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Exercise 1

Problem

Let n ∈ N and σ ∈ Sn. Let i and j be two elements of [n] such that i < j and σ (i) > σ (j).
Let Q be the set of all k ∈ {i+ 1, i+ 2, . . . , j − 1} satisfying σ (i) > σ (k) > σ (j). Prove
that

` (σ ◦ ti,j) = ` (σ)− 2 |Q| − 1.

Remark

This exercise implies that, in particular, ` (σ ◦ ti,j) < ` (σ); this answers the question on
page 213 of the notes from class (2018-10-22).

Solution

For fixed i, j ∈ [n] such that i < j, the inversions of π ∈ Sn can be divided into ten disjoint
categories (whose sizes sum to `(π)):

• A(π) = {(k, y) ∈ [n]2 : k < y and {k, y} ∩ {i, j} = ∅}.

• B(π) = {(k, i) ∈ [n]2 : k < i and π(k) > π(i)}.

• C(π) = {(i, k) ∈ [n]2 : i < k < j and π(i) > π(k) > π(j)}.
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• D(π) = {(i, k) ∈ [n]2 : i < k < j and π(i) > π(k) and π(j) > π(k)}.

• E(π) = {(i, k) ∈ [n]2 : k > j and π(i) > π(k)}.

• F (π) = {(k, j) ∈ [n]2 : k < i and π(k) > π(j)}.

• G(π) = {(k, j) ∈ [n]2 : i < k < j and π(k) > π(i) and π(k) > π(j)}.

• H(π) = {(k, j) ∈ [n]2 : i < k < j and π(i) > π(k) > π(j)}.

• I(π) = {(j, k) ∈ [n]2 : k > j and π(j) > π(k)}.

• J(π) = {(i, j) : π(i) > π(j)}.

Note that (σ ◦ ti,j)(i) = σ(j) and (σ ◦ ti,j)(j) = σ(i). Therefore, since i < j and σ(i) > σ(j),
we see that the inversions of σ ◦ ti,j can be divided into the following disjoint categories
(whose sizes sum to `(π ◦ ti,j)):

• A(σ ◦ ti,j) = A(σ).

• |B(σ ◦ ti,j)| = |F (σ)| (via the bijection B(σ◦ti,j)→ F (σ) sending each (k, i) to (k, j));
|F (σ ◦ ti,j)| = |B(σ)| (via the bijection B(σ◦ti,j)→ F (σ) sending each (k, j) to (k, i)).

• D(σ ◦ ti,j) = D(σ).

• |E(σ ◦ ti,j)| = |I(σ)| (via the bijection E(σ ◦ ti,j)→ I(σ) sending each (i, k) to (j, k));
|I(σ ◦ ti,j)| = |E(σ)| (via the bijection I(σ ◦ ti,j)→ E(σ) sending each (j, k) to (i, k)).

• G(σ ◦ ti,j) = G(σ).

• C(σ ◦ ti,j) = H(σ ◦ ti,j) = J(σ ◦ ti,j) = ∅.

Therefore `(σ ◦ ti,j) = `(σ) − |C(σ)| − |H(σ)| − |J(σ)|. By the definitions of C, H, J , and
Q, one has that |C(σ)| = |H(σ)| = |Q| and |J(σ)| = 1. The desired equality follows.

Exercise 2

Problem

Let n ∈ N and π ∈ Sn.

(a) Prove that ∑
1≤i<j≤n;
π(i)>π(j)

(π (j)− π (i)) =
∑

1≤i<j≤n;
π(i)>π(j)

(i− j) .

(b) Prove that ∑
1≤i<j≤n;
π(i)<π(j)

(π (j)− π (i)) =
∑

1≤i<j≤n;
π(i)<π(j)

(j − i) .

[Hint: Exercise 5.23 in [Grinbe16] says something about sums of the form appearing in
part (a). (See also Nathaniel Gorski’s solution of the same exercise in Spring 2018 Math
4707 homework set #4.) You may want to use the result or the ideas.]
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Solution

The following solution was inspired by that of Nathaniel Gorski, as suggested in the hint.
For i ∈ [n], define the following subsets of [n]:

• U(i) = {j ∈ [n] : j < i and π(j) > π(i)}.

• M(i) = {j ∈ [n] : j < i and π(j) < π(i)}.

• L(i) = {j ∈ [n] : j > i and π(j) < π(i)}.

• T (i) = {j ∈ [n] : j > i and π(j) > π(i)}.

Part (a)

Note first that U(i) ∪ M(i) = {j ∈ [n] : j < i}. Because U(i) and M(i) are disjoint,
|U(i)|+ |M(i)| = |U(i) ∪M(i)| = i− 1.

