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1 Exercise 1

1.1 Problem

Let n ∈ N and σ ∈ Sn. Let i and j be two elements of [n] such that i < j and σ (i) > σ (j).
Let Q be the set of all k ∈ {i+ 1, i+ 2, . . . , j − 1} satisfying σ (i) > σ (k) > σ (j). Prove
that

` (σ ◦ ti,j) = ` (σ)− 2 |Q| − 1.

1.2 Remark

This exercise implies that, in particular, ` (σ ◦ ti,j) < ` (σ); this answers the question on
page 213 of the notes from class (2018-10-22).

1.3 Solution

Jacob Elafandi gives a somewhat laborious but simple solution in [Elafan18].
I give a different solution in [Grinbe16, Exercise 5.20].
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2 Exercise 2

2.1 Problem

Let n ∈ N and π ∈ Sn.

(a) Prove that ∑
1≤i<j≤n;
π(i)>π(j)

(π (j)− π (i)) =
∑

1≤i<j≤n;
π(i)>π(j)

(i− j) .

(b) Prove that ∑
1≤i<j≤n;
π(i)<π(j)

(π (j)− π (i)) =
∑

1≤i<j≤n;
π(i)<π(j)

(j − i) .

2.2 Solution

We shall use the following fact:

Proposition 2.1. Let n ∈ N. Let σ ∈ Sn. Let a1, a2, . . . , an be any n numbers. (Here,
“number” means “real number” or “complex number” or “rational number”, as you prefer;
this makes no difference.) Prove that

∑
1≤i<j≤n;
σ(i)>σ(j)

(aj − ai) =
n∑
i=1

ai (i− σ (i)) .

[Here, the summation sign “
∑

1≤i<j≤n;
σ(i)>σ(j)

” means “
∑

(i,j)∈{1,2,...,n}2;
i<j and σ(i)>σ(j)

”; this is a sum over all inversions

of σ.]

Proposition 2.1 is [Grinbe16, Exercise 5.23]. For a different proof of it, see [Gorski18,
Exercise 4].

Now, let us solve the exercise. We have π ∈ Sn. In other words, π is a permutation of
[n]. In other words, π is a bijection [n] → [n]. Hence, we can substitute π (i) for i in the
sum

∑
i∈[n]

i2. We thus obtain ∑
i∈[n]

i2 =
∑
i∈[n]

(π (i))2 . (1)

(a) Proposition 2.1 (applied to σ = π and ak = π (k) + k) yields

∑
1≤i<j≤n;
π(i)>π(j)

((π (j) + j)− (π (i) + i)) =
n∑
i=1︸︷︷︸

=
∑
i∈[n]

(π (i) + i) (i− π (i))︸ ︷︷ ︸
=(i+π(i))(i−π(i))

=i2−(π(i))2
(since (x+y)(x−y)=x2−y2

for any two numbers x and y)

=
∑
i∈[n]

(
i2 − (π (i))2

)
=
∑
i∈[n]

i2 −
∑
i∈[n]

(π (i))2 = 0
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(by (1)). Hence,

0 =
∑

1≤i<j≤n;
π(i)>π(j)

((π (j) + j)− (π (i) + i))︸ ︷︷ ︸
=(π(j)−π(i))−(i−j)

=
∑

1≤i<j≤n;
π(i)>π(j)

((π (j)− π (i))− (i− j)) =
∑

1≤i<j≤n;
π(i)>π(j)

(π (j)− π (i))−
∑

1≤i<j≤n;
π(i)>π(j)

(i− j) .

Adding
∑

1≤i<j≤n;
π(i)>π(j)

(i− j) to both sides of this equality, we obtain

∑
1≤i<j≤n;
π(i)>π(j)

(i− j) =
∑

1≤i<j≤n;
π(i)>π(j)

(π (j)− π (i)) .

This solves part (a) of the exercise.
(b) Let w0 denote the permutation in Sn which sends each k ∈ [n] to n+ 1− k. Define

a permutation σ ∈ Sn by σ = w0 ◦ π. Thus, each k ∈ [n] satisfies

σ︸︷︷︸
=w0◦π

(k) = (w0 ◦ π) (k) = w0 (π (k)) = n+ 1− π (k) (2)

(by the definition of w0).
For any (i, j) ∈ [n]2, we have the following chain of logical equivalences: σ (i)︸︷︷︸

=n+1−π(i)
(by (2)

(applied to k=i))

> σ (j)︸︷︷︸
=n+1−π(j)

(by (2)
(applied to k=j))

 ⇐⇒ (n+ 1− π (i) > n+ 1− π (j))

⇐⇒ (π (i) < π (j)) .

Thus, for any (i, j) ∈ [n]2, the condition (σ (i) > σ (j)) is equivalent to (π (i) < π (j)). Hence,
the summation sign “

∑
1≤i<j≤n;
σ(i)>σ(j)

” can be rewritten as “
∑

1≤i<j≤n;
π(i)<π(j)

”. In other words, we have

∑
1≤i<j≤n;
σ(i)>σ(j)

=
∑

1≤i<j≤n;
π(i)<π(j)

(an equality between summation signs). Now, part (a) of the exercise (applied to σ instead
of π) yields ∑

1≤i<j≤n;
σ(i)>σ(j)

(σ (j)− σ (i)) =
∑

1≤i<j≤n;
σ(i)>σ(j)︸ ︷︷ ︸

=
∑

1≤i<j≤n;
π(i)<π(j)

(i− j)︸ ︷︷ ︸
=−(j−i)

=
∑

1≤i<j≤n;
π(i)<π(j)

(− (j − i))

= −
∑

1≤i<j≤n;
π(i)<π(j)

(j − i) .
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Comparing this with

∑
1≤i<j≤n;
σ(i)>σ(j)︸ ︷︷ ︸

=
∑

1≤i<j≤n;
π(i)<π(j)

 σ (j)︸︷︷︸
=n+1−π(j)

(by (2)
(applied to k=j))

− σ (i)︸︷︷︸
=n+1−π(i)

(by (2)
(applied to k=i))



=
∑

1≤i<j≤n;
π(i)<π(j)

((n+ 1− π (j))− (n+ 1− π (i)))︸ ︷︷ ︸
=−(π(j)−π(i))

=
∑

1≤i<j≤n;
π(i)<π(j)

(− (π (j)− π (i)))

= −
∑

1≤i<j≤n;
π(i)<π(j)

(π (j)− π (i)) ,

we obtain
−

∑
1≤i<j≤n;
π(i)<π(j)

(π (j)− π (i)) = −
∑

1≤i<j≤n;
π(i)<π(j)

(j − i) .

Thus, ∑
1≤i<j≤n;
π(i)<π(j)

(π (j)− π (i)) =
∑

1≤i<j≤n;
π(i)<π(j)

(j − i) .

This solves part (b) of the exercise.

3 Exercise 3

3.1 Problem

Let n be a positive integer. For each p ∈ Z, we let

Dn,p = {σ ∈ Sn | σ has exactly p descents} .

(Recall that a descent of a permutation σ ∈ Sn denotes an element k ∈ [n− 1] satisfying
σ (k) > σ (k + 1).)

Let p ∈ Z. Prove that |Dn,p| = |Dn,n−1−p|.

