Math 5705: Enumerative Combinatorics, Fall 2018: Homework 4

Jacob Elafandi (edited by Darij Grinberg) October 28, 2018

Exercise 1

PROBLEM

Let $n \in \mathbb{N}$ and $\sigma \in S_n$. Let i and j be two elements of [n] such that i < j and $\sigma(i) > \sigma(j)$. Let Q be the set of all $k \in \{i+1, i+2, \ldots, j-1\}$ satisfying $\sigma(i) > \sigma(k) > \sigma(j)$. Prove that

$$\ell\left(\sigma \circ t_{i,j}\right) = \ell\left(\sigma\right) - 2\left|Q\right| - 1.$$

Remark

This exercise implies that, in particular, $\ell(\sigma \circ t_{i,j}) < \ell(\sigma)$; this answers the question on page 213 of the notes from class (2018-10-22).

SOLUTION

For fixed $i, j \in [n]$ such that i < j, the inversions of $\pi \in S_n$ can be divided into ten disjoint categories (whose sizes sum to $\ell(\pi)$):

- $A(\pi) = \{(k, y) \in [n]^2 : k < y \text{ and } \{k, y\} \cap \{i, j\} = \emptyset\}.$
- $B(\pi) = \{(k, i) \in [n]^2 : k < i \text{ and } \pi(k) > \pi(i)\}.$
- $C(\pi) = \{(i, k) \in [n]^2 : i < k < j \text{ and } \pi(i) > \pi(k) > \pi(j)\}.$

- $D(\pi) = \{(i, k) \in [n]^2 : i < k < j \text{ and } \pi(i) > \pi(k) \text{ and } \pi(j) > \pi(k)\}.$
- $E(\pi) = \{(i, k) \in [n]^2 : k > j \text{ and } \pi(i) > \pi(k)\}.$
- $F(\pi) = \{(k, j) \in [n]^2 : k < i \text{ and } \pi(k) > \pi(j)\}.$
- $G(\pi) = \{(k, j) \in [n]^2 : i < k < j \text{ and } \pi(k) > \pi(i) \text{ and } \pi(k) > \pi(j)\}.$
- $H(\pi) = \{(k, j) \in [n]^2 : i < k < j \text{ and } \pi(i) > \pi(k) > \pi(j)\}.$
- $I(\pi) = \{(j, k) \in [n]^2 : k > j \text{ and } \pi(j) > \pi(k)\}.$
- $J(\pi) = \{(i, j) : \pi(i) > \pi(j)\}.$

Note that $(\sigma \circ t_{i,j})(i) = \sigma(j)$ and $(\sigma \circ t_{i,j})(j) = \sigma(i)$. Therefore, since i < j and $\sigma(i) > \sigma(j)$, we see that the inversions of $\sigma \circ t_{i,j}$ can be divided into the following disjoint categories (whose sizes sum to $\ell(\pi \circ t_{i,j})$):

- $A(\sigma \circ t_{i,j}) = A(\sigma)$.
- $|B(\sigma \circ t_{i,j})| = |F(\sigma)|$ (via the bijection $B(\sigma \circ t_{i,j}) \to F(\sigma)$ sending each (k,i) to (k,j)); $|F(\sigma \circ t_{i,j})| = |B(\sigma)|$ (via the bijection $B(\sigma \circ t_{i,j}) \to F(\sigma)$ sending each (k,j) to (k,i)).
- $D(\sigma \circ t_{i,j}) = D(\sigma)$.
- $|E(\sigma \circ t_{i,j})| = |I(\sigma)|$ (via the bijection $E(\sigma \circ t_{i,j}) \to I(\sigma)$ sending each (i,k) to (j,k)); $|I(\sigma \circ t_{i,j})| = |E(\sigma)|$ (via the bijection $I(\sigma \circ t_{i,j}) \to E(\sigma)$ sending each (j,k) to (i,k)).
- $G(\sigma \circ t_{i,j}) = G(\sigma)$.
- $C(\sigma \circ t_{i,j}) = H(\sigma \circ t_{i,j}) = J(\sigma \circ t_{i,j}) = \emptyset$

Therefore $\ell(\sigma \circ t_{i,j}) = \ell(\sigma) - |C(\sigma)| - |H(\sigma)| - |J(\sigma)|$. By the definitions of C, H, J, and Q, one has that $|C(\sigma)| = |H(\sigma)| = |Q|$ and $|J(\sigma)| = 1$. The desired equality follows.

