

(a) Show that Sn is well-defined, i.e., that all of the exponents s (3s+ 1) /2 are nonnegative
integers (even when s < 0).

(b) Set

Fn =
n∑
s=0

(−1)s Pn
Ps
xsn+s(s+1)/2 for each n ∈ N.

Show that Fn = Sn for each n ∈ N.

[Hint: (b) Induction on n. In the induction step, use Pn = Pn−1 − xnPn−1 to split the
sum defining Fn into two subsums after first splitting off the s = n addend. This leads to
Fn − Fn−1 = Sn − Sn−1.]

5.2 Remark

If we take the limit n→∞ in the claim of part (b) (see [Loehr11, §7.5] for the meaning of
“limit” here), then we quickly obtain

∞∏
s=1

(1− xs) =
∞∑

s=−∞

(−1)s xs(3s+1)/2.

(Indeed, each of the addends (−1)s Pn
Ps
xsn+s(s+1)/2 for s > 0 tends to 0 when n→∞.) This

is Euler’s pentagonal number theorem again.

5.3 Solution

[...]
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6 Exercise 6

6.1 Problem

Recall that we are using the following notations:

• A partition means a weakly decreasing sequence of positive integers. (Thus, a partition
is the same as a partition of some n ∈ N.)

• Given any n ∈ Z, we let p (n) denote the number of all partitions of n. (This is 0 when
n < 0.)

• Given any n ∈ Z and k ∈ N, we let pk (n) denote the number of all partitions of n into
k parts.

Prove the following:

(a) Any n ∈ N satisfies

np (n) =
n∑
k=1

σ (k) p (n− k) ,

where σ (k) denotes the sum of all positive divisors of k.

(b) Any n ∈ N satisfies
n∑
k=0

kpk (n) =
n∑
k=1

∂ (k) p (n− k) ,

where ∂ (k) denotes the number of positive divisors of k.

(c) Let a : {1, 2, 3, . . .} → Q be any map. For any partition λ = (λ1, λ2, . . . , λk), we let
a (λ) denote the sum a (λ1) + a (λ2) + · · ·+ a (λk). Then, any n ∈ N satisfies

∑
λ`n

a (λ) =
n∑
k=1

∑
d|k

a (d)

 p (n− k) .

Here, the summation sign “
∑
λ`n

” means “sum over all partitions λ of n”, whereas the

summation sign “
∑
d|k

” means “sum over all positive divisors d of k”.

[Hint: Parts (a) and (b) are particular cases of (c). Particular cases are not always
easier to prove than generalizations.]

6.2 Solution

[...]
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7 Exercise 7

7.1 Problem

Let n be an even positive integer.

(a) For each σ ∈ Sn, prove that there exist two distinct elements i and j of [n] such that
σ (i)− i ≡ σ (j)− j mod n.

(b) If n people are seated around a table at lunch, and the same n people are seated around
the same table at dinner, then prove that you can find two distinct people which have
the same distance at the lunch as they have at the dinner. (The distance between two
people means the number of persons sitting between them, counted along the shorter
arc, plus 1. For instance, two neighbors will have distance 1.)

(c) Prove that both (a) and (b) are false if n = 5.

(d) What about n = 7 ?

[Hint: (a) If there are no such i and j, what can you say about the remainders of
the n numbers σ (1) − 1, σ (2) − 2, . . . , σ (n) − n modulo n, and what can you say about
n∑
i=1

(σ (i)− i) ?]

7.2 Remark

What about n = 9 ? What about other odd n ? (Talking about part (b) in particular; the
answer for part (a) is simple.)

7.3 Solution

[...]
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