3.2 Solution sketch

We have n− 1 ∈ N (since n is a positive integer).
Recall that if σ ∈ Sn is a permutation, then Desσ denotes the set of all descents of σ.
Let w0 denote the permutation in Sn which sends each k ∈ [n] to n+ 1− k.
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Let π ∈ Sn. Thus, for each k ∈ [n− 1], we have the following chain of equivalences:

(k ∈ Des (w0 ◦ π)) ⇐⇒ (k is a descent of w0 ◦ π)

⇐⇒

 (w0 ◦ π) (k)︸ ︷︷ ︸
=w0(π(k))=n+1−π(k)
(by the definition of w0)

> (w0 ◦ π) (k + 1)︸ ︷︷ ︸
=w0(π(k+1))=n+1−π(k+1)
(by the definition of w0)


⇐⇒ (n+ 1− π (k) > n+ 1− π (k + 1))

⇐⇒ (π (k) < π (k + 1)) ⇐⇒ (π (k) ≤ π (k + 1))

(since π (k) = π (k + 1) can never hold (because π ∈ Sn))
⇐⇒ (not π (k) > π (k + 1)) ⇐⇒ (k is not a descent of π)
⇐⇒ (k /∈ Desπ) .

In other words, the elements of Des (w0 ◦ π) are precisely the elements of [n− 1] that don’t
belong to Des π. In other words, the set Des (w0 ◦ π) is the complement of the set Desπ in
[n− 1]. Thus,

|Des (w0 ◦ π)| = |[n− 1]|︸ ︷︷ ︸
=n−1

(since n−1∈N)

− |Des π| = n− 1− |Des π| . (3)

Now, forget that we fixed π. We thus have proven (3) for each π ∈ Sn.
Now, let π ∈ Dn,p. Then, π has exactly p descents1. In other words, |Des π| = p. Thus,

(3) yields |Des (w0 ◦ π)| = n − 1 − |Desπ|︸ ︷︷ ︸
=p

= n − 1 − p. In other words, the permutation

w0 ◦π has exactly n− 1− p descents. In other words, w0 ◦π ∈ Dn,n−1−p (since the definition
of Dn,n−1−p yields Dn,n−1−p = {σ ∈ Sn | σ has exactly n− 1− p descents}).

Now, forget that we fixed π. We thus have proven that w0 ◦ π ∈ Dn,n−1−p for each
π ∈ Dn,p. Thus, the map

Dn,p → Dn,n−1−p,

π 7→ w0 ◦ π (4)

is well-defined. The same argument (but with p replaced by n− 1− p) shows that the map

Dn,n−1−p → Dn,n−1−(n−1−p),

π 7→ w0 ◦ π

is well-defined. In other words, the map

Dn,n−1−p → Dn,p,

π 7→ w0 ◦ π (5)

is well-defined (since n− 1− (n− 1− p) = p). But w0 ◦w0 = id (since each k ∈ [n] satisfies

(w0 ◦ w0) (k) = w0 (w0 (k)) = n+ 1− (n+ 1− k) (by the definition of w0)

= k = id (k)

). Thus, the two maps (4) and (5) are mutually inverse. Hence, these two maps are bijections.
Thus, we have found a bijection from Dn,p to Dn,n−1−p. Hence, |Dn,p| = |Dn,n−1−p|. This
solves the exercise.

1since π ∈ Dn,p = {σ ∈ Sn | σ has exactly p descents}
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3.3 Remark

1. A similar solution could have been obtained by using the permutation π ◦ w0 instead of
w0 ◦ π. Indeed, similarly to (3), we also have

|Des (π ◦ w0)| = n− 1− |Desπ| for each π ∈ Sn.

To prove this, we would have to show that

Des (π ◦ w0) = {n− k | k ∈ [n− 1] \Desπ}

(which is only a tad more complicated than proving that Des (w0 ◦ π) = [n− 1] \Des π).
2. I have snuck a correction into the exercise: It used to only require n ∈ N, but now it

requires n to be a positive integer. Indeed, the claim fails for n = 0. Sorry!

4 Exercise 4

4.1 Problem

Let n ∈ N. Let S = {s1 < s2 < · · · < sk} be a subset of [n− 1]. Set s0 = 0 and sk+1 = n.
For each i ∈ [k + 1], set di = si − si−1. (You might remember this construction from the
definition of the map D in the solution to Exercise 1 on homework set #0.)

(a) Prove that

|{σ ∈ Sn | Desσ ⊆ S}| =
(

n

d1, d2, . . . , dk+1

)
.

(The term on the right hand side is a multinomial coefficient. The Desσ on the left
hand side denotes the descent set of σ, that is, the set of all descents of σ.)

(b) Prove that

|{σ ∈ Sn | Desσ = S}| =
∑
T⊆S

(−1)|S|−|T | |{σ ∈ Sn | Desσ ⊆ T}| .

4.2 Solution sketch

(a) A permutation σ ∈ Sn satisfies Desσ ⊆ S if and only if it is strictly increasing on each
of the k + 1 intervals

[s0 + 1, s1] , [s1 + 1, s2] , [s2 + 1, s3] , . . . , [sk + 1, sk+1] .

Hence, a permutation σ ∈ Sn satisfying Desσ ⊆ S is uniquely determined by the images

σ ([s0 + 1, s1]) , σ ([s1 + 1, s2]) , σ ([s2 + 1, s3]) , . . . , σ ([sk + 1, sk+1])

of these k+ 1 intervals (indeed, once these images are known, we can use the strict increas-
ingness of σ on these intervals to reconstruct each value of σ). These images must be disjoint
subsets of [n] (since σ is injective) and have the same sizes as the k+1 intervals themselves
(for the same reason); these sizes are

s1 − s0 = d1, s2 − s1 = d2, s3 − s2 = d3, . . . , sk+1 − sk = dk+1.

Thus, every permutation σ ∈ Sn satisfying Desσ ⊆ S can be constructed by the following
algorithm:
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• We choose a d1-element subset of [n] to be the image σ ([s0 + 1, s1]). This subset can

be chosen in
(
n

d1

)
ways.

• Next, we choose a d2-element subset of [n] to be the image σ ([s1 + 1, s2]), requiring that
it be disjoint from the already chosen subset σ ([s0 + 1, s1]). This subset can be chosen

in
(
n− d1
d2

)
ways (because by requiring it to be disjoint from the d1-element subset

σ ([s0 + 1, s1]), we are forcing it to be a d2-element subset of the (n− d1)-element set
[n] \ σ ([s0 + 1, s1])).

• Next, we choose a d3-element subset of [n] to be the image σ ([s2 + 1, s3]), requiring that
it be disjoint from the already chosen subsets σ ([s0 + 1, s1]) and σ ([s1 + 1, s2]). This

subset can be chosen in
(
n− d1 − d2

d3

)
ways (because by requiring it to be disjoint from

the d1-element subset σ ([s0 + 1, s1]) and the d2-element subset σ ([s1 + 1, s2]), we are
forcing it to be a d3-element subset of the (n− d1 − d2)-element set [n]\σ ([s0 + 1, s1])\
σ ([s1 + 1, s2])

2).

• And so on, until all k + 1 images

σ ([s0 + 1, s1]) , σ ([s1 + 1, s2]) , σ ([s2 + 1, s3]) , . . . , σ ([sk + 1, sk+1])

are chosen. As we know, at this point, σ is uniquely determined.

The total number of ways in which this construction can be carried out is(
n

d1

)(
n− d1
d2

)(
n− d1 − d2

d3

)
· · ·
(
n− d1 − d2 − · · · − dk

dk+1

)
=

k∏
i=0

(
n− d1 − d2 − · · · − di

di+1

)
=

k+1∏
i=1

(
n− d1 − d2 − · · · − di−1

di

)
=

(
n

d1, d2, . . . , dk+1

)
(by the first equation in Proposition 2.38 in the class notes (2018-10-03)). Thus, the number

of permutations σ ∈ Sn satisfying Desσ ⊆ S is
(

n

d1, d2, . . . , dk+1

)
. This solves part (a) of

the exercise.