EXERCISE 2

PROBLEM

Let $n \in \mathbb{N}$ and $\pi \in S_n$.

(a) Prove that

$$\sum_{\substack{1 \leq i < j \leq n; \\ \pi(i) > \pi(j)}} \left(\pi\left(j\right) - \pi\left(i\right)\right) = \sum_{\substack{1 \leq i < j \leq n; \\ \pi(i) > \pi(j)}} \left(i - j\right).$$

(b) Prove that

$$\sum_{\substack{1 \leq i < j \leq n; \\ \pi(i) < \pi(j)}} \left(\pi\left(j\right) - \pi\left(i\right)\right) = \sum_{\substack{1 \leq i < j \leq n; \\ \pi(i) < \pi(j)}} \left(j - i\right).$$

[Hint: Exercise 5.23 in [Grinbe16] says something about sums of the form appearing in part (a). (See also Nathaniel Gorski's solution of the same exercise in Spring 2018 Math 4707 homework set #4.) You may want to use the result or the ideas.]

SOLUTION

The following solution was inspired by that of Nathaniel Gorski, as suggested in the hint. For $i \in [n]$, define the following subsets of [n]:

- $U(i) = \{j \in [n] : j < i \text{ and } \pi(j) > \pi(i)\}.$
- $M(i) = \{j \in [n] : j < i \text{ and } \pi(j) < \pi(i)\}$
- $L(i) = \{j \in [n] : j > i \text{ and } \pi(j) < \pi(i)\}.$
- $T(i) = \{j \in [n] : j > i \text{ and } \pi(j) > \pi(i)\}.$

Note first that $U(i) \cup M(i) = \{j \in [n] : j < i\}$. Because U(i) and M(i) are disjoint, $|U(i)| + |M(i)| = |U(i) \cup M(i)| = i - 1$.

Note also that $M(i) \cup L(i) = \{j \in [n] : \pi(j) < \pi(i)\}$. Because π is a permutation of [n], this union has size $\pi(i) - 1$. Because M(i) and L(i) are disjoint, $|M(i)| + |L(i)| = |M(i) \cup L(i)| = \pi(i) - 1$.

Subtracting the second equality from the first yields $|U(i)| - |L(i)| = i - \pi(i)$. This enables the following string of computations:

$$\sum_{\substack{1 \le i < j \le n; \\ \pi(i) > \pi(j)}} (\pi(j) - \pi(i)) - \sum_{\substack{1 \le i < j \le n; \\ \pi(i) > \pi(j)}} (i - j)$$

$$= \sum_{\substack{1 \le i < j \le n; \\ \pi(i) > \pi(j)}} (\pi(j) + j) - \sum_{\substack{1 \le i < j \le n; \\ \pi(i) > \pi(j)}} (\pi(i) + i)$$

$$= \sum_{j=1}^{n} \sum_{i \in U(j)} (\pi(j) + j) - \sum_{i=1}^{n} \sum_{j \in L(i)} (\pi(i) + i)$$

$$= \sum_{j=1}^{n} |U(j)| (\pi(j) + j) - \sum_{i=1}^{n} |L(i)| (\pi(i) + i)$$

$$= \sum_{i=1}^{n} (|U(i)| - |L(i)|) (\pi(i) + i)$$

$$= \sum_{i=1}^{n} (i - \pi(i)) (\pi(i) + i)$$

$$= \sum_{i=1}^{n} i^{2} - \sum_{i=1}^{n} (\pi(i))^{2}$$

$$= (1^{2} + 2^{2} + \dots + n^{2}) - (1^{2} + 2^{2} + \dots + n^{2})$$

$$= 0$$

The desired equality follows.

Note that $L(i) \cup T(i) = \{j \in [n] : j > i\}$. Because L(i) and T(i) are disjoint, $|L(i)| + |T(i)| = |L(i) \cup T(i)| = n - i$.