Note also that M(i) ∪ L(i) = {j ∈ [n] : π(j) < π(i)}. Because π is a permutation
of [n], this union has size π(i) − 1. Because M(i) and L(i) are disjoint, |M(i)| + |L(i)| =
|M(i) ∪ L(i)| = π(i)− 1.

Subtracting the second equality from the first yields |U(i)| − |L(i)| = i − π(i). This
enables the following string of computations:

∑
1≤i<j≤n;
π(i)>π(j)

(π (j)− π (i))−
∑

1≤i<j≤n;
π(i)>π(j)

(i− j)

=
∑

1≤i<j≤n;
π(i)>π(j)

(π (j) + j)−
∑

1≤i<j≤n;
π(i)>π(j)

(π (i) + i)

=
n∑
j=1

∑
i∈U(j)

(π (j) + j)−
n∑
i=1

∑
j∈L(i)

(π (i) + i)

=
n∑
j=1

|U(j)| (π (j) + j)−
n∑
i=1

|L(i)| (π (i) + i)

=
n∑
i=1

(|U(i)| − |L(i)|) (π (i) + i)

=
n∑
i=1

(i− π (i)) (π (i) + i)

=
n∑
i=1

i2 −
n∑
i=1

(π (i))2

= (12 + 22 + · · ·+ n2)− (12 + 22 + · · ·+ n2)

= 0.

The desired equality follows.

Part (b)

Note that L(i)∪T (i) = {j ∈ [n] : j > i}. Because L(i) and T (i) are disjoint, |L(i)|+|T (i)| =
|L(i) ∪ T (i)| = n− i.
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We know from part (a) that |M(i)|+ |L(i)| = π(i)− 1. Subtracting the above equation
from this one gives |M(i)| − |T (i)| = π(i) + i− n− 1. Therefore:∑

1≤i<j≤n;
π(i)<π(j)

(π (j)− π (i))−
∑

1≤i<j≤n;
π(i)<π(j)

(j − i)

=
∑

1≤i<j≤n;
π(i)<π(j)

(π (j)− j)−
∑

1≤i<j≤n;
π(i)<π(j)

(π (i)− i)

=
n∑
j=1

∑
i∈M(j)

(π(j)− j)−
n∑
i=1

∑
j∈T (i)

(π(i)− i)

=
n∑
j=1

|M(j)|(π(j)− j)−
n∑
i=1

|T (i)|(π(i)− i)

=
n∑
i=1

(|M(i)− |T (i)|)(π(i)− i)

=
n∑
i=1

(π(i) + i− n− 1)(π(i)− i)

=
n∑
i=1

(π(i))2 −
n∑
i=1

i2 − (n− 1)

(
n∑
i=1

π(i)−
n∑
i=1

i

)
= (12 + · · ·+ n2)− (12 + · · ·+ n2)− (n− 1) ((1 + · · ·+ n)− (1 + · · ·+ n))

= 0.

The desired equality follows.

Exercise 3

Problem

Let n ∈ N. For each p ∈ Z, we let

Dn,p = {σ ∈ Sn | σ has exactly p descents} .

(Recall that a descent of a permutation σ ∈ Sn denotes an element k ∈ [n− 1] satisfying
σ (k) > σ (k + 1).)

Let p ∈ Z. Prove that |Dn,p| = |Dn,n−1−p|.

Solution

Let σ ∈ Dn,p and let H = {k ∈ [n− 1] | σ(k) > σ(k+1)} be the set of all descents of σ. For
all k ∈ H, we have (w0◦σ)(k) = n+1−σ(k) < n+1−σ(k+1) = (w0◦σ)(k+1), so k is not a
descent of w0◦σ. For all k ∈ [n−1]\H, we have (w0◦σ)(k) = n+1−σ(k) > n+1−σ(k+1) =
(w0 ◦σ)(k+1), so k is a descent of w0 ◦σ. Thus w0 ◦σ has n− 1−|H| = n− 1− p descents,
so the map f : Dn,p → Dn,n−1−p defined by f(σ) = w0 ◦ σ is well-defined.
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For any σ ∈ Dn,p, we have w0 ◦ f(σ) = w0 ◦w0 ◦ σ = σ. This implies that f is injective,
so |Dn,p| ≤ |Dn,n−1−p|.

The same chain of reasoning, applied to Dn,p from Dn,n−1−p, can be used to show that
|Dn,n−1−p| ≤ |Dn,p|. Therefore |Dn,p| = |Dn−1−p|.