(b) We need the following result:

Proposition 4.1. Let G be a finite set. Let S be a subset of G. Then,∑
I⊆G;
S⊆I

(−1)|I| = (−1)|S| [G = S] .

Proposition 4.1 was proven during the solution of Exercise 6 on homework set #3.

2Of course, we are tacitly using the fact that the two already chosen subsets σ ([s0 + 1, s1]) and
σ ([s1 + 1, s2]) are disjoint (so that the set [n] \ σ ([s0 + 1, s1]) \ σ ([s1 + 1, s2]) really is a (n− d1 − d2)-
element set).

Darij Grinberg, 00000000 7 dgrinber@umn.edu

http://www.cip.ifi.lmu.de/~grinberg/t/18f/5705-2018-10-03.pdf
http://www.cip.ifi.lmu.de/~grinberg/t/18f/hw3s.pdf


Solutions to homework set #4 page 8 of 24

We have∑
T⊆S

(−1)|S|−|T | |{σ ∈ Sn | Desσ ⊆ T}|

=
∑
I⊆S

(−1)|S|−|I| |{σ ∈ Sn | Desσ ⊆ I}|︸ ︷︷ ︸
=

∑
U⊆I
|{σ∈Sn|Desσ=U}|

(here, we have renamed the summation index T as I)

=
∑
I⊆S

(−1)|S|−|I|
∑
U⊆I

|{σ ∈ Sn | Desσ = U}|

=
∑
I⊆S

∑
U⊆I︸ ︷︷ ︸

=
∑
U⊆S

∑
I⊆S;
U⊆I

(−1)|S|−|I|︸ ︷︷ ︸
=(−1)|S|(−1)|I|

|{σ ∈ Sn | Desσ = U}|

=
∑
U⊆S

∑
I⊆S;
U⊆I

(−1)|S| (−1)|I| |{σ ∈ Sn | Desσ = U}|

=
∑
U⊆S

∑
I⊆S;
U⊆I

(−1)|I|


︸ ︷︷ ︸

=(−1)|U|[S=U ]
(by Proposition 4.1,

applied to S and U instead of G and S)

(−1)|S| |{σ ∈ Sn | Desσ = U}|

=
∑
U⊆S

(−1)|U | [S = U ] (−1)|S| |{σ ∈ Sn | Desσ = U}|

=
∑
U⊆S;
U 6=S

(−1)|U | [S = U ]︸ ︷︷ ︸
=0

(since U 6=S)

(−1)|S| |{σ ∈ Sn | Desσ = U}|

+ (−1)|S| [S = S] (−1)|S| |{σ ∈ Sn | Desσ = S}|
(here, we have split off the addend for U = S from the sum)

=
∑
U⊆S;
U 6=S

(−1)|U | 0 (−1)|S| |{σ ∈ Sn | Desσ = U}|

︸ ︷︷ ︸
=0

+ (−1)|S| [S = S]︸ ︷︷ ︸
=1

(−1)|S| |{σ ∈ Sn | Desσ = S}|

= (−1)|S| (−1)|S|︸ ︷︷ ︸
=((−1)|S|)

2
=1

|{σ ∈ Sn | Desσ = S}| = |{σ ∈ Sn | Desσ = S}| .

This solves part (b) of the exercise.
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5 Exercise 5

5.1 Problem

Let n ∈ N. We shall follow the convention that ti,i denotes the identity permutation id ∈ Sn
for each i ∈ [n].

Let σ ∈ Sn.
It is known that there is a unique n-tuple (i1, i2, . . . , in) ∈ [1]× [2]× · · · × [n] satisfying

σ = t1,i1 ◦ t2,i2 ◦ · · · ◦ tn,in . (See [Grinbe16, Exercise 5.9] for the proof of this fact, or – easier
– do it on your own.) Consider this n-tuple. (It is sometimes called the transposition code
of σ.)

For each k ∈ {0, 1, . . . , n}, we define a permutation σk ∈ Sn by σk = t1,i1 ◦ t2,i2 ◦· · ·◦ tk,ik .
Note that this permutation σk leaves each of the numbers k + 1, k + 2, . . . , n unchanged
(since all of i1, i2, . . . , ik, as well as 1, 2, . . . , k, are ≤ k).

For each k ∈ [n], let mk = σk (k).

(a) Show that mk ∈ [k] for all k ∈ [n].

(b) Show that σk (ik) = k for all k ∈ [n].

(c) Show that σ−1 = t1,m1 ◦ t2,m2 ◦ · · · ◦ tn,mn .

(d) Let x1, x2, . . . , xn, y1, y2, . . . , yn be any 2n numbers. Prove that

n∑
k=1

xkyk −
n∑
k=1

xkyσ(k) =
n∑
k=1

(xik − xk) (ymk − yk) .

(e) Now assume that the numbers x1, x2, . . . , xn, y1, y2, . . . , yn are real and satisfy x1 ≥
x2 ≥ · · · ≥ xn and y1 ≥ y2 ≥ · · · ≥ yn. Conclude that

n∑
k=1

xkyk ≥
n∑
k=1

xkyσ(k).

5.2 Remark

This exercise is part of [Grinbe16, Exercise 5.25].
Parts (a) and (c), combined, show that (m1,m2, . . . ,mn) is the transposition code of

σ−1.
Part (e) of the exercise is known as the rearrangement inequality. The proof in this

exercise is far from its easiest proof, but has the advantage of “manifest positivity” – i.e., it
gives an explicit formula for the difference between the two sides as a sum of products of
nonnegative numbers.

5.3 Solution sketch

Let us first notice that any two elements u, v ∈ [n] and any permutation π ∈ Sn satisfy

tπ(u),π(v) ◦ π = π ◦ tu,v. (6)

[Proof of (6): Let u, v ∈ [n] and π ∈ Sn. Fix k ∈ [n]. We shall prove that
(
tπ(u),π(v) ◦ π

)
(k) =

(π ◦ tu,v) (k).
Indeed, we are in one of the following three cases:
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Case 1: We have k = u.
Case 2: We have k = v.
Case 3: We have neither k = u nor k = v.
Let us first consider Case 1. In this case, we have k = u. Thus, tu,v (k) = tu,v (u) = v

(independently of whether u = v or u 6= v). Also, from k = u, we obtain(
tπ(u),π(v) ◦ π

)
(k) =

(
tπ(u),π(v) ◦ π

)
(u) = tπ(u),π(v) (π (u)) = π (v)

(again, independently of whether π (u) = π (v) holds or not). Comparing this with

(π ◦ tu,v) (k) = π (tu,v (k)) = π (v) (since tu,v (k) = v) ,

we obtain
(
tπ(u),π(v) ◦ π

)
(k) = (π ◦ tu,v) (k). Hence,

(
tπ(u),π(v) ◦ π

)
(k) = (π ◦ tu,v) (k) is

proven in Case 1.
The argument in Case 2 is analogous, and we leave it to the reader.
Let us now consider Case 3. In this case, we have neither k = u nor k = v. Thus,

tu,v (k) = k (independently of whether u = v or u 6= v). Also, recall that we have neither
k = u nor k = v. Thus, we have neither π (k) = π (u) nor π (k) = π (v) (since the map
π is injective (because π ∈ Sn)). Hence, tπ(u),π(v) (π (k)) = π (k) (again, independently of
whether π (u) = π (v) holds or not). Now,(

tπ(u),π(v) ◦ π
)
(k) = tπ(u),π(v) (π (k)) = π (k) .

