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Notations

Here is a list of notations that are used in this homework:

• We shall use the Iverson bracket notation as well as the notation [n] for the set
{1, 2, . . . , n} (when n ∈ Z).

• If n ∈ N, then Sn denotes the set of all permutations of [n].

• If n ∈ N and σ ∈ Sn, then:

– a descent of the permutation σ denotes an element k ∈ [n− 1] satisfying σ (k) >
σ (k + 1).

– the descent set Desσ of σ is defined as the set of all descents of σ.

– the descent number desσ of σ is defined as the number of all descents of σ (that
is, desσ = |Desσ|).

– the one-line notation OLNσ of σ is defined as the n-tuple (σ (1) , σ (2) , . . . , σ (n)).
Often, this n-tuple is written with square brackets, i.e., as [σ (1) , σ (2) , . . . , σ (n)].

– for each i ∈ [n], we define `i (σ) to be the number of all j ∈ {i+ 1, i+ 2, . . . , n}
satisfying σ (i) > σ (j).
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– we say that σ is 312-avoiding if there exist no three elements i, j, k ∈ [n] satisfying
i < j < k and σ (j) < σ (k) < σ (i).

– we say that σ is 321-avoiding if there exist no three elements i, j, k ∈ [n] satisfying
i < j < k and σ (k) < σ (j) < σ (i).

• For any n ∈ N and any i ∈ [n− 1], we let si denote the permutation in Sn that swaps
i with i+ 1 while leaving all other elements of [n] unchanged. (This assumes that n is
determined by the context.)

• For any n ∈ N and any k distinct elements i1, i2, . . . , ik of [n], we let cyci1,i2,...,ik be the
permutation in Sn that sends i1, i2, . . . , ik−1, ik to i2, i3, . . . , ik, i1 (respectively) while
leaving all the other elements of [n] unchanged. (Again, this relies on n being clear
from the context.)

• For any n ∈ N and k ∈ N, the notation
〈
n

k

〉
denotes the number of all permutations

σ ∈ Sn having exactly k descents. This is called an Eulerian number.

• If X is a set, and if α : X → X and β : X → X are two maps, then the composition
α ◦ β : X → X is simply denoted by αβ, and is called the product of α and β. This
notation is used for permutations, in particular.

• If X is a set, if k ∈ N, and if f : X → X is any map, then the map fk : X → X is
defined by

fk = f ◦ f ◦ · · · ◦ f︸ ︷︷ ︸
k times

= ff · · · f︸ ︷︷ ︸
k times

.

This map fk is called the k-th power of f (or k-th composition power of f). These
powers behave as one would expect as long as you have only one map f : X → X
(meaning that fa+b = faf b and fab = (fa)b for any a, b ∈ N); but be careful with
several maps (e.g., two maps f : X → X and g : X → X don’t always satisfy
(fg)a = faga). See [Grinbe16, Section 2.13.8] for details (where I write f ◦k instead of
fk).

• If X is a set, and if f : X → X is a map, then:

– we say that f is an involution if and only if f 2 = id. (Note that every involution
is automatically a permutation.)

– we say that f is fixed-point-free if each x ∈ X satisfies f (x) 6= x (that is, if f has
no fixed points). (Note that the fixed-point-free permutations are precisely the
derangements.)

1 Exercise 1

1.1 Problem

Let n and k be positive integers.
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For each i ∈ {0, 1, . . . , n− 1} and τ ∈ Sn−1, we let τ i_ ∈ Sn be the permutation such
that

OLN
(
τ i_
)

= (τ (1) , τ (2) , . . . , τ (i) , n, τ (i+ 1) , τ (i+ 2) , . . . , τ (n− 1))

(that is, OLN (τ i_) is obtained from OLN τ by inserting an n right after the i-th entry).

(a) Prove that each i ∈ {0, 1, . . . , n− 1} and τ ∈ Sn−1 satisfy[
des
(
τ i_
)

= k
]

= [des τ = k − 1 and τ (i) < τ (i+ 1)] + [des τ = k and τ (i) > τ (i+ 1)] ,

where we set τ (0) = 0 and τ (n) = 0.

(b) Prove that the map

{0, 1, . . . , n− 1} × Sn−1 → Sn,

(i, τ) 7→ τ i_

is a bijection.

(c) Prove that 〈
n

k

〉
= (k + 1)

〈
n− 1

k

〉
+ (n− k)

〈
n− 1

k − 1

〉
.

1.2 Solution sketch

(a) Let i ∈ {0, 1, . . . , n− 1} and τ ∈ Sn−1. Set τ (0) = 0 and τ (n) = 0.
Let us first recall some definitions: If σ ∈ Sm is a permutation for some m ∈ N, then the

descents of σ are the numbers g ∈ [m− 1] satisfying σ (g) > σ (g + 1); in other words, the
descents of σ are the positions at which an entry in OLNσ is followed by a smaller entry.
Furthermore, desσ is the number of these descents.

Now, we have

OLN τ = (τ (1) , τ (2) , . . . , τ (i) , τ (i+ 1) , τ (i+ 2) , . . . , τ (n− 1)) and
OLN

(
τ i_
)

= (τ (1) , τ (2) , . . . , τ (i) , n, τ (i+ 1) , τ (i+ 2) , . . . , τ (n− 1))

(by the definition of τ i_). Thus, the descents of τ i_ can be characterized as follows:

• Any number g ∈ [i− 1] is a descent of τ i_ if and only if it is a descent of τ (because
the first i entries of OLN (τ i_) are precisely the first i entries of OLN τ).

• The number i is never a descent of τ i_ (since τ (i) > n never holds).

• If i 6= n − 1, then the number i + 1 is always a descent of τ i_ (since n > τ (i+ 1)
always holds).

• Any number g ∈ {i+ 2, i+ 3, . . . , n− 1} is a descent of τ i_ if and only if g − 1 is
a descent of τ (because the last n − 1 − i entries of OLN (τ i_) are precisely the last
n− 1− i entries of OLN τ).

Thus, when we go from τ to τ i_, the descents are “more or less” preserved in the sense
that

• some of the descents (namely, those that are larger than i) get shifted by 1;
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• the descent i is lost (if i was a descent of τ to begin with); and

• a descent i+ 1 is created if i 6= n− 1.

Hence, the total number of descents decreases by 1 if i was a descent of τ , and further-
more increases by 1 if i 6= n− 1. In other words,

des
(
τ i_
)

= des τ − [i is a descent of τ ]︸ ︷︷ ︸
=[i∈Des τ ]

+ [i 6= n− 1] = des τ − [i ∈ Des τ ] + [i 6= n− 1]

= des τ + [i 6= n− 1]− [i ∈ Des τ ] . (1)

But it is easy to see that

[i 6= n− 1]− [i ∈ Des τ ] = [τ (i) < τ (i+ 1)] . (2)

[Proof of (2): In order to prove (2), we can distinguish between the following three
cases:

• Case 1: We have i 6= n− 1 and τ (i) < τ (i+ 1).

• Case 2: We have i 6= n− 1 and τ (i) > τ (i+ 1).

• Case 3: We have i = n− 1.

(No other cases can occur, because τ (i) 6= τ (i+ 1).)
In Case 1, the equality (2) boils down to 1 − 0 = 1 (since τ (i) < τ (i+ 1) yields

i /∈ Des τ), which is true.
In Case 2, the equality (2) boils down to 1 − 1 = 0 (since τ (i) > τ (i+ 1) yields

i ∈ Des τ), which is true.
In Case 3, the equality (2) boils down to 0− 0 = 0 (since i = n− 1 yields n = i+ 1 and

thus τ (i) > 0 = τ

(
n︸︷︷︸

=i+1

)
= τ (i+ 1)), which is true.

Thus, the equality (2) is proven in all three cases.]
Now, (1) becomes

des
(
τ i_
)

= des τ + [i 6= n− 1]− [i ∈ Des τ ]︸ ︷︷ ︸
=[τ(i)<τ(i+1)]

(by (2))

= des τ + [τ (i) < τ (i+ 1)] .

Darij Grinberg, 00000000 4 dgrinber@umn.edu



Solutions to midterm #2 page 5 of 30

Hence, [
des
(
τ i_
)

= k
]

= [des τ + [τ (i) < τ (i+ 1)] = k]

=

τ (i) < τ (i+ 1) and des τ + [τ (i) < τ (i+ 1)]︸ ︷︷ ︸
=1

(since τ(i)<τ(i+1))

= k



+

τ (i) > τ (i+ 1) and des τ + [τ (i) < τ (i+ 1)]︸ ︷︷ ︸
=0

(since τ(i)>τ(i+1))

= k


(

since we always have either τ (i) < τ (i+ 1) or τ (i) > τ (i+ 1) ,
but never both at once

)
= [τ (i) < τ (i+ 1) and des τ + 1 = k]︸ ︷︷ ︸

=[τ(i)<τ(i+1) and des τ=k−1]
=[des τ=k−1 and τ(i)<τ(i+1)]

+ [τ (i) > τ (i+ 1) and des τ = k]︸ ︷︷ ︸
=[des τ=k and τ(i)>τ(i+1)]

= [des τ = k − 1 and τ (i) < τ (i+ 1)] + [des τ = k and τ (i) > τ (i+ 1)] .

This solves part (a) of the exercise.

(b) The map

{0, 1, . . . , n− 1} × Sn−1 → Sn,

(i, τ) 7→ τ i_

is invertible. In fact, its inverse is the map that sends each σ ∈ Sn to the pair (i, τ) ∈
{0, 1, . . . , n− 1}×Sn−1, where i = σ−1 (n)−1 and where τ ∈ Sn−1 is (uniquely) determined
by

OLN τ = (σ (1) , σ (2) , . . . , σ (i) , σ (i+ 2) , σ (i+ 3) , . . . , σ (n)) .

(Proving this is straightforward.)

(c) We WLOG assume that n 6= 1 (since the proof in the case n = 1 is straightforward).
Thus, n− 1 6= 0 and n > 1.

