Math 5705: Enumerative Combinatorics, Fall 2018: Midterm 1

Darij Grinberg

January 10, 2019

due date: Wednesday, 24 October 2018 at the beginning of class, or before that by email or canvas.

Please solve at most 4 of the 6 exercises! Beware: Collaboration is not allowed on midterms!

1 Exercise 1

1.1 Problem

Let A and B be two finite sets, and let $f: A \to B$ be a map.

(a) Prove that the number of maps $g: B \to A$ satisfying $f \circ g \circ f = f$ is

$$|A|^{|B\setminus f(A)|}\prod_{b\in f(A)}|f^{-1}(b)|.$$

(Here and in the following, f(A) denotes the set $\{f(a) \mid a \in A\}$, whereas $f^{-1}(b)$ denotes the set $\{a \in A \mid f(a) = b\}$.)

(b) Prove that the number of maps $g: B \to A$ satisfying $f \circ g \circ f = f$ and $g \circ f \circ g = g$ is

$$|f(A)|^{|B\setminus f(A)|}\prod_{b\in f(A)} |f^{-1}(b)|.$$

[Hint: For part (a), observe that

$$|A|^{|B\setminus f(A)|} \prod_{b\in f(A)} |f^{-1}(b)| = \prod_{b\in B} \begin{cases} |f^{-1}(b)|, & \text{if } b\in f(A); \\ |A|, & \text{if } b\notin f(A). \end{cases}$$

What does this suggest about the construction of such maps g?

1.2 Remark

The maps g in part (a) are called "generalized inverses" of f. The maps g in part (b) are called "reflexive generalized inverses" of f. Note that one consequence of part (b) is that there is always at least one reflexive generalized inverse of f (unless A is empty).

One can similarly define generalized inverses for linear maps between vector spaces; the resulting notion is much more well-known and has books devoted to it (see the Wikipedia for an overview).

1.3 SOLUTION

[...]

2 Exercise 2

2.1 Problem

Let $n \in \mathbb{N}$ and $m \in \mathbb{N}$. Prove that

$$(n+m)\sum_{j=0}^{m} (-1)^j \frac{\binom{m}{j}}{\binom{n+j}{j}} = n.$$

[**Hint:** The fraction on the left hand side has too many j's. Try to simplify it to get the number of j's down to just 1 (not counting the exponent in $(-1)^j$).]

2.2 Solution

[...]

2

3 Exercise 3

3.1 Problem

Let n be a positive integer. Let a_1, a_2, \ldots, a_n be n integers. Let $F : \mathbb{Z} \to \mathbb{R}$ be any function. Prove that

$$F\left(\max\{a_1, a_2, \dots, a_n\}\right) = \sum_{k=1}^{n} (-1)^{k-1} \sum_{1 \le i_1 < i_2 < \dots < i_k \le n} F\left(\min\{a_{i_1}, a_{i_2}, \dots, a_{i_k}\}\right).$$

[Hint: This generalizes Exercise 5 on Spring 2018 Math 4707 homework set #2. Will some of the solutions given there still apply to this generalization?]

3.2 SOLUTION

[...]

4 Exercise 4

4.1 Problem

Recall once again the Fibonacci sequence $(f_0, f_1, f_2, ...)$, which is defined recursively by $f_0 = 0, f_1 = 1$, and

$$f_n = f_{n-1} + f_{n-2}$$
 for all $n \ge 2$. (1)

Now, let us define f_n for **negative** integers n as well, by "applying (1) backwards": This means that we set $f_{n-2} = f_n - f_{n-1}$ for all integers $n \le 1$. This allows us to recursively compute $f_{-1}, f_{-2}, f_{-3}, \ldots$ (in this order). For example,

$$f_{-1} = f_1 - f_0 = 1 - 0 = 1;$$

 $f_{-2} = f_0 - f_{-1} = 0 - 1 = -1;$
 $f_{-3} = f_{-1} - f_{-2} = 1 - (-1) = 2,$

etc.

- (a) Prove that $f_{-n} = (-1)^{n-1} f_n$ for each $n \in \mathbb{Z}$.
- (b) Prove that $f_{n+m+1} = f_n f_m + f_{n+1} f_{m+1}$ for all $n \in \mathbb{Z}$ and $m \in \mathbb{Z}$.
- (c) Prove that $7f_n = f_{n-4} + f_{n+4}$ for all $n \in \mathbb{Z}$.

[Hint: This is **not** an exercise about the combinatorial interpretations (domino tilings, lacunar subsets, etc.) of Fibonacci numbers. Make sure that your proofs cover all integers, not just elements of \mathbb{N} .]

4.2 SOLUTION

[...]

5 Exercise 5

5.1 Problem

Let $n \in \mathbb{N}$ and $p \in \{0, 1, ..., n\}$. A *p-derangement of* [n] shall mean a permutation σ of [n] such that every $i \in [n-p]$ satisfies $\sigma(i) \neq i+p$. Compute the number of all *p*-derangements of [n] as a sum of the form $\sum_{i=0}^{n-p} \cdots$.

[Hint: The case p=1 was Exercise 6 on Spring 2018 Math 4707 homework set #2.]

5.2 SOLUTION

[...]

6 Exercise 6

6.1 Problem

Let n and k be positive integers. A k-smord will mean a k-tuple $(a_1, a_2, \ldots, a_k) \in [n]^k$ such that no two consecutive entries of this k-tuple are equal (i.e., we have $a_i \neq a_{i+1}$ for all $i \in [k-1]$). For example, (4, 1, 4, 2, 6) is a 5-smord (when $n \geq 6$), but (1, 4, 4, 2, 6) is not.

It is easy to see that the number of k-smords is $n(n-1)^{k-1}$. (See, e.g., Exercise 5 on Math 4990 Fall 2017 homework set #3.)

A double k-smord shall mean a pair $((a_1, a_2, \ldots, a_k), (b_1, b_2, \ldots, b_k))$ of two k-smords (a_1, a_2, \ldots, a_k) and (b_1, b_2, \ldots, b_k) such that every $i \in [k]$ satisfies $a_i \neq b_i$.

Prove that the number of double k-smords is $n(n-1)(n^2-3n+3)^{k-1}$.

6.2 Remark

"Smord" is short for "Smirnov word" (which is how these tuples are sometimes called).

Double k-smords can also be regarded as $2 \times k$ -matrices with entries lying in [n] and with the property that no two adjacent entries are equal. (The double k-smord

$$((a_1, a_2, \dots, a_k), (b_1, b_2, \dots, b_k))$$
 thus corresponds to the $2 \times k$ -matrix $\begin{pmatrix} a_1 & a_2 & \cdots & a_k \\ b_1 & b_2 & \cdots & b_k \end{pmatrix}$.)

6.3 SOLUTION

4

[...]