
University of Minnesota, School of Mathematics

Math 5705: Enumerative Combinatorics,
Fall 2018: Midterm 2

Darij Grinberg

January 10, 2019

due date: Wednesday, 14 November 2018 at the beginning of class,
or before that by email or canvas.

Please solve at most 4 of the 6 exercises!
Beware: Collaboration is not allowed on midterms!

Notations

Here is a list of notations that are used in this homework:

• We shall use the Iverson bracket notation as well as the notation [n] for the set
{1, 2, . . . , n} (when n ∈ Z).

• If n ∈ N, then Sn denotes the set of all permutations of [n].

• If n ∈ N and σ ∈ Sn, then:

– a descent of the permutation σ denotes an element k ∈ [n− 1] satisfying σ (k) >
σ (k + 1).

– the descent set Desσ of σ is defined as the set of all descents of σ.

– the descent number desσ of σ is defined as the number of all descents of σ (that
is, desσ = |Desσ|).

– the one-line notation OLNσ of σ is defined as the n-tuple (σ (1) , σ (2) , . . . , σ (n)).
Often, this n-tuple is written with square brackets, i.e., as [σ (1) , σ (2) , . . . , σ (n)].
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– for each i ∈ [n], we define `i (σ) to be the number of all j ∈ {i+ 1, i+ 2, . . . , n}
satisfying σ (i) > σ (j).

– we say that σ is 312-avoiding if there exist no three elements i, j, k ∈ [n] satisfying
i < j < k and σ (j) < σ (k) < σ (i).

– we say that σ is 321-avoiding if there exist no three elements i, j, k ∈ [n] satisfying
i < j < k and σ (k) < σ (j) < σ (i).

• For any n ∈ N and any i ∈ [n− 1], we let si denote the permutation in Sn that swaps
i with i+1 while leaving all other elements of [n] unchanged. (This assumes that n is
determined by the context.)

• For any n ∈ N and any k distinct elements i1, i2, . . . , ik of [n], we let cyci1,i2,...,ik be the
permutation in Sn that sends i1, i2, . . . , ik−1, ik to i2, i3, . . . , ik, i1 (respectively) while
leaving all the other elements of [n] unchanged. (Again, this relies on n being clear
from the context.)

• For any n ∈ N and k ∈ N, the notation
〈
n

k

〉
denotes the number of all permutations

σ ∈ Sn having exactly k descents. This is called an Eulerian number.

• If X is a set, and if α : X → X and β : X → X are two maps, then the composition
α ◦ β : X → X is simply denoted by αβ, and is called the product of α and β. This
notation is used for permutations, in particular.

• If X is a set, if k ∈ N, and if f : X → X is any map, then the map fk : X → X is
defined by

fk = f ◦ f ◦ · · · ◦ f︸ ︷︷ ︸
k times

= ff · · · f︸ ︷︷ ︸
k times

.

This map fk is called the k-th power of f (or k-th composition power of f). These
powers behave as one would expect as long as you have only one map f : X → X
(meaning that fa+b = faf b and fab = (fa)b for any a, b ∈ N); but be careful with
several maps (e.g., two maps f : X → X and g : X → X don’t always satisfy
(fg)a = faga). See [Grinbe16, Section 2.13.8] for details (where I write f ◦k instead of
fk).

• If X is a set, and if f : X → X is a map, then:

– we say that f is an involution if and only if f 2 = id. (Note that every involution
is automatically a permutation.)

– we say that f is fixed-point-free if each x ∈ X satisfies f (x) 6= x (that is, if f has
no fixed points). (Note that the fixed-point-free permutations are precisely the
derangements.)
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1 Exercise 1

1.1 Problem

Let n and k be positive integers.
For each i ∈ {0, 1, . . . , n− 1} and τ ∈ Sn−1, we let τ i_ ∈ Sn be the permutation such

that
OLN

(
τ i_
)
= (τ (1) , τ (2) , . . . , τ (i) , n, τ (i+ 1) , τ (i+ 2) , . . . , τ (n− 1))

(that is, OLN (τ i_) is obtained from OLN τ by inserting an n right after the i-th entry).