The definition of
〈
n

k

〉
yields

〈
n

k

〉
= (the number of all permutations σ ∈ Sn having exactly k descents)

= (the number of all permutations σ ∈ Sn such that desσ = k)

= |{σ ∈ Sn | desσ = k}|

=
∑
σ∈Sn

[desσ = k] (3)

(since
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∑
σ∈Sn

[desσ = k] =
∑
σ∈Sn;
desσ=k

[desσ = k]︸ ︷︷ ︸
=1

(since desσ=k)

+
∑
σ∈Sn;
desσ 6=k

[desσ = k]︸ ︷︷ ︸
=0

(since desσ 6=k)

=
∑
σ∈Sn;
desσ=k

1 +
∑
σ∈Sn;
desσ 6=k

0

︸ ︷︷ ︸
=0

=
∑
σ∈Sn;
desσ=k

1 = |{σ ∈ Sn | desσ = k}| · 1 = |{σ ∈ Sn | desσ = k}|

). The same argument (applied to n− 1 instead of n) yields〈
n− 1

k

〉
=

∑
σ∈Sn−1

[desσ = k] =
∑

τ∈Sn−1

[des τ = k] . (4)

The same argument (applied to k − 1 instead of k) yields〈
n− 1

k − 1

〉
=
∑

τ∈Sn−1

[des τ = k − 1] . (5)

Now, (3) becomes〈
n

k

〉
=
∑
σ∈Sn

[desσ = k] =
∑

(i,τ)∈{0,1,...,n−1}×Sn−1︸ ︷︷ ︸
=

∑
τ∈Sn−1

∑
i∈{0,1,...,n−1}

[
des
(
τ i_
)

= k
]︸ ︷︷ ︸

=[des τ=k−1 and τ(i)<τ(i+1)]+[des τ=k and τ(i)>τ(i+1)]
(by part (a) of the exercise) here, we have substituted τ i_ for σ in the sum,

since the map {0, 1, . . . , n− 1} × Sn−1 → Sn, (i, τ) 7→ τ i_

is a bijection (by part (b) of the exercise)


=
∑

τ∈Sn−1

∑
i∈{0,1,...,n−1}

([des τ = k − 1 and τ (i) < τ (i+ 1)] + [des τ = k and τ (i) > τ (i+ 1)])

=
∑

τ∈Sn−1

∑
i∈{0,1,...,n−1}

[des τ = k − 1 and τ (i) < τ (i+ 1)]︸ ︷︷ ︸
=[des τ=k−1][τ(i)<τ(i+1)]

+
∑

τ∈Sn−1

∑
i∈{0,1,...,n−1}

[des τ = k and τ (i) > τ (i+ 1)]︸ ︷︷ ︸
=[des τ=k−1][τ(i)>τ(i+1)]

=
∑

τ∈Sn−1

[des τ = k − 1]
∑

i∈{0,1,...,n−1}

[τ (i) < τ (i+ 1)]

+
∑

τ∈Sn−1

[des τ = k]
∑

i∈{0,1,...,n−1}

[τ (i) > τ (i+ 1)] . (6)
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But each τ ∈ Sn−1 satisfies∑
i∈{0,1,...,n−1}

[τ (i) < τ (i+ 1)]

= [τ (0) < τ (1)]︸ ︷︷ ︸
=1

(since τ(0)=0<τ(1))

+
∑

i∈[n−2]

[τ (i) < τ (i+ 1)]︸ ︷︷ ︸
=[not τ(i)≥τ(i+1)]
=[not τ(i)>τ(i+1)]
(since τ(i)6=τ(i+1))

+ [τ (n− 1) < τ (n)]︸ ︷︷ ︸
=0

(since τ(n−1)>0=τ(n)) here, we have split off the addends for i = 0 and for i = n− 1
from the sum (and these are indeed two distinct addends,

since n− 1 6= 0)


= 1 +

∑
i∈[n−2]

[not τ (i) > τ (i+ 1)]︸ ︷︷ ︸
=|{i∈[n−2] | not τ(i)>τ(i+1)}|

= 1 +

∣∣∣∣∣∣∣∣∣ {i ∈ [n− 2] | not τ (i) > τ (i+ 1)}︸ ︷︷ ︸
=[n−2]\Des τ

(since τ∈Sn−1 and thus Des τ={i∈[n−2] | τ(i)>τ(i+1)})

∣∣∣∣∣∣∣∣∣ = 1 + |[n− 2] \Des τ |︸ ︷︷ ︸
=(n−2)−|Des τ |

(since Des τ⊆[n−2])

= 1 + (n− 2)− |Des τ | = n− 1− |Des τ |︸ ︷︷ ︸
=des τ

= n− 1− des τ

and ∑
i∈{0,1,...,n−1}

[τ (i) > τ (i+ 1)]

= [τ (0) > τ (1)]︸ ︷︷ ︸
=0

(since τ(0)=0<τ(1))

+
∑

i∈[n−2]

[τ (i) > τ (i+ 1)]︸ ︷︷ ︸
=|{i∈[n−2] | τ(i)>τ(i+1)}|

+ [τ (n− 1) > τ (n)]︸ ︷︷ ︸
=1

(since τ(n−1)>0=τ(n)) here, we have split off the addends for i = 0 and for i = n− 1
from the sum (and these are indeed two distinct addends,

since n− 1 6= 0)



= 1 +

∣∣∣∣∣∣∣∣{i ∈ [n− 2] | τ (i) > τ (i+ 1)}︸ ︷︷ ︸
=Des τ

(since τ∈Sn−1)

∣∣∣∣∣∣∣∣ = 1 + |Des τ |︸ ︷︷ ︸
=des τ

= 1 + des τ = des τ + 1.
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Hence, (6) becomes〈
n

k

〉
=
∑

τ∈Sn−1

[des τ = k − 1]
∑

i∈{0,1,...,n−1}

[τ (i) < τ (i+ 1)]︸ ︷︷ ︸
=n−1−des τ

+
∑

τ∈Sn−1

[des τ = k]
∑

i∈{0,1,...,n−1}

[τ (i) > τ (i+ 1)]︸ ︷︷ ︸
=des τ+1

=
∑

τ∈Sn−1

[des τ = k − 1] · (n− 1− des τ)︸ ︷︷ ︸
=[des τ=k−1]·(n−1−(k−1))

(indeed, this equality clearly holds
when des τ=k−1; but when des τ 6=k−1,

it simply boils down to 0=0)

+
∑

τ∈Sn−1

[des τ = k] · (des τ + 1)︸ ︷︷ ︸
=[des τ=k]·(k+1)

(indeed, this equality clearly holds
when des τ=k; but when des τ 6=k,

it simply boils down to 0=0)

=
∑

τ∈Sn−1

[des τ = k − 1]︸ ︷︷ ︸
=

〈
n− 1

k − 1

〉
(by (5))

· (n− 1− (k − 1))︸ ︷︷ ︸
=n−k

+
∑

τ∈Sn−1

[des τ = k]︸ ︷︷ ︸
=

〈
n− 1

k

〉
(by (4))

· (k + 1)

=

〈
n− 1

k − 1

〉
· (n− k) +

〈
n− 1

k

〉
· (k + 1) = (k + 1)

〈
n− 1

k

〉
+ (n− k)

〈
n− 1

k − 1

〉
.

This solves part (c) of the exercise.

2 Exercise 2

2.1 Problem

Let n ∈ N and σ ∈ Sn. For each i ∈ [n], let

ai = cyci′,i′−1,...,i = si′−1si′−2 · · · si ∈ Sn, where i′ = i+ `i (σ) .

Prove that σ = a1a2 · · · an.
[Hint: Prove, “more generally”, that if j ∈ {0, 1, . . . , n} is such that 1, 2, . . . , j are fixed

points of σ, then σ = aj+1aj+2 · · · an.]

2.2 Remark

This exercise shows a direct way of expressing every σ ∈ Sn as a product of ` (σ) many
simple transpositions (indeed, it represents σ as the product a1a2 · · · an, but we can then
rewrite each ai as si′−1si′−2 · · · si, which turns a1a2 · · · an into a product of `1 (σ) + `2 (σ) +
· · · + `n (σ) = ` (σ) many simple transpositions). This way is occasionally stated visually
in terms of the Rothe diagram of σ (see, for example, https://sumidiot.blogspot.com/
2008/05/rothe-diagram.html or [Kerber99, Corollary 11.3.5]).

The exercise also appears in [Grinbe16, Exercise 5.21 (c)]. The solution I give below
follows the same strategy as the solution given in [Grinbe16], but differs in the execution.
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2.3 Solution sketch

Forget that we fixed n and σ. First, we need the following definition:

Definition 2.1. Let T and Q be two subsets of Z. Let f : T → Q be any map. Then,
we say that the map f is strictly increasing if every two elements t1 and t2 of T satisfying
t1 < t2 satisfy f (t1) < f (t2). (Thus, if T = {i1 < i2 < · · · < ik} is a finite set, then f is
strictly increasing if and only if f (i1) < f (i2) < · · · < f (ik).) It is easy to see that if f is
strictly increasing, then for any two elements t1 and t2 of T , we have the logical equivalence

(t1 > t2) ⇐⇒ (f (t1) > f (t2)) .

Note that this notion of “strictly increasing” is defined for maps on arbitrary subsets of
Z, not just on intervals.

Example 2.2. Let π ∈ S5 be the permutation given in one-line notation as [2, 1, 4, 3, 5].
Then, π itself is not strictly increasing (since, for example, 1 < 2 but we don’t have π (1) <
π (2)). But its restriction π |{1,4,5}: {1, 4, 5} → [5] is strictly increasing (since the images of
1, 4, 5 under π are 2, 3, 5, and these satisfy 2 < 3 < 5).

Lemma 2.3. Let n ∈ N. Let a, b ∈ [n] satisfy a ≤ b. Let α = cyca,a+1,...,b ∈ Sn. Let U be a
subset of [n] such that b /∈ U . Then, the restriction α |U : U → [n] is strictly increasing.

Proof of Lemma 2.3. We have U ⊆ [n] \ {b} (since U is a subset of [n] such that b /∈ U).
Thus, the restriction α |U : U → [n] is a restriction of the restriction α |[n]\{b}: [n] \ {b} → [n]
(because if X, Y and Z are three sets such that X ⊆ Y ⊆ Z, and if f is a map from Z, then
f |X= (f |Y ) |X). Note that a restriction of a strictly increasing map to a subset is always
strictly increasing.

But α = cyca,a+1,...,b. Hence, the map α sends the elements

1, 2, . . . , a− 1, a, a+ 1, . . . , b− 1, b+ 1, b+ 2, . . . , n
to 1, 2, . . . , a− 1, a+ 1, a+ 2, . . . , b, b+ 1, b+ 2, . . . , n,

respectively. In other words, the map α sends the elements 1, 2, . . . , b−1, b+1, b+2, . . . , n to
1, 2, . . . , a− 1, a+ 1, a+ 2, . . . , n in this order. Thus, its restriction α |[n]\{b}: [n] \ {b} → [n]
is strictly increasing (since 1 < 2 < · · · < a − 1 < a + 1 < a + 2 < · · · < n). Hence,
the restriction α |U : U → [n] is strictly increasing as well (since it is a restriction of the
restriction α |[n]\{b}: [n] \ {b} → [n]). Hence, Lemma 2.3 is proven.