Comparing this with

(π ◦ tu,v) (k) = π (tu,v (k)) = π (k) (since tu,v (k) = k) ,

we obtain
(
tπ(u),π(v) ◦ π

)
(k) = (π ◦ tu,v) (k). Hence,

(
tπ(u),π(v) ◦ π

)
(k) = (π ◦ tu,v) (k) is

proven in Case 3.
We have now proven

(
tπ(u),π(v) ◦ π

)
(k) = (π ◦ tu,v) (k) in each of the three Cases 1, 2

and 3. Thus,
(
tπ(u),π(v) ◦ π

)
(k) = (π ◦ tu,v) (k) always holds.

Forget now that we fixed k. We thus have shown that
(
tπ(u),π(v) ◦ π

)
(k) = (π ◦ tu,v) (k)

for each k ∈ [n]. In other words, tπ(u),π(v) ◦ π = π ◦ tu,v. Thus, (6) is proven.]

Recall that (i1, i2, . . . , in) ∈ [1]× [2]× · · · × [n]. Thus,

ij ∈ [j] for each j ∈ [n] . (7)

The definition of σ0 shows that

σ0 = t1,i1 ◦ t2,i2 ◦ · · · ◦ t0,i0 = (composition of 0 permutations) = id .

The definition of σn shows that

σn = t1,i1 ◦ t2,i2 ◦ · · · ◦ tn,in = σ.

(a) Let k ∈ [n]. Then, from (7), we conclude that each j ∈ [k] satisfies ij ∈ [j] ⊆ [k]
(since j ≤ k). Hence, the k numbers i1, i2, . . . , ik all belong to [k]. The same holds for the
k numbers 1, 2, . . . , k. Thus, the k permutations t1,i1 , t2,i2 , . . . , tk,ik all preserve the set [k]
3. Hence, their composition t1,i1 ◦ t2,i2 ◦ · · · ◦ tk,ik preserves the set [k] as well4. In view of

3We say that a map τ : [n]→ [n] preserves a subset S of [n] if and only if it satisfies τ (S) ⊆ S. This does
not mean that τ (s) = s for each s ∈ S; it only means that τ sends each element of S to a (possibly
different) element of S.

4Here, we are using the following fact: If S is a subset of [n], and if α1, α2, . . . , αk are k maps from [n] to
[n] that all preserve the set S, then the composition α1 ◦α2 ◦ · · · ◦αk of these k maps must preserve the
set S as well. (This is easy to prove by induction on k.)
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σk = t1,i1 ◦ t2,i2 ◦ · · · ◦ tk,ik , this rewrites as follows: The map σk preserves the set [k]. In other
words, σk ([k]) ⊆ [k]. Now, k ∈ [k], so that σk (k) ∈ σk ([k]) ⊆ [k]. Hence, mk = σk (k) ∈ [k].
This solves part (a) of the exercise.

(b) Let k ∈ [n]. Then, from (7), we conclude that each j ∈ [k − 1] satisfies ij ∈
[j] ⊆ [k − 1] (since j ≤ k − 1). Hence, the k − 1 numbers i1, i2, . . . , ik−1 all belong to
[k − 1]. The same holds for the k− 1 numbers 1, 2, . . . , k− 1. Thus, the k− 1 permutations
t1,i1 , t2,i2 , . . . , tk−1,ik−1

all leave each of the numbers k, k + 1, . . . , n unchanged. Hence, their
composition t1,i1 ◦ t2,i2 ◦ · · · ◦ tk−1,ik−1

leaves each of the numbers k, k + 1, . . . , n unchanged.
In particular, it thus leaves the number k unchanged. In other words,(

t1,i1 ◦ t2,i2 ◦ · · · ◦ tk−1,ik−1

)
(k) = k.

The definition of σk yields

σk = t1,i1 ◦ t2,i2 ◦ · · · ◦ tk,ik =
(
t1,i1 ◦ t2,i2 ◦ · · · ◦ tk−1,ik−1

)
◦ tk,ik .

Hence,

σk (ik) =
((
t1,i1 ◦ t2,i2 ◦ · · · ◦ tk−1,ik−1

)
◦ tk,ik

)
(ik) =

(
t1,i1 ◦ t2,i2 ◦ · · · ◦ tk−1,ik−1

)tk,ik (ik)︸ ︷︷ ︸
=k


=
(
t1,i1 ◦ t2,i2 ◦ · · · ◦ tk−1,ik−1

)
(k) = k.

This solves part (b) of the exercise.

(c) We shall show that

σ−1p = t1,m1 ◦ t2,m2 ◦ · · · ◦ tp,mp for each p ∈ {0, 1, . . . , n} . (8)

[Proof of (8): We shall prove (8) by induction on p:
Induction base: In the case of p = 0, the equality (8) holds, since σ0 is defined as an

empty composition whereas the right hand side of (8) also is an empty composition in this
case. This completes the induction base.

Induction step: Let k ∈ [n]. Assume that (8) holds for p = k − 1. We must prove that
(8) holds for p = k.

We have assumed that (8) holds for p = k − 1. That is, we have

σ−1k−1 = t1,m1 ◦ t2,m2 ◦ · · · ◦ tk−1,mk−1
.

Part (b) of the exercise yields σk (ik) = k, whereas the definition of mk yields σk (k) =
mk. But (6) (applied to π = σk, u = ik and v = k) yields

tσk(ik),σk(k) ◦ σk = σk ◦ tik,k.

In view of σk (ik) = k and σk (k) = mk, this rewrites as

tk,mk ◦ σk = σk ◦ tik,k︸︷︷︸
=tk,ik

= σk ◦ tk,ik . (9)

We have σk−1 = t1,i1 ◦ t2,i2 ◦ · · · ◦ tk−1,ik−1
(by the definition of σk−1). Now, the definition

of σk yields

σk = t1,i1 ◦ t2,i2 ◦ · · · ◦ tk,ik =
(
t1,i1 ◦ t2,i2 ◦ · · · ◦ tk−1,ik−1

)︸ ︷︷ ︸
=σk−1

◦tk,ik = σk−1 ◦ tk,ik . (10)
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Solving this equation for σk−1, we obtain

σk−1 = σk ◦ t−1k,ik︸︷︷︸
=tk,ik

= σk ◦ tk,ik = tk,mk ◦ σk (by (9)) . (11)

Solving this equation for σk, we find

σk = t−1k,mk︸︷︷︸
=tk,mk

◦σk−1 = tk,mk ◦ σk−1.

Hence,

σ−1k = (tk,mk ◦ σk−1)
−1 = σ−1k−1︸︷︷︸

=t1,m1◦t2,m2◦···◦tk−1,mk−1

◦ t−1k,mk︸︷︷︸
=tk,mk

=
(
t1,m1 ◦ t2,m2 ◦ · · · ◦ tk−1,mk−1

)
◦ tk,mk = t1,m1 ◦ t2,m2 ◦ · · · ◦ tk,mk .

In other words, (8) holds for p = k. This completes the induction step. Thus, (8) is proven
by induction.]

Applying (8) to p = n, we obtain σ−1n = t1,m1 ◦ t2,m2 ◦ · · · ◦ tn,mn . In view of σn = σ, this
rewrites as σ−1 = t1,m1 ◦ t2,m2 ◦ · · · ◦ tn,mn . This solves part (c) of the exercise.