(a) Prove that each i ∈ {0, 1, . . . , n− 1} and τ ∈ Sn−1 satisfy[
des
(
τ i_
)
= k
]

= [des τ = k − 1 and τ (i) < τ (i+ 1)] + [des τ = k and τ (i) > τ (i+ 1)] ,

where we set τ (0) = 0 and τ (n) = 0.

(b) Prove that the map

{0, 1, . . . , n− 1} × Sn−1 → Sn,

(i, τ) 7→ τ i_

is a bijection.

(c) Prove that 〈
n

k

〉
= (k + 1)

〈
n− 1

k

〉
+ (n− k)

〈
n− 1

k − 1

〉
.

[Hint: You don’t need to write more than a few sentences for parts (a) and (b).]

1.2 Solution

[...]

2 Exercise 2

2.1 Problem

Let n ∈ N and σ ∈ Sn. For each i ∈ [n], let

ai = cyci′,i′−1,...,i = si′−1si′−2 · · · si ∈ Sn, where i′ = i+ `i (σ) .

Prove that σ = a1a2 · · · an.
[Hint: Prove, “more generally”, that if j ∈ {0, 1, . . . , n} is such that 1, 2, . . . , j are fixed

points of σ, then σ = aj+1aj+2 · · · an.]
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2.2 Solution

[...]

3 Exercise 3

3.1 Problem

Let n ∈ N.

(a) Prove that any σ ∈ Sn and any i ∈ [n] satisfy σ (i) ≤ i+ `i (σ).

(b) Prove that, for a given σ ∈ Sn, the following three statements are equivalent:

A: We have σ (i) ≤ i+ 1 for all i ∈ [n− 1].

B: The permutation σ is both 321-avoiding and 312-avoiding.

C: We have `i (σ) ∈ {0, 1} for each i ∈ [n]. (In other words, the Lehmer code of σ
consists only of 0’s and 1’s.)

(c) Assuming that n ≥ 1, prove that the number of σ ∈ Sn satisfying these three state-
ments is 2n−1.

3.2 Solution

[...]

4 Exercise 4

4.1 Problem

Let n ≥ 2, and set S = [n]. Let i ∈ [n− 1]. Prove that:

(a) The number of maps f : S → S with f (i) = n and fn (S) = {n} is 2nn−3.

(b) Let j ∈ [n− 1] be such that i 6= j. The number of maps f : S → S with f (i) = j and
fn (S) = {n} is nn−3.

[Hint: Substitute appropriate numbers for the variables in the Matrix-Tree Theorem.]

4.2 Solution

[...]
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5 Exercise 5

5.1 Problem

(a) For each n ∈ N, prove that the number of fixed-point-free involutions [n]→ [n] is{
1 · 3 · 5 · · · · · (n− 1) , if n is even;
0, if n is odd.

(b) For each n ∈ N, we let tn be the number of all involutions in Sn. Prove that

tn =
n∑

k=0

(
n

2k

)
(1 · 3 · 5 · · · · · (2k − 1)) for each n ∈ N.

(c) For each n ∈ N, prove that the number of maps f : [n]→ [n] satisfying f 3 = f is
n∑

k=0

(
n

k

)
kn−ktk.

5.2 Remark

The numbers in part (a) form the sequence A123023 in the OEIS. (And if you omit the
terms for odd n, which are all zero, then you obtain sequence A001147, known as the double
factorials.)

The numbers t0, t1, t2, . . . in part (b) are sometimes called the telephone numbers, be-
cause an involution in Sn is a way how phone calls can be happening between n people
1, 2, . . . , n, assuming there are no conference calls. This is sequence A000085 in the OEIS.

Finally, the numbers in part (c) form sequence A060905.

5.3 Solution

[...]

6 Exercise 6

6.1 Problem

Let n be a positive integer, and let p ∈ {0, 1, . . . , n}.
A permutation σ ∈ Sn shall be called a p-desarrangement if it satisfies

either (σ = id and 2 | n) or σ (1) ≤ p or (σ 6= id and 2 | min (Desσ)) .

(The condition 2 | min (Desσ) means that the smallest descent of σ is even.1 This is well-
defined, since σ 6= id shows that σ has at least one descent. Further p-desarrangements are
id when n is even, and all permutations starting with a number ≤ p (in one-line notation).)