Lemma 2.4. Let n ∈ N. Let σ ∈ Sn. Let i ∈ [n]. Then:
(a) We have i+ `i (σ) ∈ [n] and i+ `i (σ) ≥ i.
(b) We have `i (σ) = |[σ (i)− 1] \ σ ([i− 1])|.
(c) Let α ∈ Sn be a further permutation such that the restriction α |σ({i,i+1,...,n}):

σ ({i, i+ 1, . . . , n})→ [n] is strictly increasing. Let τ = α ◦ σ. Then, `i (τ) = `i (σ).

Proof of Lemma 2.4. Recall that `i (σ) was defined as the number of all j ∈ {i+ 1, i+ 2, . . . , n}
satisfying σ (i) > σ (j). Thus, `i (σ) is ≤ to the number of all j ∈ {i+ 1, i+ 2, . . . , n}. In
other words, `i (σ) is ≤ to n − i (since the number of all j ∈ {i+ 1, i+ 2, . . . , n} is n − i).
In other words, `i (σ) ≤ n − i, so that i + `i (σ) ≤ n and thus i + `i (σ) ∈ [n] (because
i+ `i (σ)︸ ︷︷ ︸

≥0

≥ i ≥ 1). Moreover, i+ `i (σ)︸ ︷︷ ︸
≥0

≥ i. This proves Lemma 2.4 (a).

(b) This is [Grinbe16, Lemma 5.48 (b)]; see [Grinbe16, solution to Exercise 5.18] for a
detailed proof. Here is a sketch: The definition of `i (σ) rewrites as

`i (σ) = |{j ∈ {i+ 1, i+ 2, . . . , n} | σ (i) > σ (j)}| .
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But there is a bijection {j ∈ {i+ 1, i+ 2, . . . , n} | σ (i) > σ (j)} → [σ (i)− 1] \ σ ([i− 1])
(namely, the map sending each j to σ (j)); so we have

|{j ∈ {i+ 1, i+ 2, . . . , n} | σ (i) > σ (j)}| = |[σ (i)− 1] \ σ ([i− 1])| .

Combining these two equations, we obtain Lemma 2.4 (b).
(c) Recall that `i (σ) was defined as the number of all j ∈ {i+ 1, i+ 2, . . . , n} satisfying

σ (i) > σ (j). Likewise, `i (τ) was defined as the number of all j ∈ {i+ 1, i+ 2, . . . , n}
satisfying τ (i) > τ (j). Comparing these two definitions, we see that in order to prove
`i (τ) = `i (σ), it suffices to prove that the j ∈ {i+ 1, i+ 2, . . . , n} satisfying σ (i) >
σ (j) are precisely the j ∈ {i+ 1, i+ 2, . . . , n} satisfying τ (i) > τ (j). In other words,
it suffices to prove that for each j ∈ {i+ 1, i+ 2, . . . , n}, we have the logical equivalence
(σ (i) > σ (j)) ⇐⇒ (τ (i) > τ (j)).

So let us prove this. Fix j ∈ {i+ 1, i+ 2, . . . , n}. Then, both i and j belong to the set
{i, i+ 1, . . . , n}. Hence, both σ (i) and σ (j) belong to the set σ ({i, i+ 1, . . . , n}). Therefore,
we have the logical equivalence

(σ (i) > σ (j)) ⇐⇒
((
α |σ({i,i+1,...,n})

)
(σ (i)) >

(
α |σ({i,i+1,...,n})

)
(σ (j))

)
(since the map α |σ({i,i+1,...,n}): σ ({i, i+ 1, . . . , n})→ [n] is strictly increasing).

Thus, we have the following chain of equivalences:

(σ (i) > σ (j))

⇐⇒

(α |σ({i,i+1,...,n})
)

(σ (i))︸ ︷︷ ︸
=α(σ(i))=(α◦σ)(i)

>
(
α |σ({i,i+1,...,n})

)
(σ (j))︸ ︷︷ ︸

=α(σ(j))=(α◦σ)(j)


⇐⇒ ((α ◦ σ) (i) > (α ◦ σ) (j)) ⇐⇒ (τ (i) > τ (j)) (since α ◦ σ = τ) .

Hence, we have the logical equivalence (σ (i) > σ (j)) ⇐⇒ (τ (i) > τ (j)). This completes
the proof of Lemma 2.4 (c).

Now, for each i ∈ [n], the permutations cyci′,i′−1,...,i and si′−1si′−2 · · · si appearing in the
exercise are well-defined (because Lemma 2.4 (a) yields that i′ = i + `i (σ) satisfies i′ ∈ [n]
and i′ ≥ i). Moreover, these permutations are equal (for each i ∈ [n] separately), because
of the following fact:

Lemma 2.5. Let n ∈ N. Let i and i′ be two elements of [n] such that i′ ≥ i. Then,
cyci′,i′−1,...,i = si′−1si′−2 · · · si.

Proof of Lemma 2.5. Proposition 4.3 (a) in the class notes from 2018-10-17 (applied to
k = i′ − i+ 1 and (i1, i2, . . . , ik) = (i′, i′ − 1, . . . , i)) yields

cyci′,i′−1,...,i = ti′,i′−1︸ ︷︷ ︸
=ti′−1,i′=si′−1

ti′−1,i′−2︸ ︷︷ ︸
=ti′−2,i′−1=si′−2

· · · ti+1,i︸︷︷︸
=ti,i+1=si

= si′−1si′−2 · · · si.

This proves Lemma 2.5.

Thus, the definition of ai given in the exercise makes sense.
Next, we recall the principle of backwards induction – i.e., the following induction prin-

ciple (stated here in a form tailored to our specific situation):

Theorem 2.6. Let n ∈ N. For each p ∈ {0, 1, . . . , n}, let A (p) be a logical statement.
Assume the following:
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Assumption 1: The statement A (n) holds.

Assumption 2: If j ∈ [n] is such that A (j) holds, then A (j − 1) also holds.

Then, A (p) holds for each p ∈ {0, 1, . . . , n}.

It is easy to prove Theorem 2.6 by deriving it from the usual induction principle.
(Namely, argue by induction on k that A (n− k) holds for each k ∈ {0, 1, . . . , n}. As-
sumption 1 provides the induction base, while Assumption 2 provides the induction step.)

Now, let us solve the exercise. We shall follow the hint. Fix n ∈ N. For each p ∈
{0, 1, . . . , n}, let us define a statement A (p) as follows:

Statement A (p): Let σ ∈ Sn be such that 1, 2, . . . , p are fixed points of σ.

For each i ∈ {p+ 1, p+ 2, . . . , n}, let ai = cyci′,i′−1,...,i, where i′ = i + `i (σ).
(This is well-defined, because Lemma 2.4 (a) shows that i′ ∈ [n] and i′ ≥ i.)
Then, σ = ap+1ap+2 · · · an.

Our goal is to prove that A (p) holds for each p ∈ {0, 1, . . . , n}. This is, as the hint says,
“more general” than the exercise, because the claim of the exercise is precisely the statement
A (0) (indeed, the requirement that 1, 2, . . . , 0 are fixed points of σ is vacuously true). But
the words “more general” are in quotation marks because all of these statements A (p) can
be easily derived from the exercise, once the latter is solved; they are thus mere stepping
stones for our solution.

We take aim at proving that Assumptions 1 and 2 of Theorem 2.6 hold for these state-
ments A (0) ,A (1) , . . . ,A (n):

[Proof of Assumption 1: We must prove that if σ ∈ Sn is such that 1, 2, . . . , n are fixed
points of σ, then σ = an+1an+2 · · · an. But this is clear: If σ ∈ Sn is such that 1, 2, . . . , n are
fixed points of σ, then σ = id = (empty product) = an+1an+2 · · · an. Thus, Statement A (n)
holds. This concludes the proof of Assumption 1.]

[Proof of Assumption 2: Let j ∈ [n] be such that A (j) holds. We must prove that
A (j − 1) also holds.

Let σ ∈ Sn be such that 1, 2, . . . , j−1 are fixed points of σ. For each i ∈ {j, j + 1, . . . , n},
set i′ = i+ `i (σ) and ai = cyci′,i′−1,...,i. (This is well-defined, because Lemma 2.4 (a) shows
that i′ ∈ [n] and i′ ≥ i.) We are going to prove that σ = ajaj+1 · · · an.

First, however, let us check that σ (j) = j′. Indeed, σ ([j − 1]) = [j − 1] (since 1, 2, . . . , j−
1 are fixed points of σ). Moreover, σ (j) ≥ j (because otherwise, we would have σ (j) < j, so
that σ (j) ∈ [j − 1] = σ ([j − 1]), which would mean that σ (j) = σ (k) for some k ∈ [j − 1];
but this would contradict the injectivity of σ).

Now, Lemma 2.4 (b) (applied to j instead of i) yields

`j (σ) =

∣∣∣∣∣∣∣[σ (j)− 1] \ σ ([j − 1])︸ ︷︷ ︸
=[j−1]

∣∣∣∣∣∣∣ =

∣∣∣∣∣∣∣[σ (j)− 1] \ [j − 1]︸ ︷︷ ︸
={j,j+1,...,σ(j)−1}

∣∣∣∣∣∣∣ = |{j, j + 1, . . . , σ (j)− 1}|

= σ (j)− j (since σ (j) ≥ j) .

Hence, j + `j (σ) = σ (j). Now, the definition of j′ yields j′ = j + `j (σ) = σ (j). But the
definition of aj yields aj = cycj′,j′−1,...,j, whence aj (j) = j′ = σ (j), so that a−1j (σ (j)) = j.

We have aj = cycj′,j′−1,...,j (by the definition of aj). Now, each k ∈ [j − 1] satisfies
k ≤ j − 1 < j and thus k /∈ {j′, j′ − 1, . . . , j} (since all elements of {j′, j′ − 1, . . . , j} are
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≥ j) and therefore cycj′,j′−1,...,j (k) = k and thus aj︸︷︷︸
=cycj′,j′−1,...,j

(k) = cycj′,j′−1,...,j (k) = k and

thus
a−1j (k) = k. (7)

Now, let τ ∈ Sn be the permutation a−1j ◦ σ. Then, τ (j) =
(
a−1j ◦ σ

)
(j) = a−1j (σ (j)) =

j. In other words, j is a fixed point of τ .
Moreover, each k ∈ [j − 1] satisfies σ (k) = k (since 1, 2, . . . , j − 1 are fixed points of σ)

and thus

τ︸︷︷︸
=a−1

j ◦σ

(k) =
(
a−1j ◦ σ

)
(k) = a−1j

σ (k)︸︷︷︸
=k

 = a−1j (k) = k (by (7)) .