(d) For each permutation τ ∈ Sn, we define a number z (τ) by

z (τ) =
n∑
k=1

xkyτ(k).

We shall show that

z (σp−1)− z (σp) =
(
xip − xp

) (
ymp − yp

)
for each p ∈ [n] . (12)

[Proof of (12): Let p ∈ [n]. Applying (10) to k = p, we obtain σp = σp−1 ◦ tp,ip . Hence,
if p = ip, then (12) holds5. Thus, for the rest of this proof, we WLOG assume that p 6= ip.
Hence, tp,ip is an actual transposition (not the identity map).

From σp = σp−1 ◦ tp,ip , we obtain

σp (p) =
(
σp−1 ◦ tp,ip

)
(p) = σp−1

tp,ip (p)︸ ︷︷ ︸
=ip

 = σp−1 (ip) ,

so that
σp−1 (ip) = σp (p) = mp (13)

(since the definition of mp yields mp = σp (p)).
From σp = σp−1 ◦ tp,ip , we also obtain

σp (ip) =
(
σp−1 ◦ tp,ip

)
(ip) = σp−1

tp,ip (ip)︸ ︷︷ ︸
=p

 = σp−1 (p) ,

5Proof. Assume that p = ip. Thus, ip = p, so that xip − xp = xp − xp = 0. Hence, the right hand side of
(12) equals 0. Also, σp = σp−1 ◦ tp,ip︸︷︷︸

=id
(since p=ip)

= σp−1, so that z (σp−1)− z (σp) = z (σp−1)− z (σp−1) = 0.

Thus, the left hand side of (12) equals 0 as well. Hence, the equality (12) holds (since both its right
hand side and its left hand side equal 0).
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so that
σp−1 (p) = σp (ip) = p (14)

(by part (b) of the exercise, applied to k = p).
Every k ∈ [n] satisfying k 6= p and k 6= ip satisfies

σp−1 (k) = σp (k) (15)

6. Now, the definition of z (σp−1) yields

z (σp−1) =
n∑
k=1

xkyσp−1(k) = xp yσp−1(p)︸ ︷︷ ︸
=yp

(by (14))

+xip yσp−1(ip)︸ ︷︷ ︸
=ymp

(by (13))

+
∑
k∈[n];

k 6=p and k 6=ip

xk yσp−1(k)︸ ︷︷ ︸
=yσp(k)
(by (15)) here, we have split the addends for k = p and

for k = ip from the sum (and these are
two distinct addends, since p 6= ip)


= xpyp + xipymp +

∑
k∈[n];

k 6=p and k 6=ip

xkyσp(k).

On the other hand, the definition of z (σp) yields

z (σp) =
n∑
k=1

xkyσp(k) = xp yσp(p)︸ ︷︷ ︸
=ymp

(since σp(p)=mp)

+xip yσp(ip)︸ ︷︷ ︸
=yp

(since σp(ip)=p)

+
∑
k∈[n];

k 6=p and k 6=ip

xkyσp(k)

 here, we have split the addends for k = p and
for k = ip from the sum (and these are
two distinct addends, since p 6= ip)


= xpymp + xipyp +

∑
k∈[n];

k 6=p and k 6=ip

xkyσp(k).

Subtracting this equality from the preceding equality, we obtain

z (σp−1)− z (σp)

=

xpyp + xipymp +
∑
k∈[n];

k 6=p and k 6=ip

xkyσp(k)

−
xpymp + xipyp +

∑
k∈[n];

k 6=p and k 6=ip

xkyσp(k)


= xpyp + xipymp − xpymp − xipyp =

(
xip − xp

) (
ymp − yp

)
.

This proves (12).]

6Proof: Let k ∈ [n] be such that k 6= p and k 6= ip. Thus, tp,ip (k) = k. But σp = σp−1 ◦ tp,ip ; hence,

σp (k) =
(
σp−1 ◦ tp,ip

)
(k) = σp−1

tp,ip (k)︸ ︷︷ ︸
=k

 = σp−1 (k), so that σp−1 (k) = σp (k), qed.
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Now, the telescope principle yields

n∑
p=1

(z (σp−1)− z (σp)) = z

 σ0︸︷︷︸
=id

− z
 σn︸︷︷︸

=σ

 = z (id)︸ ︷︷ ︸
=

n∑
k=1

xkyid(k)

(by the definition of z(id))

− z (σ)︸︷︷︸
=

n∑
k=1

xkyσ(k)

(by the definition of z(σ))

=
n∑
k=1

xk yid(k)︸︷︷︸
=yk

−
n∑
k=1

xkyσ(k) =
n∑
k=1

xkyk −
n∑
k=1

xkyσ(k).

Hence,

n∑
k=1

xkyk −
n∑
k=1

xkyσ(k)

=
n∑
p=1

(z (σp−1)− z (σp))︸ ︷︷ ︸
=(xip−xp)(ymp−yp)

(by (12))

=
n∑
p=1

(
xip − xp

) (
ymp − yp

)
=

n∑
k=1

(xik − xk) (ymk − yk)

(here, we have renamed the summation index p as k). This solves part (d) of the exercise.

(e) Fix k ∈ [n]. Then, ik ∈ [k] (by (7)), so that ik ≤ k and therefore xik ≥ xk (since
x1 ≥ x2 ≥ · · · ≥ xn). Hence, xik − xk ≥ 0.

Also, mk ∈ [k] (by part (a) of the exercise), so that mk ≤ k and thus ymk ≥ yk (since
y1 ≥ y2 ≥ · · · ≥ yn). Hence, ymk − yk ≥ 0. Now,

(xik − xk)︸ ︷︷ ︸
≥0

(ymk − yk)︸ ︷︷ ︸
≥0

≥ 0. (16)

Now, forget that we fixed k. We thus have proven (16) for each k ∈ [n]. Now, part (d)
of the exercise yields

n∑
k=1

xkyk −
n∑
k=1

xkyσ(k) =
n∑
k=1

(xik − xk) (ymk − yk)︸ ︷︷ ︸
≥0

(by (16))

≥ 0.

In other words,
n∑
k=1

xkyk ≥
n∑
k=1

xkyσ(k).

This solves part (e) of the exercise.

6 Exercise 6

6.1 Problem

Prove the following:
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(a) If m ∈ N and n ∈ N are such that m < n, then

n∑
k=0

(−1)k
(
n

k

)
(n− k)m = 0.

(b) If n ∈ N and r ∈ [n− 1], then

n∑
k=0

(−1)k
(
2n

k

)
(n− k)2r = 0.

6.2 Solution sketch

(a) First solution to part (a): Let m ∈ N and n ∈ N be such that m < n. We have
|[m]| = m < n = |[n]|. Thus, there are no surjections from [m] to [n] (by the Pigeonhole
Principle for Surjections). Recall that sur (m,n) denotes the number of all surjections from
[m] to [n]. Thus, sur (m,n) = 0 (since there are no surjections from [m] to [n]).

But Theorem 2.28 from class (2018-10-01) shows that

sur (m,n) =
n∑
i=0

(−1)i
(
n

i

)
(n− i)m =

n∑
k=0

(−1)k
(
n

k

)
(n− k)m

(here, we have renamed the summation index i as k). Comparing this with sur (m,n) = 0,

we obtain
n∑
k=0

(−1)k
(
n

k

)
(n− k)m = 0. This solves part (a) of the exercise.