Prove that the number of p-desarrangements in Sn is
n−p∑
k=0

(
n− p
k

)
· (−1)k (n− k)!.

1Here are all permutations σ 6= id in S5 that satisfy this condition (written in one-line notation, with an
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6.2 Remark

This number is exactly the number of p-derangements in Sn, as defined in Exercise 5 of
midterm #1. This suggests the existence of a bijection between the p-desarrangements
and the p-derangements. Such a thing has indeed been found in the case when p = 0.
In this case, the 0-desarrangements are known as desarrangements (a pun on the name
Désarmenien and the word “derangement”), whereas the 0-derangements are precisely the
derangements. The desarrangements are just the permutations σ ∈ Sn satisfying either
σ = id or (σ 6= id and 2 | min (Desσ)). One known bijection between the derangements
and the desarrangements proceeds as follows:

• Let σ ∈ Sn be a derangement. We want to define the corresponding desarrangement
F (σ).

• Compute the disjoint cycle decomposition of σ, and write it in such a way that each
cycle contains its largest entry in its second position, and that the cycles are ordered
in increasing order of their largest entries. That is, write

σ = cyca1,1,a1,2,...,a1,n1
cyca2,1,a2,2,...,a2,n2

· · · cycak,1,ak,2,...,ak,nk
,

where each of the numbers 1, 2, . . . , n appears exactly once among the ai,j, and where

ai,2 ≥ ai,j for all i and j, and a1,2 < a2,2 < · · · < ak,2.

• Now, let F (σ) be the permutation whose one-line notation is

(a1,1, a1,2, . . . , a1,n1 , a2,1, a2,2, . . . , a2,n2 , . . . , ak,1, ak,2, . . . , ak,nk
) .

For example, if n = 7 and σ = [5, 3, 7, 6, 1, 4, 2] in one-line notation, then the appropriate
representation of σ is σ = cyc1,5 cyc4,6 cyc3,7,2 and thus F (σ) = [1, 5, 4, 6, 3, 7, 2] in one-line
notation.

It is far from trivial to check that this is actually a well-defined bijection. I don’t know
if anything like that exists for p 6= 0. Feel free to explore. (But the simplest way to solve
the exercise is not by bijection.)

6.3 Solution

[...]

underline marking the position of the smallest descent):

[1, 2, 3, 5, 4] , [1, 2, 4, 5, 3] , [1, 3, 2, 4, 5] , [1, 3, 2, 5, 4] , [1, 3, 4, 5, 2] ,

[1, 4, 2, 3, 5] , [1, 4, 2, 5, 3] , [1, 4, 3, 2, 5] , [1, 4, 3, 5, 2] , [1, 5, 2, 3, 4] ,

[1, 5, 2, 4, 3] , [1, 5, 3, 2, 4] , [1, 5, 3, 4, 2] , [1, 5, 4, 2, 3] , [1, 5, 4, 3, 2] ,

[2, 3, 1, 4, 5] , [2, 3, 1, 5, 4] , [2, 3, 4, 5, 1] , [2, 4, 1, 3, 5] , [2, 4, 1, 5, 3] ,

[2, 4, 3, 1, 5] , [2, 4, 3, 5, 1] , [2, 5, 1, 3, 4] , [2, 5, 1, 4, 3] , [2, 5, 3, 1, 4] ,

[2, 5, 3, 4, 1] , [2, 5, 4, 1, 3] , [2, 5, 4, 3, 1] , [3, 4, 1, 2, 5] , [3, 4, 1, 5, 2] ,

[3, 4, 2, 1, 5] , [3, 4, 2, 5, 1] , [3, 5, 1, 2, 4] , [3, 5, 1, 4, 2] , [3, 5, 2, 1, 4] ,

[3, 5, 2, 4, 1] , [3, 5, 4, 1, 2] , [3, 5, 4, 2, 1] , [4, 5, 1, 2, 3] , [4, 5, 1, 3, 2] ,

[4, 5, 2, 1, 3] , [4, 5, 2, 3, 1] , [4, 5, 3, 1, 2] , [4, 5, 3, 2, 1] .
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