In other words, 1, 2, . . . , j−1 are fixed points of τ . Since j is also a fixed point of τ , we thus
conclude that 1, 2, . . . , j are fixed points of τ .

Next, let i ∈ {j + 1, j + 2, . . . , n} be arbitrary. Thus, i ≥ j + 1 > j. Therefore,
j′ /∈ σ ({i, i+ 1, . . . , n}) 1. Also, j′ = j + `j (σ)︸ ︷︷ ︸

≥0

≥ j, so that j ≤ j′.

Define a permutation α ∈ Sn by α = a−1j . Then, τ = a−1j︸︷︷︸
=α

◦σ = α ◦ σ.

From aj = cycj′,j′−1,...,j, we obtain a−1j =
(
cycj′,j′−1,...,j

)−1
= cycj,j+1,...,j′ . Thus, α =

a−1j = cycj,j+1,...,j′ . Hence, Lemma 2.3 (applied to a = j, b = j′ and U = σ ({i, i+ 1, . . . , n}))
yields that the restriction α |σ({i,i+1,...,n}): σ ({i, i+ 1, . . . , n}) → [n] is strictly increasing
(since j′ /∈ σ ({i, i+ 1, . . . , n})). Hence, Lemma 2.4 (c) yields `i (τ) = `i (σ).

Now, forget that we fixed i. We thus have shown that each i ∈ {j + 1, j + 2, . . . , n}
satisfies

`i (τ) = `i (σ) . (8)

Thus, each i ∈ {j + 1, j + 2, . . . , n} satisfies

i′ = i+ `i (σ)︸ ︷︷ ︸
=`i(τ)
(by (8))

= i+ `i (τ) . (9)

Now let us see where we stand: The permutation τ ∈ Sn has the property that 1, 2, . . . , j
are fixed points of τ . For each i ∈ {j + 1, j + 2, . . . , n}, we have ai = cyci′,i′−1,...,i, where
i′ = i + `i (τ) (by (9)). Hence, we can apply Statement A (j) (which we have assumed to
hold) to τ instead of σ. We thus conclude that τ = aj+1aj+2 · · · an. From τ = a−1j ◦σ = a−1j σ,
we obtain

σ = aj τ︸︷︷︸
=aj+1aj+2···an

= aj (aj+1aj+2 · · · an) = ajaj+1 · · · an.

Now, forget that we fixed σ. We thus have shown that if σ ∈ Sn is such that 1, 2, . . . , j−1
are fixed points of σ, and if we set

ai = cyci′,i′−1,...,i (where i′ = i+ `i (σ) ) for each i ∈ {j, j + 1, . . . , n} ,

1Proof. Assume the contrary. Thus, j′ ∈ σ ({i, i+ 1, . . . , n}). In other words, there exists some k ∈
{i, i+ 1, . . . , n} such that j′ = σ (k). Consider this k. Comparing j′ = σ (k) with j′ = σ (j), we obtain
σ (k) = σ (j), and thus k = j (since σ is injective). From k ∈ {i, i+ 1, . . . , n}, we obtain k ≥ i > j and
therefore k 6= j. This contradicts k = j. This contradiction shows that our assumption was false, qed.
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then σ = ajaj+1 · · · an. But this is precisely the statement A (j − 1). So we have shown that
A (j − 1) holds. This proves Assumption 2.]

We have now verified that both Assumptions 1 and 2 of Theorem 2.6 hold. Hence,
Theorem 2.6 shows that A (p) holds for each p ∈ {0, 1, . . . , n}. Thus, in particular, A (0)
holds. But A (0) is precisely the claim of the exercise (since every permutation σ ∈ Sn has
the property that 1, 2, . . . , 0 are fixed points of σ). Thus, the exercise is solved.

2.4 Remark

Let w0 be the permutation of [n] that sends each k ∈ [n] to n+ 1− k. Applying the exercise
to σ = w0, we obtain

w0 = cycn,n−1,...,1 cycn,n−1,...,2 · · · cycn,n−1,n−2 cycn,n−1 cycn

= (sn−1sn−2 · · · s1) (sn−1sn−2 · · · s2) · · · (sn−1sn−2sn−3) (sn−1sn−2) (sn−1) (10)

(because setting σ = w0, we get `i (σ) = n − i and thus ai = cycn,n−1,...,i = sn−1sn−2 · · · si
for each i ∈ [n]).

On the other hand, Part of Proposition 4.3 (h) in the class notes from 2018-10-17 is the
claim that

w0 = cyc1 cyc2,1 cyc3,2,1 · · · cycn,n−1,...,1

= s1 (s2s1) (s3s2s1) · · · (sn−1sn−2 · · · s1) . (11)

Do you see why the two equalities (10) and (11) are equivalent? (Hint: We have
w0 = w−10 and also w0siw

−1
0 = sn−i for each i ∈ [n− 1].)

3 Exercise 3

3.1 Problem

Let n ∈ N.

(a) Prove that any σ ∈ Sn and any i ∈ [n] satisfy σ (i) ≤ i+ `i (σ).

(b) Prove that, for a given σ ∈ Sn, the following three statements are equivalent:

A: We have σ (i) ≤ i+ 1 for all i ∈ [n− 1].

B: The permutation σ is both 321-avoiding and 312-avoiding.

C: We have `i (σ) ∈ {0, 1} for each i ∈ [n]. (In other words, the Lehmer code of σ
consists only of 0’s and 1’s.)

(c) Assuming that n ≥ 1, prove that the number of σ ∈ Sn satisfying these three state-
ments is 2n−1.

3.2 Remark

Part (a) of this exercise is exactly [Grinbe16, Lemma 5.48 (c)].

Darij Grinberg, 00000000 13 dgrinber@umn.edu

http://www.cip.ifi.lmu.de/~grinberg/t/18f/5705-2018-10-17.pdf


Solutions to midterm #2 page 14 of 30

3.3 Solution sketch

(a) Let σ ∈ Sn and i ∈ [n]. Lemma 2.4 (b) yields

`i (σ) = |[σ (i)− 1] \ σ ([i− 1])| ≥ |[σ (i)− 1]| − |σ ([i− 1])|︸ ︷︷ ︸
=|[i−1]|

(since the map σ is injective)

(since |A \B| ≥ |A| − |B| for any two finite sets A and B)

= |[σ (i)− 1]|︸ ︷︷ ︸
=σ(i)−1

− |[i− 1]|︸ ︷︷ ︸
=i−1

= (σ (i)− 1)− (i− 1) = σ (i)− i.

In other words, σ (i) ≤ i+ `i (σ). This solves part (a) of the exercise.

(b) We shall prove the three implications A =⇒ B, B =⇒ C and C =⇒ A:
Proof of the implication A =⇒ B: Assume that statement A holds. Thus, σ (i) ≤ i+ 1

for all i ∈ [n− 1]. This inequality clearly also holds for i = n (since σ (n) ≤ n ≤ n + 1);
thus, it holds for all i ∈ [n]. In other words, we have

σ (i) ≤ i+ 1 for all i ∈ [n] . (12)

Let i, j, k ∈ [n] be three elements satisfying i < j < k and σ (j) < σ (k) < σ (i). We
shall derive a contradiction.

Indeed, every p ∈ [i] satisfies

σ (p) ≤ p+ 1 (by (12), applied to p instead of i)
≤ i+ 1 (since p ≤ i)

and thus σ (p) ∈ [i+ 1]. In other words, σ (1) , σ (2) , . . . , σ (i) are i elements of the set
[i+ 1].

Also, σ (j) < σ (i) ≤ i+ 1 (by (12)); hence, σ (j) is an element of the set [i+ 1] as well.
Similarly, σ (k) is an element of the set [i+ 1] as well.

The i + 2 elements 1, 2, . . . , i︸ ︷︷ ︸
the elements of [i]

, j, k are distinct (since i < j < k). Hence, their

images under σ are distinct as well (since σ is injective). In other words, the i+ 2 elements
σ (1) , σ (2) , . . . , σ (i) , σ (j) , σ (k) are distinct. But we know that these i+2 distinct elements
must belong to the (i+ 1)-element set [i+ 1] (since we have shown that σ (1) , σ (2) , . . . , σ (i)
are i elements of the set [i+ 1], that σ (j) is an element of the set [i+ 1], and that σ (k)
is an element of the set [i+ 1]). This, of course, contradicts the Pigeonhole Principle (as
i+ 2 > i+ 1).

Now, forget that we fixed i, j, k. We thus have derived a contradiction for each three
elements i, j, k ∈ [n] satisfying i < j < k and σ (j) < σ (k) < σ (i). Hence, there exist
no such three elements i, j, k. In other words, σ is 312-avoiding (by the definition of “312-
avoiding”). An analogous argument shows that σ is 321-avoiding. Hence, the permutation
σ is both 321-avoiding and 312-avoiding. In other words, statement B holds. This proves
the implication A =⇒ B.

Proof of the implication B =⇒ C: Assume that statement B holds. Thus, the permu-
tation σ is both 321-avoiding and 312-avoiding.

Now, let i ∈ [n]. We shall show that `i (σ) ∈ {0, 1}.
Indeed, assume the contrary. Thus, `i (σ) /∈ {0, 1}. Hence, `i (σ) ≥ 2 (since `i (σ) is

a nonnegative integer). In other words, there exist at least two j ∈ {i+ 1, i+ 2, . . . , n}
satisfying σ (i) > σ (j) (since `i (σ) is the number of all such j’s). Fix two distinct such j;

Darij Grinberg, 00000000 14 dgrinber@umn.edu



Solutions to midterm #2 page 15 of 30

denote them by j1 and j2. Thus, j1 and j2 are two distinct j ∈ {i+ 1, i+ 2, . . . , n} satisfying
σ (i) > σ (j).

Hence, j1 ∈ {i+ 1, i+ 2, . . . , n}; therefore, j1 ≥ i+ 1 > i and j1 ∈ [n]. Similarly, j2 > i
and j2 ∈ [n]. Also, σ (i) > σ (j1) (by the definition of j1) and σ (i) > σ (j2) (similarly).

We WLOG assume that j1 ≤ j2 (since otherwise, we can simply swap j1 with j2). Hence,
j1 < j2 (since j1 and j2 are distinct), so that i < j1 < j2. Moreover, σ is injective, and thus
σ (j1) 6= σ (j2) (since j1 and j2 are distinct).