Second solution to part (a): Let m ∈ N and n ∈ N be such that m < n. Exercise 6 (b)
on homework set #3 yields that if A1, A2, . . . , An are n numbers, then

∑
I⊆[n]

(−1)n−|I|
(∑

i∈I

Ai

)m

= 0.

Applying this to Ai = 1, we obtain

∑
I⊆[n]

(−1)n−|I|
(∑

i∈I

1

)m

= 0.
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Thus,

0 =
∑
I⊆[n]

(−1)n−|I|


∑
i∈I

1︸ ︷︷ ︸
=|I|·1=|I|


m

=
∑
I⊆[n]︸︷︷︸

=
n∑
i=0

∑
I⊆[n];
|I|=i

(−1)n−|I| |I|m

=
n∑
i=0

∑
I⊆[n];
|I|=i

(−1)n−|I| |I|m︸ ︷︷ ︸
=(−1)n−iim
(since |I|=i)

=
n∑
i=0

∑
I⊆[n];
|I|=i

(−1)n−i im

︸ ︷︷ ︸
=(the number of all I⊆[n] satisfying |I|=i)·(−1)n−iim

=
n∑
i=0

(the number of all I ⊆ [n] satisfying |I| = i)︸ ︷︷ ︸
=(the number of all i-element subsets of [n])

=

(
n

i

) · (−1)n−i im

=
n∑
i=0

(
n

i

)
· (−1)n−i im =

n∑
i=0

(−1)n−i
(
n

i

)
im =

n∑
k=0

(−1)k
(

n

n− k

)
︸ ︷︷ ︸
=

(
n

k

)
(by the symmetry
of Pascal’s triangle)

(n− k)m

(here, we have substituted n− k for i in the sum)

=
n∑
k=0

(−1)k
(
n

k

)
(n− k)m .

This solves part (a) of the exercise again.

Third solution to part (a): Part (a) of the exercise is a particular case of Theorem 6.1
further below (applied to a = m, b = n and c = n).

(b) We need a generalization of part (a) of the exercise:

Theorem 6.1. Let a ∈ N, b ∈ Q and c ∈ N be such that c > a. Then,

c∑
k=0

(−1)k
(
c

k

)
(b− k)a = 0.

For the proof of Theorem 6.1, see [Grinbe18, Theorem 0.2].
Let n ∈ N and r ∈ [n− 1]. We have r ∈ [n− 1], thus r ≤ n − 1 and therefore

2r ≤ 2 (n− 1) < 2n. Thus, 2n > 2r. Hence, Theorem 6.1 (applied to a = 2r, b = n and
c = 2n) yields

2n∑
k=0

(−1)k
(
2n

k

)
(n− k)2r = 0.
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Thus,

0 =
2n∑
k=0

(−1)k
(
2n

k

)
(n− k)2r

=
n∑
k=0

(−1)k
(
2n

k

)
(n− k)2r +

2n∑
k=n+1

(−1)k
(
2n

k

)
(n− k)2r (17)

(since 0 ≤ n ≤ 2n). But
2n∑

k=n+1

(−1)k
(
2n

k

)
(n− k)2r

=
n−1∑
k=0

(−1)2n−k︸ ︷︷ ︸
=(−1)k

(
2n

2n− k

)
︸ ︷︷ ︸
=

(
2n

k

)
(by the symmetry
of Pascal’s triangle)

n− (2n− k)︸ ︷︷ ︸
=−(n−k)


2r

(here, we have substituted 2n− k for k in the sum)

=
n−1∑
k=0

(−1)k
(
2n

k

)
(− (n− k))2r︸ ︷︷ ︸

=(n−k)2r
(since 2r is even)

=
n−1∑
k=0

(−1)k
(
2n

k

)
(n− k)2r

=
n∑
k=0

(−1)k
(
2n

k

)
(n− k)2r − (−1)n

(
2n

n

)
(n− n)2r︸ ︷︷ ︸

=02r=0
(since r>0)(

here, we have extended the range of the sum to include a
new addend for k = n, and then subtracted that addend

)
=

n∑
k=0

(−1)k
(
2n

k

)
(n− k)2r .

Hence, (17) becomes

0 =
n∑
k=0

(−1)k
(
2n

k

)
(n− k)2r +

2n∑
k=n+1

(−1)k
(
2n

k

)
(n− k)2r︸ ︷︷ ︸

=
n∑
k=0

(−1)k
(
2n

k

)
(n−k)2r

=
n∑
k=0

(−1)k
(
2n

k

)
(n− k)2r +

n∑
k=0

(−1)k
(
2n

k

)
(n− k)2r = 2

n∑
k=0

(−1)k
(
2n

k

)
(n− k)2r .

Dividing this equality by 2, we find 0 =
n∑
k=0

(−1)k
(
2n

k

)
(n− k)2r. This solves part (b) of

the exercise.

6.3 Remark

I have learnt part (b) of the exercise from MathOverflow question #312839, which also asks
if the sum is 6= 0 when 2r is replaced by an odd integer between 1 and 2n− 1.
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7 Exercise 7

7.1 Problem

Let n ∈ N and d ∈ N. An n-tuple (x1, x2, . . . , xn) ∈ [d]n is said to be all-even if each element
of [d] occurs an even number of times in this n-tuple (i.e., if for each k ∈ [d], the number of
all i ∈ [n] satisfying xi = k is even). For example, the 4-tuple (1, 4, 4, 1) and the 6-tuples
(1, 3, 3, 5, 1, 5) and (2, 4, 2, 4, 3, 3) are all-even, while the 4-tuples (1, 2, 2, 4) and (2, 4, 6, 4)
are not.

Prove that the number of all all-even n-tuples (x1, x2, . . . , xn) ∈ [d]n is

1

2d

d∑
k=0

(
d

k

)
(d− 2k)n .

[Hint: Compute the sum
∑

(e1,e2,...,ed)∈{−1,1}d
(e1 + e2 + · · ·+ ed)

n in two ways. One way

is to split it according to the number of i ∈ [d] satisfying ei = −1; this is a number
k ∈ {0, 1, . . . , d}. Another way is by using the product rule:

(e1 + e2 + · · ·+ ed)
n =

∑
(x1,x2,...,xn)∈[d]n

ex1ex2 · · · exn

and then simplifying each sum
∑

(e1,e2,...,ed)∈{−1,1}d
ex1ex2 · · · exn using a form of destructive

interference. This is not unlike the number of 1-even n-tuples, which we computed at the
end of the 2018-10-10 class.]

7.2 Solution sketch

Recall the product rule (which we have already used when solving Exercise 6 on homework
set #3):

Proposition 7.1 (Product rule). Let m ∈ N. Let I be a finite set. Let Pu,v, for all u ∈ [m]
and v ∈ I, be numbers or polynomials or square matrices of the same size. Then,(∑

i∈I

P1,i

)(∑
i∈I

P2,i

)
· · ·

(∑
i∈I

Pm,i

)
=

∑
(i1,i2,...,im)∈Im

P1,i1P2,i2 · · ·Pm,im .