Exercise 7

Problem

Let n ∈ N and d ∈ N. An n-tuple (x1, x2, . . . , xn) ∈ [d]n is said to be all-even if each element
of [d] occurs an even number of times in this n-tuple (i.e., if for each k ∈ [d], the number of
all i ∈ [n] satisfying xi = k is even). For example, the 4-tuple (1, 4, 4, 1) and the 6-tuples
(1, 3, 3, 5, 1, 5) and (2, 4, 2, 4, 3, 3) are all-even, while the 4-tuples (1, 2, 2, 4) and (2, 4, 6, 4)
are not.

Prove that the number of all all-even n-tuples (x1, x2, . . . , xn) ∈ [d]n is

1

2d

d∑
k=0

(
d

k

)
(d− 2k)n .

[Hint: Compute the sum
∑

(e1,e2,...,ed)∈{−1,1}d
(e1 + e2 + · · ·+ ed)

n in two ways. One way

is to split it according to the number of i ∈ [d] satisfying ei = −1; this is a number
k ∈ {0, 1, . . . , d}. Another way is by using the product rule:

(e1 + e2 + · · ·+ ed)
n =

∑
(x1,x2,...,xn)∈[d]n

ex1ex2 · · · exn

and then simplifying each sum
∑

(e1,e2,...,ed)∈{−1,1}d
ex1ex2 · · · exn using a form of destructive

interference. This is not unlike the number of 1-even n-tuples, which we computed at the
end of the 2018-10-10 class.]

Solution

The following solution will use the shorthand symbols ~x and ~e to represent (x1, x2, . . . , xn)
and (e1, e2, . . . , ed), respectively.

Let f : {−1, 1}d → {0, 1, . . . , d} send each d-tuple ~e to the number of i ∈ [d] such that
ei = −1. For each k ∈ Z, there are exactly

(
d
k

)
such d-tuples ~e satisfying f(~e) = k. Thus:

∑
~e∈{−1,1}d

(e1 + · · ·+ ed)
n =

d∑
k=0

∑
~e∈{−1,1}d;
f(~e)=k

(e1 + · · ·+ ed)
n

=
d∑

k=0

∑
~e∈{−1,1}d;
f(~e)=k

(k(−1) + (d− k)(1))n

=
d∑

k=0

(
d

k

)
(d− 2k)n.
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Now use the product rule to expand the left-hand sum, and flip the order of summation.∑
~e∈{−1,1}d

(e1 + · · ·+ ed)
n =

∑
~e∈{−1,1}d

∑
~x∈[d]n

ex1ex2 · · · exn

=
∑
~x∈[d]n

∑
~e∈{−1,1}d

ex1ex2 · · · exn .

Let g : [d]n × [d] → {0, 1, . . . , n} send each (~x, j) to the number of i ∈ [n] such that
xi = j. Then: ∑

~x∈[d]n

∑
~e∈{−1,1}d

ex1ex2 · · · exn =
∑
~x∈[d]n

∑
~e∈{−1,1}d

∏
j∈[d]

e
g(~x,j)
j .

For every n-tuple ~x ∈ [d]n which is not all-even, there exists h(~x) ∈ [d] such that g(~x, h(~x)) is
odd. For convenience’s sake, let ~e′ represent the (d− 1)-tuple (e1, . . . , eh(~x)−1, eh(~x)+1, . . . , ed).
Then:∑

~x∈[d]n;
~x not all-even

∑
~e∈{−1,1}d

∏
j∈[d]

e
g(~x,j)
j =

∑
~x∈[d]n;

~x not all-even

∑
eh(~x)∈{−1,1}

∑
~e′∈{−1,1}d−1

∏
j∈[d]

e
g(~x,j)
j

=
∑
~x∈[d]n;

~x not all-even

∑
eh(~x)∈{−1,1}

e
g(~x,h(~x))
h(~x)

∑
~e′∈{−1,1}d−1

∏
j∈[d]\h(~x)

e
g(~x,j)
j

=
∑
~x∈[d]n;

~x not all-even

(−1 + 1)
∑

~e′∈{−1,1}d−1

∏
j∈[d]\h(~x)

e
g(~x,j)
j

=
∑
~x∈[d]n;

~x not all-even

0

= 0.

Therefore the only n-tuples ~x which contribute to the overall sum are those which are all-
even. For these, g(~x, j) is even for all j ∈ [d], so eg(~x,j)j = 1 for all j ∈ [d]. Thus:∑

~x∈[d]n

∑
~e∈{−1,1}d

∏
j∈[d]

e
g(~x,j)
j =

∑
~x∈[d]n;
~x all-even

∑
~e∈{−1,1}d

1

=
∑
~x∈[d]n;
~x all-even

2d

= 2d · (number of all-even n-tuples).

Chaining these equalities together yields

d∑
k=0

(
d

k

)
(d− 2k)n = 2d · (number of all-even n-tuples),

and dividing by 2d gives the desired result.
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