But if we had σ (j1) < σ (j2), then σ would not be 312-avoiding (since the three elements
i, j1, j2 ∈ [n] would satisfy i < j1 < j2 and σ (j1) < σ (j2) < σ (i), which would make them
the exact kind of three elements i, j, k that the definition of “312-avoiding” disallows). Hence,
we cannot have σ (j1) < σ (j2).

If we had σ (j1) > σ (j2), then σ would not be 321-avoiding (since the three elements
i, j1, j2 ∈ [n] would satisfy i < j1 < j2 and σ (j2) < σ (j1) < σ (i), which would make
them the exact kind of three elements i, j, k that the definition of “321-avoiding” disallows).
Hence, we cannot have σ (j1) > σ (j2).

Therefore, neither σ (j1) < σ (j2) nor σ (j1) > σ (j2) is possible. Hence, we must have
σ (j1) = σ (j2). This contradicts σ (j1) 6= σ (j2).

This contradiction shows that our assumption was false. Hence, `i (σ) ∈ {0, 1} is proven.
Now, forget that we fixed i. We thus have shown that we have `i (σ) ∈ {0, 1} for each

i ∈ [n]. In other words, statement C holds. This proves the implication B =⇒ C.
Proof of the implication C =⇒ A: Assume that statement C holds. Thus, we have

`i (σ) ∈ {0, 1} for each i ∈ [n]. In other words,

`i (σ) ≤ 1 for each i ∈ [n] . (13)

Hence, for each i ∈ [n− 1], we have

σ (i) ≤ i+ `i (σ)︸ ︷︷ ︸
≤1

(by (13))

(by part (a) of the exercise)

≤ i+ 1.

In other words, statement A holds. This proves the implication C =⇒ A.
We have now proven the three implications A =⇒ B, B =⇒ C and C =⇒ A. Combining

them, we conclude that the three statements A, B and C are equivalent. Thus, part (b) of
the exercise is solved.

(c) Assume that n ≥ 1.
Whenever m is an integer, we shall use the notation [m]0 for the set {0, 1, . . . ,m}. (This

is an empty set when m < 0.)
Let H denote the set [n− 1]0 × [n− 2]0 × · · · × [n− n]0.
Let H1 denote the subset {0, 1} × {0, 1} × · · · × {0, 1}︸ ︷︷ ︸

n−1 times

×{0} of H. Thus, |H1| = 2n−1.

Define the map L : Sn → H by

(L (σ) = (`1 (σ) , `2 (σ) , . . . , `n (σ)) for each σ ∈ Sn) .

It is known that this map L is well-defined and is a bijection (see, e.g., [Grinbe16, Theorem
5.52]).2 Hence,

(the number of σ ∈ Sn satisfying L (σ) ∈ H1) = |H1| = 2n−1.

2This map L is known as the Lehmer code (or, rather, L (σ) is known as the Lehmer code of the permutation
σ ∈ Sn).
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Note that each σ ∈ Sn satisfies
`n (σ) = 0 (14)

(since `n (σ) is defined as the number of all j ∈ {n+ 1, n+ 2, . . . , n} satisfying σ (n) > σ (j);
but there are clearly no such j).

Hence, for each σ ∈ Sn, we have the following logical equivalence:

(`i (σ) ∈ {0, 1} for all i ∈ [n]) ⇐⇒ (L (σ) ∈ H1) . (15)

[Proof of (15): Let σ ∈ Sn. We must prove the equivalence (15). We shall prove its
“=⇒” and “⇐=” directions separately:

=⇒: Assume that `i (σ) ∈ {0, 1} for all i ∈ [n]. We must prove that L (σ) ∈ H1.
We have assumed that `i (σ) ∈ {0, 1} for all i ∈ [n]. Hence, `1 (σ) , `2 (σ) , . . . , `n−1 (σ) ∈

{0, 1}. Furthermore, (14) yields `n (σ) = 0 ∈ {0}. Now, the definition of L yields

L (σ) = (`1 (σ) , `2 (σ) , . . . , `n (σ)) ∈ {0, 1} × {0, 1} × · · · × {0, 1}︸ ︷︷ ︸
n−1 times

×{0}

(since `1 (σ) , `2 (σ) , . . . , `n−1 (σ) ∈ {0, 1} and `n (σ) ∈ {0})
= H1 (by the definition of H1) .

Now, forget that we assumed that `i (σ) ∈ {0, 1} for all i ∈ [n]. We thus have shown
that if `i (σ) ∈ {0, 1} for all i ∈ [n], then L (σ) ∈ H1. In other words, we have proven the
“=⇒” direction of the equivalence (15).
⇐=: Assume that L (σ) ∈ H1. We must prove that `i (σ) ∈ {0, 1} for all i ∈ [n].
We have assumed that L (σ) ∈ H1. But the definition of L yields

L (σ) = (`1 (σ) , `2 (σ) , . . . , `n (σ)). Hence,

(`1 (σ) , `2 (σ) , . . . , `n (σ)) = L (σ) ∈ H1 = {0, 1} × {0, 1} × · · · × {0, 1}︸ ︷︷ ︸
n−1 times

× {0}︸︷︷︸
⊆{0,1}

(by the definition of H1)

⊆ {0, 1} × {0, 1} × · · · × {0, 1}︸ ︷︷ ︸
n−1 times

×{0, 1}

= {0, 1} × {0, 1} × · · · × {0, 1}︸ ︷︷ ︸
n times

= {0, 1}n .

In other words, `i (σ) ∈ {0, 1} for all i ∈ [n].
Now, forget that we assumed that L (σ) ∈ H1. We thus have shown that if L (σ) ∈ H1,

then `i (σ) ∈ {0, 1} for all i ∈ [n]. In other words, we have proven the “⇐=” direction of the
equivalence (15).

We now have proven both the “=⇒” and the “⇐=” directions of the equivalence (15).
Hence, this equivalence is proven.]

Now, consider the statements A, B and C from part (b) of the exercise. These three
statements are equivalent (by part (b)). Hence,

(the number of σ ∈ Sn satisfying statements A, B and C)

= (the number of σ ∈ Sn satisfying statement C)

=

the number of σ ∈ Sn satisfying `i (σ) ∈ {0, 1} for all i ∈ [n]︸ ︷︷ ︸
⇐⇒ (L(σ)∈H1)

(by (15))


= (the number of σ ∈ Sn satisfying L (σ) ∈ H1) = 2n−1.
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This solves part (c) of the exercise.

4 Exercise 4

4.1 Problem

Let n ≥ 2, and set S = [n]. Let i ∈ [n− 1]. Prove that:

(a) The number of maps f : S → S with f (i) = n and fn (S) = {n} is 2nn−3.

(b) Let j ∈ [n− 1] be such that i 6= j. The number of maps f : S → S with f (i) = j and
fn (S) = {n} is nn−3.

[Hint: Substitute appropriate numbers for the variables in the Matrix-Tree Theorem.]

4.2 Solution sketch

Forget that we fixed i.
Before we solve anything, let us agree on a notation: If i and j are two elements of [n],

then we define a set Ai,j by

Ai,j = {f : S → S | f (i) = j and fn (S) = {n}} .

Thus, |Ai,j| is the number of maps f : S → S with f (i) = j and fn (S) = {n}. Hence, part
(a) of the exercise is equivalent to saying that |Ai,n| = 2nn−3 for any i ∈ [n− 1], whereas
part (b) of the exercise is equivalent to saying that |Ai,j| = nn−3 for any i ∈ [n− 1] and
j ∈ [n− 1] satisfying i 6= j. It is in these forms that we shall solve the exercise.

(a) First solution to part (a): Here is the matrix-tree theorem, as stated in class (The-
orem 5.4 in the class notes from 2018-11-05):3

Theorem 4.1. Let n ≥ 1. Let S = [n]. For any distinct i, j ∈ [n], let ai,j be a number (or
an indeterminate).

For each i ∈ [n], we let bi = ai,1 + ai,2 + · · · + âi,i + · · · + ai,n. Here, the hat over the
“ai,i” means that the addend ai,i should not be included in the sum (so that the sum is
ai,1 + ai,2 + · · ·+ ai,i−1 + ai,i+1 + ai,i+2 + · · ·+ ai,n).

Let L be the (n− 1) × (n− 1)-matrix whose (i, j)-th entry is

{
bi, if i = j;

−ai,j, if i 6= j
for all

i, j ∈ [n− 1].
Then, ∑

f :S→S;
fn(S)={n}

∏
i∈[n−1]

ai,f(i) = detL.

Now, recall that our goal is to solve part (a) of the exercise; in other words, our goal
is to prove that |Ai,n| = 2nn−3 for any i ∈ [n− 1] (because part (a) is equivalent to this).
First, we notice that the specific value of the number i is irrelevant: If i1 and i2 are two

3Keep in mind that we have not fixed i, so we can use this letter for various other needs.
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elements of [n− 1], then |Ai1,n| = |Ai2,n| 4. Applying this to i1 = i and i2 = n − 1, we
conclude that

|Ai,n| = |An−1,n| for each i ∈ [n− 1] . (16)

Hence, in order to prove that |Ai,n| = 2nn−3 for any i ∈ [n− 1], it suffices to prove that
|An−1,n| = 2nn−3. This is what we shall prove in the following.

We WLOG assume that n ≥ 3, since otherwise the result is easy to check by hand.
For any distinct i, j ∈ [n], let ai,j = [i 6= n− 1 or j = n]. Thus, ai,j = 1 whenever

i 6= n − 1, whereas an−1,j = [j = n]. Now, define bi and L as in Theorem 4.1. Then, each
i ∈ [n− 1] satisfies

bi = ai,1 + ai,2 + · · ·+ âi,i + · · ·+ ai,n =
∑
j∈[n];
j 6=i

ai,j︸︷︷︸
=[i 6=n−1 or j=n]

=
∑
j∈[n];
j 6=i

[i 6= n− 1 or j = n] =

{
n− 1, if i 6= n− 1;

1, if i = n− 1

(because if i 6= n − 1, then all n − 1 addends of the sum
∑
j∈[n];
j 6=i

[i 6= n− 1 or j = n] equal 1,

whereas otherwise one of these addends equals 1 whereas all others equal 0). Hence, the
(n− 1)× (n− 1)-matrix L has the following form:5

L =



n− 1 −1 −1 · · · −1 −1
−1 n− 1 −1 · · · −1 −1
−1 −1 n− 1 · · · −1 −1
...

...
... . . . ...