Fix a d-tuple (e1, e2, . . . , ed) ∈ {−1, 1}d. We now apply Proposition 7.1 tom = n, I = [d]
and Pu,v = ev. As a result, we obtain∑

i∈[d]

ei

∑
i∈[d]

ei

 · · ·
∑
i∈[d]

ei


︸ ︷︷ ︸

n times

=
∑

(i1,i2,...,in)∈[d]n
ei1ei2 · · · ein =

∑
(x1,x2,...,xn)∈[d]n

ex1ex2 · · · exn
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(here, we have renamed the summation index (i1, i2, . . . , in) as (x1, x2, . . . , xn)). Thus,

∑
(x1,x2,...,xn)∈[d]n

ex1ex2 · · · exn =

∑
i∈[d]

ei

∑
i∈[d]

ei

 · · ·
∑
i∈[d]

ei


︸ ︷︷ ︸

n times

=


∑
i∈[d]

ei︸ ︷︷ ︸
=e1+e2+···+ed


n

= (e1 + e2 + · · ·+ ed)
n . (18)

Now, forget that we fixed (e1, e2, . . . , ed). We thus have proven the equality (18) for each
(e1, e2, . . . , ed) ∈ {−1, 1}d.

Now, ∑
(e1,e2,...,ed)∈{−1,1}d

(e1 + e2 + · · ·+ ed)
n︸ ︷︷ ︸

=
∑

(x1,x2,...,xn)∈[d]n
ex1ex2 ···exn

(by (18))

=
∑

(e1,e2,...,ed)∈{−1,1}d

∑
(x1,x2,...,xn)∈[d]n︸ ︷︷ ︸

=
∑

(x1,x2,...,xn)∈[d]n

∑
(e1,e2,...,ed)∈{−1,1}d

ex1ex2 · · · exn

=
∑

(x1,x2,...,xn)∈[d]n

∑
(e1,e2,...,ed)∈{−1,1}d

ex1ex2 · · · exn . (19)

We shall now simplify the inner sum on the right hand side of this equality. Indeed, we
claim the following:

Claim 1: Let (x1, x2, . . . , xn) ∈ [d]n.

(a) If the n-tuple (x1, x2, . . . , xn) is not all-even, then∑
(e1,e2,...,ed)∈{−1,1}d

ex1ex2 · · · exn = 0.

(b) If the n-tuple (x1, x2, . . . , xn) is all-even, then∑
(e1,e2,...,ed)∈{−1,1}d

ex1ex2 · · · exn = 2d.

[Proof of Claim 1: (a) Assume that the n-tuple (x1, x2, . . . , xn) is not all-even. Thus, it
is not true that for each k ∈ [d], the number of all i ∈ [n] satisfying xi = k is even (by the
definition of “all-even”). In other words, there exists some k ∈ [d] such that the number of
all i ∈ [n] satisfying xi = k is odd. Consider this k.

The number∑
i∈[n]

[xi = k] =
∑
i∈[n];
xi=k

[xi = k]︸ ︷︷ ︸
=1

(since xi=k)

+
∑
i∈[n];
xi 6=k

[xi = k]︸ ︷︷ ︸
=0

(since xi 6=k)

=
∑
i∈[n];
xi=k

1 +
∑
i∈[n];
xi 6=k

0

︸ ︷︷ ︸
=0

=
∑
i∈[n];
xi=k

1 = (the number of all i ∈ [n] satisfying xi = k) · 1

= (the number of all i ∈ [n] satisfying xi = k)

Darij Grinberg, 00000000 19 dgrinber@umn.edu



Solutions to homework set #4 page 20 of 24

is odd (by the definition of k). Now,

(−1)[x1=k] (−1)[x2=k] · · · (−1)[xn=k] =
∏
i∈[n]

(−1)[xi=k] = (−1)
∑
i∈[n]

[xi=k]

= −1

(since the number
∑
i∈[n]

[xi = k] is odd).

Now, define the two subsets

N =
{
(e1, e2, . . . , ed) ∈ {−1, 1}d | ek = −1

}
and

P =
{
(e1, e2, . . . , ed) ∈ {−1, 1}d | ek = 1

}
of the set {−1, 1}d. Clearly, each element of {−1, 1}d belongs to exactly one of these two
subsets N and P (because for each (e1, e2, . . . , ed) ∈ {−1, 1}d, we have either ek = −1 or
ek = 1 but not both).

Clearly, the map

N → P, (e1, e2, . . . , ed) 7→ (e1, e2, . . . , ek−1,−ek, ek+1, ek+2, . . . , ed)

(which replaces the k-th entry of a d-tuple by its negative, while leaving all other entries
unchanged) is well-defined and bijective (indeed, its inverse map is defined by the same
rule). We can rewrite this map (using the Iverson bracket notation) as the map

N → P, (e1, e2, . . . , ed) 7→
(
(−1)[1=k] e1, (−1)[2=k] e2, . . . , (−1)[d=k] ed

)
(because each (e1, e2, . . . , ed) ∈ N satisfies(

(−1)[1=k] e1, (−1)[2=k] e2, . . . , (−1)[d=k] ed
)
= (e1, e2, . . . , ek−1,−ek, ek+1, ek+2, . . . , ed)

7). Hence, the map

N → P, (e1, e2, . . . , ed) 7→
(
(−1)[1=k] e1, (−1)[2=k] e2, . . . , (−1)[d=k] ed

)
is bijective, i.e., is a bijection from N to P .

7Proof. Let (e1, e2, . . . , ed) ∈ N . Then, each i ∈ [d] satisfying i 6= k satisfies [i = k] = 0 and therefore
(−1)[i=k]

ei = (−1)0︸ ︷︷ ︸
=1

ei = ei. Hence, the d-tuple
(
(−1)[1=k]

e1, (−1)[2=k]
e2, . . . , (−1)[d=k]

ed

)
differs from

the d-tuple (e1, e2, . . . , ed) only in its k-th entry. As for its k-th entry, it is (−1)[k=k]︸ ︷︷ ︸
=(−1)1=−1

ek = −ek. Thus,

this d-tuple
(
(−1)[1=k]

e1, (−1)[2=k]
e2, . . . , (−1)[d=k]

ed

)
is obtained from the d-tuple (e1, e2, . . . , ed) by

replacing its k-th entry by −ek. In other words,(
(−1)[1=k]

e1, (−1)[2=k]
e2, . . . , (−1)[d=k]

ed

)
= (e1, e2, . . . , ek−1,−ek, ek+1, ek+2, . . . , ed) .
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Recall that each element of {−1, 1}d belongs to exactly one of the two subsets N and
P . Hence, we can split the sum

∑
(e1,e2,...,ed)∈{−1,1}d

ex1ex2 · · · exn as follows:

∑
(e1,e2,...,ed)∈{−1,1}d

ex1ex2 · · · exn

=
∑

(e1,e2,...,ed)∈N

ex1ex2 · · · exn +
∑

(e1,e2,...,ed)∈P

ex1ex2 · · · exn

=
∑

(e1,e2,...,ed)∈N

ex1ex2 · · · exn +
∑

(e1,e2,...,ed)∈N

(
(−1)[x1=k] ex1

)(
(−1)[x2=k] ex2

)
· · ·
(
(−1)[xn=k] exn

)
︸ ︷︷ ︸

=((−1)[x1=k](−1)[x2=k]···(−1)[xn=k])(ex1ex2 ···exn)
here, we have substituted

(
(−1)[1=k] e1, (−1)[2=k] e2, . . . , (−1)[d=k] ed

)
for (e1, e2, . . . , ed) in the second sum, since

the map N → P, (e1, e2, . . . , ed) 7→
(
(−1)[1=k] e1, (−1)[2=k] e2, . . . , (−1)[d=k] ed

)
is a bijection


=

∑
(e1,e2,...,ed)∈N

ex1ex2 · · · exn +
∑

(e1,e2,...,ed)∈N

(
(−1)[x1=k] (−1)[x2=k] · · · (−1)[xn=k]

)
︸ ︷︷ ︸

=−1

(ex1ex2 · · · exn)

=
∑

(e1,e2,...,ed)∈N

ex1ex2 · · · exn −
∑

(e1,e2,...,ed)∈N

ex1ex2 · · · exn = 0.