...
−1 −1 −1 · · · n− 1 −1
0 0 0 · · · 0 1


(n−1)×(n−1)

(viz.: its diagonal entries are n− 1, n− 1, . . . , n− 1︸ ︷︷ ︸
n−2 times

, 1; its last row is 0, 0, . . . , 0︸ ︷︷ ︸
n−2 times

, 1; and all

4Proof. Let i1 and i2 be two elements of [n− 1]. We must prove that |Ai1,n| = |Ai2,n|. If i1 = i2, then
this is obvious. Thus, WLOG assume that i1 6= i2. Hence, the transposition ti1,i2 ∈ Sn is well-defined.
Clearly, n is a fixed point of ti1,i2 , and ti1,i2 is an involution. Now, it is easy to see that the map

Ai1,n → Ai2,n, f 7→ ti1,i2 ◦ f ◦ ti1,i2

is well-defined (after all, it simply interchanges the roles of i1 and i2, so that it sends a map f satisfying
f (i1) = j to a map f satisfying f (i2) = j without disrupting the “fn (S) = {n}” behavior) and is a
bijection (its inverse map is defined in the same way). Thus, |Ai1,n| = |Ai2,n|, qed.

5We are using a slightly nonstandard notation here: We are putting the size of a matrix as a subscript on the

bottom right of the matrix. Thus, for example, “


1 1 · · · 1
1 1 · · · 1
...

...
. . .

...
1 1 · · · 1


7×7

” will mean the 7×7-matrix whose

all entries equal 1. This prevents ambiguities (for example, without the subscript, “


1 1 · · · 1
1 1 · · · 1
...

...
. . .

...
1 1 · · · 1

”

would be ambiguous, because the size of the matrix would not be clear).
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its other entries equal −1). Hence,

detL = det


n− 1 −1 −1 · · · −1
−1 n− 1 −1 · · · −1
−1 −1 n− 1 · · · −1
...

...
... . . . ...

−1 −1 −1 · · · n− 1


(n−2)×(n−2) here, we expanded the determinant along the last row,

which gave us only one cofactor because the last row
of L has only one nonzero entry



= det


n− 1 −1 −1 · · · −1
−n n 0 · · · 0
−n 0 n · · · 0
...

...
... . . . ...

−n 0 0 · · · n


(n−2)×(n−2)(

here, we have subtracted the first row of the matrix
from each of the other rows

)

= nn−3 det


n− 1 −1 −1 · · · −1
−1 1 0 · · · 0
−1 0 1 · · · 0
...

...
... . . . ...

−1 0 0 · · · 1


(n−2)×(n−2)(

here, we have factored out an n from each row of the
matrix except of the first row

)

= nn−3 det


2 0 0 · · · 0
−1 1 0 · · · 0
−1 0 1 · · · 0
...

...
... . . . ...

−1 0 0 · · · 1


(n−2)×(n−2)︸ ︷︷ ︸

=2·1·1·····1
(since the determinant of a lower-triangular

matrix equals the product of its diagonal entries)(
here, we have added each row of the matrix except of

the first row to the first row

)
= nn−3 · (2 · 1 · 1 · · · · · 1) = 2nn−3.

Thus, Theorem 4.1 yields∑
f :S→S;

fn(S)={n}

∏
i∈[n−1]

ai,f(i) = detL = 2nn−3.
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Comparing this with∑
f :S→S;

fn(S)={n}

∏
i∈[n−1]

ai,f(i)︸ ︷︷ ︸
=[i 6=n−1 or f(i)=n]

(by the definition of ai,f(i))

=
∑

f :S→S;
fn(S)={n}

∏
i∈[n−1]

[i 6= n− 1 or f (i) = n]︸ ︷︷ ︸
=

( ∏
i∈[n−2]

[i 6=n−1 or f(i)=n]

)
·[n−16=n−1 or f(n−1)=n]

(here, we have split off the factor for i=n−1 from the product)

=
∑

f :S→S;
fn(S)={n}

 ∏
i∈[n−2]

[i 6= n− 1 or f (i) = n]︸ ︷︷ ︸
=1

(since i 6=n−1)

 · [n− 1 6= n− 1 or f (n− 1) = n]︸ ︷︷ ︸
=[f(n−1)=n]

(since n−16=n−1 does not hold)

=
∑

f :S→S;
fn(S)={n}

 ∏
i∈[n−2]

1


︸ ︷︷ ︸

=1

· [f (n− 1) = n] =
∑

f :S→S;
fn(S)={n}

[f (n− 1) = n]

=
∑

f :S→S;
fn(S)={n};
f(n−1)=n

[f (n− 1) = n]︸ ︷︷ ︸
=1

(since f(n−1)=n)

+
∑

f :S→S;
fn(S)={n};
f(n−1)6=n

[f (n− 1) = n]︸ ︷︷ ︸
=0

(since f(n−1)6=n)

=
∑

f :S→S;
fn(S)={n};
f(n−1)=n

1 +
∑

f :S→S;
fn(S)={n};
f(n−1) 6=n

0

︸ ︷︷ ︸
=0

=
∑

f :S→S;
fn(S)={n};
f(n−1)=n

1

= |{f : S → S | fn (S) = {n} and f (n− 1) = n}| · 1
= |{f : S → S | fn (S) = {n} and f (n− 1) = n}|

=

∣∣∣∣∣∣∣∣∣{f : S → S | f (n− 1) = n and fn (S) = {n}}︸ ︷︷ ︸
=An−1,n

(by the definition of An−1,n)

∣∣∣∣∣∣∣∣∣ = |An−1,n| ,

we obtain |An−1,n| = 2nn−3. As we have explained, this solves part (a) of the exercise.

Second solution to part (a): I shall not follow the hint this time. Instead, let me recall
a fact proven in class (during the proof of Theorem 5.2 in the class notes from 2018-11-05):

Proposition 4.2. Let n ≥ 1, and set S = [n]. For each subset T of S, we set

Φ (T ) = {f : S → S | fn (S) ⊆ T and T ⊆ Fix f} , (17)

where Fix f := {x ∈ S | f (x) = x}.
Then, there are integers g0, g1, . . . , gn such that

gi = |Φ (T )| for every i-element subset T of S, (18)

and these integers are given by

gk = knn−k−1 for each k ∈ {0, 1, . . . , n} . (19)
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Consider the integers g0, g1, . . . , gn from Proposition 4.2. Applying (19) to k = 2, we
obtain g2 = 2nn−2−1 = 2nn−3.

Also, let us introduce another notation: If f : S → S is any map, and if a and b are any
two elements of S, then

(f but a 7→ b)

shall denote the map from S to S that sends each s ∈ S to

{
f (s) , if s 6= a;

b, if s = a.
In other

words, the map (f but a 7→ b) differs from f only in that it sends a to b.
Now, fix i ∈ [n− 1]. Let T be the subset {i, n} of S. Then, T is a 2-element subset

(since i 6= n (because i ∈ [n− 1])); thus, (18) (applied to i = 2) yields g2 = |Φ (T )|. Hence,
|Φ (T )| = g2 = 2nn−3. The definition of Φ (T ) yields

Φ (T ) = {f : S → S | fn (S) ⊆ T and T ⊆ Fix f}
= {f : S → S | fn (S) ⊆ {i, n} and {i, n} ⊆ Fix f} (since T = {i, n})
= {f : S → S | fn (S) ⊆ {i, n} and f (i) = i and f (n) = n} .

The definition of Ai,n yields

Ai,n = {f : S → S | f (i) = n and fn (S) = {n}} . (20)

It is easy to see that the map

Φ (T )→ Ai,n,

f 7→ (f but i 7→ n)

is well-defined6. It is also easy to see that the map

Ai,n → Φ (T ) ,

f 7→ (f but i 7→ i)

is well-defined. Furthermore, these two maps are mutually inverse (since each f ∈ Φ (T )
sends i to i, while each f ∈ Ai,n sends i to n). Thus, these maps are bijections. Hence, we
have found a bijection from Ai,n to Φ (T ). Thus, |Ai,n| = |Φ (T )| = 2nn−3. In view of (20),
this rewrites as

|{f : S → S | f (i) = n and fn (S) = {n}}| = 2nn−3.

In other words, the number of maps f : S → S with f (i) = n and fn (S) = {n} is 2nn−3.
This solves part (a) of the exercise again.

(b) While it is certainly possible to solve part (b) using the Matrix-Tree Theorem (as
we did with part (a)), it is also more complicated than what we did above. Fortunately,
there is a simpler approach:

6To prove this, you need to show that every f ∈ Φ (T ) satisfies (f but i 7→ n) (i) = n and
(f but i 7→ n)

n
(S) = {n}. The first of these two equalities is obvious. The second can be argued

(roughly speaking) as follows: Since f ∈ Φ (T ), we have fn (S) ⊆ {i, n}; hence, each element of S will
eventually reach either i or n when we apply f to it many times. Thus, if we keep applying (f but i 7→ n)
to it instead of f , it will eventually reach n (because it will move in the same way as if we apply f to
it, unless and until it reaches i; but at that point, (f but i 7→ n) will send it directly to n). Hence,
(f but i 7→ n)

n
(S) = {n}, qed.
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As we know, part (b) of the exercise is equivalent to saying that |Ai,j| = nn−3 for any
i ∈ [n− 1] and j ∈ [n− 1] satisfying i 6= j. Thus, it suffices to prove that |Ai,j| = nn−3 for
any i ∈ [n− 1] and j ∈ [n− 1] satisfying i 6= j.

Fix i ∈ [n− 1]. We must thus show that |Ai,j| = nn−3 for any j ∈ [n− 1] satisfying
i 6= j.

We notice that the specific value of the number j is irrelevant (as long as i 6= j holds):
If j1 and j2 are two elements of [n− 1] such that i 6= j1 and i 6= j2, then

|Ai,j1| = |Ai,j2 | (21)

7. Furthermore, Ai,i = ∅ (indeed, any f ∈ Ai,i would have to satisfy both f (i) = i and
fn (S) = {n}; but these two equalities contradict each other8), and thus |Ai,i| = 0.

Now, let j ∈ [n− 1] be such that i 6= j. We must prove that |Ai,j| = nn−3. Note that
i and j are two distinct elements of the set [n− 1] (since i 6= j); thus, this set [n− 1] has
at least two elements. In other words, |[n− 1]| ≥ 2. Thus, n − 1 = |[n− 1]| ≥ 2, so that
n ≥ 3. Hence, n− 2 6= 0.