This proves Claim 1 (a).
(b) Assume that the n-tuple (x1, x2, . . . , xn) is all-even. Thus, for each k ∈ [d], the

number of all i ∈ [n] satisfying xi = k is even (by the definition of “all-even”).
Let k ∈ [d]. As we have just seen, the number of all i ∈ [n] satisfying xi = k is even. In

other words, there exists some h ∈ Z such that

(the number of all i ∈ [n] satisfying xi = k) = 2h. (20)

Consider this h.
Now, let (e1, e2, . . . , ed) ∈ {−1, 1}d be arbitrary. Thus, ek ∈ {−1, 1}, so that e2k = 1.

Now, ∏
i∈[n];
xi=k

exi︸︷︷︸
=ek

(since xi=k)

=
∏
i∈[n];
xi=k

ek = e
(the number of all i∈[n] satisfying xi=k)
k = e2hk (by (20))

=

 e2k︸︷︷︸
=1

h

= 1h = 1. (21)

Now, forget that we fixed (e1, e2, . . . , ed) and k. We thus have proven (21) for each
(e1, e2, . . . , ed) ∈ {−1, 1}d and k ∈ [d].

Now, each (e1, e2, . . . , ed) ∈ {−1, 1}d satisfies

ex1ex2 · · · exn =
∏
i∈[n]︸︷︷︸

=
∏
k∈[d]

∏
i∈[n];
xi=k

exi =
∏
k∈[d]

∏
i∈[n];
xi=k

exi

︸ ︷︷ ︸
=1

(by (21))

=
∏
k∈[d]

1 = 1.
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Hence, ∑
(e1,e2,...,ed)∈{−1,1}d

ex1ex2 · · · exn︸ ︷︷ ︸
=1

=
∑

(e1,e2,...,ed)∈{−1,1}d
1 =

∣∣∣{−1, 1}d∣∣∣ · 1
=
∣∣∣{−1, 1}d∣∣∣ = |{−1, 1}|d = 2d.

This proves Claim 1 (b).]
Now, (19) becomes∑

(e1,e2,...,ed)∈{−1,1}d
(e1 + e2 + · · ·+ ed)

n

=
∑

(x1,x2,...,xn)∈[d]n

∑
(e1,e2,...,ed)∈{−1,1}d

ex1ex2 · · · exn

=
∑

(x1,x2,...,xn)∈[d]n;
(x1,x2,...,xn) is all-even

∑
(e1,e2,...,ed)∈{−1,1}d

ex1ex2 · · · exn︸ ︷︷ ︸
=2d

(by Claim 1 (b))

+
∑

(x1,x2,...,xn)∈[d]n;
(x1,x2,...,xn) is not all-even

∑
(e1,e2,...,ed)∈{−1,1}d

ex1ex2 · · · exn︸ ︷︷ ︸
=0

(by Claim 1 (a))

=
∑

(x1,x2,...,xn)∈[d]n;
(x1,x2,...,xn) is all-even

2d +
∑

(x1,x2,...,xn)∈[d]n;
(x1,x2,...,xn) is not all-even

0

︸ ︷︷ ︸
=0

=
∑

(x1,x2,...,xn)∈[d]n;
(x1,x2,...,xn) is all-even

2d

= (the number of all all-even (x1, x2, . . . , xn) ∈ [d]n) · 2d. (22)

For each d-tuple (e1, e2, . . . , ed) ∈ {−1, 1}d, we have

d− (e1 + e2 + · · ·+ ed) = d︸︷︷︸
=

∑
i∈[d]

1

−
∑
i∈[d]

ei =
∑
i∈[d]

1−
∑
i∈[d]

ei =
∑
i∈[d]

(1− ei)

=
∑
i∈[d];
ei=−1

1− ei︸︷︷︸
=−1

+
∑
i∈[d];
ei=1

1− ei︸︷︷︸
=1


(

since each i ∈ [d] satisfies either ei = −1 or ei = 1

(but not both) (because (e1, e2, . . . , ed) ∈ {−1, 1}d )

)
=
∑
i∈[d];
ei=−1

(1− (−1))︸ ︷︷ ︸
=2

+
∑
i∈[d];
ei=1

(1− 1)︸ ︷︷ ︸
=0

=
∑
i∈[d];
ei=−1

2 +
∑
i∈[d];
ei=1

0

︸ ︷︷ ︸
=0

=
∑
i∈[d];
ei=−1

2 = |{i ∈ [d] | ei = −1}| · 2 = 2 · |{i ∈ [d] | ei = −1}|

and thus
e1 + e2 + · · ·+ ed = d− 2 · |{i ∈ [d] | ei = −1}| .
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Hence,

∑
(e1,e2,...,ed)∈{−1,1}d

e1 + e2 + · · ·+ ed︸ ︷︷ ︸
=d−2·|{i∈[d] | ei=−1}|

n

=
∑

(e1,e2,...,ed)∈{−1,1}d
(d− 2 · |{i ∈ [d] | ei = −1}|)n . (23)

On the other hand, a d-tuple (e1, e2, . . . , ed) ∈ {−1, 1}d is uniquely determined by the
set {i ∈ [d] | ei = −1} of all positions at which it contains a −1 (and conversely, for every
subset S of [d], there exists such a d-tuple whose set {i ∈ [d] | ei = −1} is S). Thus, the
map

{−1, 1}d → {S ⊆ [d]} , (e1, e2, . . . , ed) 7→ {i ∈ [d] | ei = −1}

is a bijection. Hence, we can substitute S for {i ∈ [d] | ei = −1} in the sum on the right
hand side of (23). We thus obtain∑

(e1,e2,...,ed)∈{−1,1}d
(d− 2 · |{i ∈ [d] | ei = −1}|)n

=
∑
S⊆[d]︸︷︷︸

=
d∑
k=0

∑
S⊆[d];
|S|=k

(d− 2 · |S|)n =
d∑

k=0

∑
S⊆[d];
|S|=k

d− 2 · |S|︸︷︷︸
=k

n

=
d∑

k=0

∑
S⊆[d];
|S|=k

(d− 2k)n

︸ ︷︷ ︸
=(the number of all S⊆[d] satisfying |S|=k)·(d−2k)n

=
d∑

k=0

(the number of all S ⊆ [d] satisfying |S| = k)︸ ︷︷ ︸
=(the number of all k-element subsets of [d])=

(
d

k

) · (d− 2k)n

=
d∑

k=0

(
d

k

)
(d− 2k)n .

Hence, (23) becomes∑
(e1,e2,...,ed)∈{−1,1}d

(e1 + e2 + · · ·+ ed)
n

=
∑

(e1,e2,...,ed)∈{−1,1}d
(d− 2 · |{i ∈ [d] | ei = −1}|)n =

d∑
k=0

(
d

k

)
(d− 2k)n .

Comparing this with (22), we obtain

(the number of all all-even (x1, x2, . . . , xn) ∈ [d]n) · 2d =
d∑

k=0

(
d

k

)
(d− 2k)n .
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Solving this for (the number of all all-even (x1, x2, . . . , xn) ∈ [d]n), we obtain

(the number of all all-even (x1, x2, . . . , xn) ∈ [d]n) =
1

2d

d∑
k=0

(
d

k

)
(d− 2k)n .

This solves the exercise.
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