We have i ∈ [n− 1]. Hence, we can split off the addend for u = i from the sum∑
u∈[n−1]

|Ai,u|. We thus obtain

∑
u∈[n−1]

|Ai,u| = |Ai,i|︸︷︷︸
=0

+
∑

u∈[n−1];
u6=i

|Ai,u|︸ ︷︷ ︸
=|Ai,j |

(by (21), applied to j1=u
and j2=j)

=
∑

u∈[n−1];
u6=i

|Ai,j|

= (n− 2) |Ai,j| (22)

(since the number of u ∈ [n− 1] satisfying u 6= i is n− 2). But each u ∈ [n] satisfies

Ai,u = {f : S → S | f (i) = u and fn (S) = {n}}

(by the definition of Ai,u). Thus, the n sets Ai,1, Ai,2, . . . , Ai,n are disjoint, and their union
is {f : S → S | fn (S) = {n}}. Hence,

|Ai,1|+ |Ai,2|+ · · ·+ |Ai,n| = |{f : S → S | fn (S) = {n}}|
= (the number of maps f : S → S satisfying fn (S) = {n})
= nn−2

7Proof. Let j1 and j2 be two elements of [n− 1] satisfying i 6= j1 and i 6= j2. We must prove that
|Ai,j1 | = |Ai,j2 |. If j1 = j2, then this is obvious. Thus, WLOG assume that j1 6= j2. Hence, the
transposition tj1,j2 ∈ Sn is well-defined. Clearly, both i and n are fixed points of tj1,j2 (since i 6= j1 and
i 6= j2 and j1, j2 ∈ [n− 1]), and tj1,j2 is an involution. Now, it is easy to see that the map

Ai,j1 → Ai,j2 , f 7→ tj1,j2 ◦ f ◦ tj1,j2

is well-defined (after all, it simply interchanges the roles of j1 and j2, so that it sends a map f satisfying
f (i) = j1 to a map f satisfying f (i) = j2 without disrupting the “fn (S) = {n}” behavior) and is a
bijection (its inverse map is defined in the same way). Thus, |Ai,j1 | = |Ai,j2 |, qed.

8Indeed, the equality f (i) = i leads to fk (i) = i for all k ∈ N; thus, fn (i) = i /∈ {n}, which contradicts

fn

 i︸︷︷︸
∈S

 ∈ fn (S) = {n}.
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(by Theorem 5.2 in the class notes from 2018-11-05). Hence,

nn−2 = |Ai,1|+ |Ai,2|+ · · ·+ |Ai,n| =
∑
u∈[n]

|Ai,u| =
∑

u∈[n−1]

|Ai,u|︸ ︷︷ ︸
=(n−2)|Ai,j |
(by (22))

+ |Ai,n|︸ ︷︷ ︸
=2nn−3

(by part (a)
of the exercise)

(here, we have split off the addend for u = n from the sum)

= (n− 2) |Ai,j|+ 2nn−3.

We can solve this equation for |Ai,j| (since n− 2 6= 0), and obtain |Ai,j| =
nn−2 − 2nn−3

n− 2
=

(n− 2)nn−3

n− 2
= nn−3. This is exactly what we wanted to show. Thus, part (b) of the

exercise is solved.

5 Exercise 5

5.1 Problem

(a) For each n ∈ N, prove that the number of fixed-point-free involutions [n]→ [n] is{
1 · 3 · 5 · · · · · (n− 1) , if n is even;

0, if n is odd.

(b) For each n ∈ N, we let tn be the number of all involutions in Sn. Prove that

tn =
n∑
k=0

(
n

2k

)
(1 · 3 · 5 · · · · · (2k − 1)) for each n ∈ N.

(c) For each n ∈ N, prove that the number of maps f : [n]→ [n] satisfying f 3 = f is

n∑
k=0

(
n

k

)
kn−ktk.

5.2 Remark

The numbers in part (a) form the sequence A123023 in the OEIS. (And if you omit the
terms for odd n, which are all zero, then you obtain sequence A001147, known as the double
factorials.)

The numbers t0, t1, t2, . . . in part (b) are sometimes called the telephone numbers, be-
cause an involution in Sn is a way how phone calls can be happening between n people
1, 2, . . . , n, assuming there are no conference calls. This is sequence A000085 in the OEIS.

Finally, the numbers in part (c) form sequence A060905.
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5.3 Solution sketch

(a) First solution to part (a) (sketched): The fixed-point-free involutions [n] → [n] are
precisely the derangements in Sn that are also involutions. But the latter derangements
have been counted in UMN Spring 2018 Math 4707 notes from 2018-05-02 (pages 9–20).

Second solution to part (a) (sketched): We WLOG assume that n ≥ 2, since the cases
when n < 2 are trivial to check.

The fixed-point-free involutions [n] → [n] are precisely the permutations σ ∈ Sn whose
cycles are all 2-cycles (because any cycle of length > 2 would prevent σ from being an
involution, whereas any cycle of length < 2 would prevent σ from being fixed-point-free).
Thus, they are precisely the permutations σ ∈ Sn that have exactly n/2 many 2-cycles and
no cycles of any other length9. Thus, if n is odd, then there exist no such involutions (since
n/2 is not an integer in this case), i.e., their number is 0. For the same reason, if n is even,
we have

(the number of fixed-point-free involutions [n]→ [n])

= (the number of permutations σ ∈ Sn that have exactly n/2 many 2-cycles
and no cycles of any other length)

=
n!

0! (n/2)!0!0! · · · 0!102n/23040 · · ·n0

(
by the exercise on pages 234–236

of the 2018-10-24 notes

)
=

n!

(n/2)!2n/2
(
since 0! = 1 and k0 = 1 for each k ∈ Z

)
=

1

2n/2
· 1

(n/2)!
· n!︸︷︷︸

=1·2·····n
=(1·3·5·····(n−1))·(2·4·6·····n)

(since n is even)

=
1

2n/2
· 1

(n/2)!
· (1 · 3 · 5 · · · · · (n− 1)) · (2 · 4 · 6 · · · · · n)︸ ︷︷ ︸

=2n/2·(1·2·3·····(n/2))

=
1

2n/2
· 1

(n/2)!
· (1 · 3 · 5 · · · · · (n− 1)) · 2n/2 · (1 · 2 · 3 · · · · · (n/2))

=
1

(n/2)!
· (1 · 3 · 5 · · · · · (n− 1)) · (1 · 2 · 3 · · · · · (n/2))︸ ︷︷ ︸

=(n/2)!

= 1 · 3 · 5 · · · · · (n− 1) .

Combining the claims in the previous two sentences, we conclude that part (a) of the exercise
is solved.

(b) Let n ∈ N. To construct an involution σ ∈ Sn, we can use the following algorithm:

• First choose the number m of fixed points of σ; this must be a number in {0, 1, . . . , n}.

• Next, choose the set P of all fixed points of σ; this must be an m-element subset of

[n]. There are
(
n

m

)
ways of choosing this subset P .

• Note that |P | = m and thus |[n] \ P | = n−m.

• Now, the values σ (p) for all p ∈ P are already determined (indeed, we must have
σ (p) = p for all p ∈ P , since P should be the set of all fixed points of σ), and we

9Indeed, if the cycles of σ are all 2-cycles, then there must be exactly n/2 of these 2-cycles (since each of
the n elements of [n] must be caught up in exactly 1 of these 2-cycles, but each 2-cycle catches exactly
two elements of [n]).
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have σ (P ) = P . Thus, it remains to choose the values σ (q) for q ∈ [n] \ P . Since σ
should be a permutation, we must have σ ([n] \ P ) = [n] \ σ (P )︸ ︷︷ ︸

=P

= [n] \ P ; therefore,

these values σ (q) must belong to [n] \ P . Thus, the restriction of σ to [n] \ P should
be a permutation of [n]\P . This permutation should be an involution (since σ should
be an involution) and should be fixed-point-free (since we want P to be the set of all
fixed points of σ, and thus any fixed points of σ must lie in P ). Thus, the restriction
of σ to [n] \P should be a fixed-point-free involution of [n] \P . Hence, the number of
ways of choosing this restriction (i.e., choosing the values σ (q) for q ∈ [n] \ P ) is

(the number of all fixed-point-free involutions of [n] \ P )

= (the number of all fixed-point-free involutions of [n−m])(
since there is a bijection between [n] \ P and [n−m]

(because |[n] \ P | = n−m)

)
=

{
1 · 3 · 5 · · · · · ((n−m)− 1) , if n−m is even;

0, if n−m is odd

(by part (a) of this exercise, applied to n−m instead of n) .

Hence, the total number of involutions σ ∈ Sn is

∑
m∈{0,1,...,n}

(
n

m

){
1 · 3 · 5 · · · · · ((n−m)− 1) , if n−m is even;

0, if n−m is odd

=
∑

m∈{0,1,...,n};
n−m is even

(
n

m

)
(1 · 3 · 5 · · · · · ((n−m)− 1))

(
here, we have removed the addends for which n−m is odd,

since these addends are 0

)
=

∑
m∈{0,1,...,n};
m is even

(
n

n−m

)
︸ ︷︷ ︸
=

(
n

m

) (1 · 3 · 5 · · · · · (m− 1))

(here, we have substituted m for n−m in the sum)

=
∑

m∈{0,1,...,n};
m is even

(
n

m

)
(1 · 3 · 5 · · · · · (m− 1))

=
∑

m∈{0,1,...,2n};
m is even

(
n

m

)
(1 · 3 · 5 · · · · · (m− 1))


here, we have extended the sum by loosening

the “m ∈ {0, 1, . . . , n} ” condition to “m ∈ {0, 1, . . . , 2n} ”;
this did not affect the value of the sum, since

all addends with m > n are 0


=

n∑
k=0

(
n

2k

)
(1 · 3 · 5 · · · · · (2k − 1))

(here, we have substituted 2k for m in the sum) .
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In other words, tn =
n∑
k=0

(
n

2k

)
(1 · 3 · 5 · · · · · (2k − 1)) (since tn is the number of involutions

σ ∈ Sn). This solves part (b) of the exercise.
(c) It is easy to see that a map f : [n]→ [n] satisfies f 3 = f if and only if its restriction

f |f([n]) (to its own image) is an involution. Thus, any map f : [n] → [n] satisfying f 3 = f
can be constructed as follows:

• Choose the size k of its image f ([n]); this is an integer in {0, 1, . . . , n}.

• Then choose this image f ([n]) as a k-element subset of [n]; there are
(
n

k

)
choices for

this subset.

• Then choose the restriction f |f([n]) as an involution of f ([n]); there are tk choices for
this involution10.

• Finally, choose the values of f on the n−k elements of [n]\f ([n]). These values must
belong to f ([n]), so we have kn−k choices here (because f ([n]) is a k-element set).

Hence, the total number of maps f : [n]→ [n] satisfying f 3 = f is
n∑
k=0

(
n

k

)
tkk

n−k =
n∑
k=0

(
n

k

)
kn−ktk.

6 Exercise 6

6.1 Problem

Let n be a positive integer, and let p ∈ {0, 1, . . . , n}.
A permutation σ ∈ Sn shall be called a p-desarrangement if it satisfies

either (σ = id and 2 | n) or σ (1) ≤ p or (σ 6= id and 2 | min (Desσ)) .

(The condition 2 | min (Desσ) means that the smallest descent of σ is even.11 This is well-
defined, since σ 6= id shows that σ has at least one descent. Further p-desarrangements are
10Indeed, f ([n]) is a k-element set, and thus there exists a bijection between f ([n]) and [k]. Hence, the

number of involutions of f ([n]) equals the number of involutions of [k]. But the latter number is precisely
tk (by the definition of tk). Hence, the number of involutions of f ([n]) is tk.

11Here are all permutations σ 6= id in S5 that satisfy this condition (written in one-line notation, with an
underline marking the position of the smallest descent):

[1, 2, 3, 5, 4] , [1, 2, 4, 5, 3] , [1, 3, 2, 4, 5] , [1, 3, 2, 5, 4] , [1, 3, 4, 5, 2] ,

[1, 4, 2, 3, 5] , [1, 4, 2, 5, 3] , [1, 4, 3, 2, 5] , [1, 4, 3, 5, 2] , [1, 5, 2, 3, 4] ,

[1, 5, 2, 4, 3] , [1, 5, 3, 2, 4] , [1, 5, 3, 4, 2] , [1, 5, 4, 2, 3] , [1, 5, 4, 3, 2] ,

[2, 3, 1, 4, 5] , [2, 3, 1, 5, 4] , [2, 3, 4, 5, 1] , [2, 4, 1, 3, 5] , [2, 4, 1, 5, 3] ,

[2, 4, 3, 1, 5] , [2, 4, 3, 5, 1] , [2, 5, 1, 3, 4] , [2, 5, 1, 4, 3] , [2, 5, 3, 1, 4] ,

[2, 5, 3, 4, 1] , [2, 5, 4, 1, 3] , [2, 5, 4, 3, 1] , [3, 4, 1, 2, 5] , [3, 4, 1, 5, 2] ,

[3, 4, 2, 1, 5] , [3, 4, 2, 5, 1] , [3, 5, 1, 2, 4] , [3, 5, 1, 4, 2] , [3, 5, 2, 1, 4] ,

[3, 5, 2, 4, 1] , [3, 5, 4, 1, 2] , [3, 5, 4, 2, 1] , [4, 5, 1, 2, 3] , [4, 5, 1, 3, 2] ,

[4, 5, 2, 1, 3] , [4, 5, 2, 3, 1] , [4, 5, 3, 1, 2] , [4, 5, 3, 2, 1] .
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id when n is even, and all permutations starting with a number ≤ p (in one-line notation).)
Prove that the number of p-desarrangements in Sn is

n−p∑
k=0

(
n− p
k

)
· (−1)k (n− k)!.

6.2 Remark

This number is exactly the number of p-derangements in Sn, as defined in Exercise 5 of
midterm #1. This suggests the existence of a bijection between the p-desarrangements
and the p-derangements. Such a thing has indeed been found in the case when p = 0.
In this case, the 0-desarrangements are known as desarrangements (a pun on the name
Désarmenien and the word “derangement”), whereas the 0-derangements are precisely the
derangements. The desarrangements are just the permutations σ ∈ Sn satisfying either
σ = id or (σ 6= id and 2 | min (Desσ)). One known bijection between the derangements
and the desarrangements proceeds as follows:

• Let σ ∈ Sn be a derangement. We want to define the corresponding desarrangement
F (σ).

• Compute the disjoint cycle decomposition of σ, and write it in such a way that each
cycle contains its largest entry in its second position, and that the cycles are ordered
in increasing order of their largest entries. That is, write

σ = cyca1,1,a1,2,...,a1,n1 cyca2,1,a2,2,...,a2,n2 · · · cycak,1,ak,2,...,ak,nk
,

where each of the numbers 1, 2, . . . , n appears exactly once among the ai,j, and where

ai,2 ≥ ai,j for all i and j, and a1,2 < a2,2 < · · · < ak,2.

• Now, let F (σ) be the permutation whose one-line notation is

(a1,1, a1,2, . . . , a1,n1 , a2,1, a2,2, . . . , a2,n2 , . . . , ak,1, ak,2, . . . , ak,nk) .

For example, if n = 7 and σ = [5, 3, 7, 6, 1, 4, 2] in one-line notation, then the appropriate
representation of σ is σ = cyc1,5 cyc4,6 cyc3,7,2 and thus F (σ) = [1, 5, 4, 6, 3, 7, 2] in one-line
notation.

It is far from trivial to check that this is actually a well-defined bijection. I don’t know
if anything like that exists for p 6= 0. Feel free to explore. (But the simplest way to solve
the exercise is not by bijection.)

6.3 Solution sketch

Let us introduce some notations first. If σ ∈ Sn is any permutation, then we set σ (k) = 0
for all k > n.

For each k ∈ N, we let

Bk = {σ ∈ Sn | p < σ (1) < σ (2) < · · · < σ (k)} .

Note that the chain of inequalities p < σ (1) < σ (2) < · · · < σ (k) is vacuously true when
k = 0; thus, B0 is simply the set Sn of all permutations σ ∈ Sn. In other words, every
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σ ∈ Sn satisfies σ ∈ B0. Also, for any k > n, we have Bk = ∅, because no σ ∈ Sn satisfies
p < σ (1) < σ (2) < · · · < σ (k) (indeed, the last member of this chain of inequalities is
σ (k) = 0, which is not larger than p). Thus, the sequence (|B0| , |B1| , |B2| , . . .) is finitely
supported.

For each k ∈ {0, 1, . . . , n}, we have

|Bk| =
(
n− p
k

)
(n− k)!. (23)

[Proof of (23): Let k ∈ {0, 1, . . . , n}. In order to construct a permutation σ ∈ Sn satisfy-
ing p < σ (1) < σ (2) < · · · < σ (k), we can proceed as follows: First choose the first k values

σ (1) , σ (2) , . . . , σ (k) in
(
n− p
k

)
many ways (since we only need to choose their set as a

k-element subset of the (n− p)-element set {p+ 1, p+ 2, . . . , n}; their order is then uniquely
determined), and then choose the remaining n − k values σ (k + 1) , σ (k + 2) , . . . , σ (n) in

(n− k)! many ways. Thus, the total number of such permutations is
(
n− p
k

)
(n− k)!. In

other words, |Bk| =

(
n− p
k

)
(n− k)! (since the set of all such permutations is Bk). This

proves (23).]
It is also clear that B0 ⊇ B1 ⊇ B2 ⊇ · · · .
Now, it is easy to see that a permutation σ ∈ Sn is a p-desarrangement if and only if it

satisfies

• either p ≥ σ (1),

• or p < σ (1) < σ (2) ≥ σ (3),

• or p < σ (1) < σ (2) < σ (3) < σ (4) ≥ σ (5),

• or p < σ (1) < σ (2) < σ (3) < σ (4) < σ (5) < σ (6) ≥ σ (7),

• etc.

In other words, a permutation σ ∈ Sn is a p-desarrangement if and only if it satisfies

• either (not p < σ (1)),

• or (p < σ (1) < σ (2) but not p < σ (1) < σ (2) < σ (3)),

• or (p < σ (1) < σ (2) < σ (3) < σ (4) but not p < σ (1) < σ (2) < · · · < σ (5)),

• or (p < σ (1) < σ (2) < · · · < σ (6) but not p < σ (1) < σ (2) < · · · < σ (7)),

• etc.

In other words, a permutation σ ∈ Sn is a p-desarrangement if and only if it satisfies

• either (not σ ∈ B1),

• or (σ ∈ B2 but not σ ∈ B3),

• or (σ ∈ B4 but not σ ∈ B5),

• or (σ ∈ B6 but not σ ∈ B7),
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• etc.

(since for any given k ∈ N, the condition “p < σ (1) < σ (2) < · · · < σ (k)” is equivalent to
the condition “σ ∈ Bk”).

Moreover, all these possibilities are mutually exclusive (since B0 ⊇ B1 ⊇ B2 ⊇ · · · , and
therefore no σ ∈ Sn can fail to satisfy σ ∈ B2i+1 for some i and yet satisfy σ ∈ B2j for some
larger j). Hence,

(the number of p-desarrangements)
= (the number of σ ∈ Sn such that (not σ ∈ B1))︸ ︷︷ ︸

=(the number of σ∈Sn such that (σ∈B0 but not σ∈B1))
(because every σ∈Sn satisfies σ∈B0)

+ (the number of σ ∈ Sn such that (σ ∈ B2 but not σ ∈ B3))

+ (the number of σ ∈ Sn such that (σ ∈ B4 but not σ ∈ B5))

+ (the number of σ ∈ Sn such that (σ ∈ B6 but not σ ∈ B7))

+ · · ·
= (the number of σ ∈ Sn such that (σ ∈ B0 but not σ ∈ B1))

+ (the number of σ ∈ Sn such that (σ ∈ B2 but not σ ∈ B3))

+ (the number of σ ∈ Sn such that (σ ∈ B4 but not σ ∈ B5))

+ (the number of σ ∈ Sn such that (σ ∈ B6 but not σ ∈ B7))

+ · · ·

=
∑
i≥0

(the number of σ ∈ Sn such that (σ ∈ B2i but not σ ∈ B2i+1))︸ ︷︷ ︸
=|B2i\B2i+1|=|B2i|−|B2i+1|

(since B2i+1⊆B2i (because B0⊇B1⊇B2⊇···))

=
∑
i≥0

(|B2i| − |B2i+1|) =
∑
k≥0

(−1)k |Bk|(
because every finitely supported sequence (a0, a1, a2, . . .) of numbers

satisfies
∑
i≥0

(a2i − a2i+1) =
∑
k≥0

(−1)k ak

)

=
n∑
k=0

(−1)k |Bk|︸︷︷︸
=

(
n− p
k

)
(n−k)!

(by (23))

+
∑
k>n

(−1)k |Bk|︸︷︷︸
=0

(since Bk=∅ for k>n)

=
n∑
k=0

(−1)k
(
n− p
k

)
(n− k)!

=

n−p∑
k=0

(−1)k
(
n− p
k

)
(n− k)! +

n∑
k=n−p+1

(−1)k
(
n− p
k

)
︸ ︷︷ ︸

=0
(since k>n−p)

(n− k)!

=

n−p∑
k=0

(
n− p
k

)
· (−1)k (n− k)!.

This solves the exercise.
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