We know from part (a) that $|M(i)| + |L(i)| = \pi(i) - 1$. Subtracting the above equation from this one gives $|M(i)| - |T(i)| = \pi(i) + i - n - 1$. Therefore:

$$\begin{split} &\sum_{\substack{1 \leq i < j \leq n; \\ \pi(i) < \pi(j)}} (\pi(j) - \pi(i)) - \sum_{\substack{1 \leq i < j \leq n; \\ \pi(i) < \pi(j)}} (j - i) \\ &= \sum_{\substack{1 \leq i < j \leq n; \\ \pi(i) < \pi(j)}} (\pi(j) - j) - \sum_{\substack{1 \leq i < j \leq n; \\ \pi(i) < \pi(j)}} (\pi(i) - i) \\ &= \sum_{\substack{1 \leq i < j \leq n; \\ \pi(i) < \pi(j)}} (\pi(j) - j) - \sum_{\substack{1 \leq i < j \leq n; \\ \pi(i) < \pi(j)}} (\pi(i) - i) \\ &= \sum_{j=1}^{n} |M(j)| (\pi(j) - j) - \sum_{i=1}^{n} \sum_{j \in T(i)} (\pi(i) - i) \\ &= \sum_{j=1}^{n} |M(j)| (\pi(j) - j) - \sum_{i=1}^{n} |T(i)| (\pi(i) - i) \\ &= \sum_{i=1}^{n} (|M(i) - |T(i)|) (\pi(i) - i) \\ &= \sum_{i=1}^{n} (\pi(i) + i - n - 1) (\pi(i) - i) \\ &= \sum_{i=1}^{n} (\pi(i))^{2} - \sum_{i=1}^{n} i^{2} - (n - 1) \left(\sum_{i=1}^{n} \pi(i) - \sum_{i=1}^{n} i\right) \\ &= (1^{2} + \dots + n^{2}) - (1^{2} + \dots + n^{2}) - (n - 1) ((1 + \dots + n) - (1 + \dots + n)) \\ &= 0. \end{split}$$

The desired equality follows.

EXERCISE 3

PROBLEM

Let $n \in \mathbb{N}$. For each $p \in \mathbb{Z}$, we let

$$D_{n,p} = \{ \sigma \in S_n \mid \sigma \text{ has exactly } p \text{ descents} \}.$$

(Recall that a descent of a permutation $\sigma \in S_n$ denotes an element $k \in [n-1]$ satisfying $\sigma(k) > \sigma(k+1)$.)

Let $p \in \mathbb{Z}$. Prove that $|D_{n,p}| = |D_{n,n-1-p}|$.

SOLUTION

Let $\sigma \in D_{n,p}$ and let $H = \{k \in [n-1] \mid \sigma(k) > \sigma(k+1)\}$ be the set of all descents of σ . For all $k \in H$, we have $(w_0 \circ \sigma)(k) = n+1-\sigma(k) < n+1-\sigma(k+1) = (w_0 \circ \sigma)(k+1)$, so k is not a descent of $w_0 \circ \sigma$. For all $k \in [n-1] \setminus H$, we have $(w_0 \circ \sigma)(k) = n+1-\sigma(k) > n+1-\sigma(k+1) = (w_0 \circ \sigma)(k+1)$, so k is a descent of $w_0 \circ \sigma$. Thus $w_0 \circ \sigma$ has n-1-|H| = n-1-p descents, so the map $f: D_{n,p} \to D_{n,n-1-p}$ defined by $f(\sigma) = w_0 \circ \sigma$ is well-defined.

For any $\sigma \in D_{n,p}$, we have $w_0 \circ f(\sigma) = w_0 \circ w_0 \circ \sigma = \sigma$. This implies that f is injective, so $|D_{n,p}| \leq |D_{n,n-1-p}|$.

The same chain of reasoning, applied to $D_{n,p}$ from $D_{n,n-1-p}$, can be used to show that $|D_{n,n-1-p}| \leq |D_{n,p}|$. Therefore $|D_{n,p}| = |D_{n-1-p}|$.

EXERCISE 7

PROBLEM

Let $n \in \mathbb{N}$ and $d \in \mathbb{N}$. An n-tuple $(x_1, x_2, \ldots, x_n) \in [d]^n$ is said to be *all-even* if each element of [d] occurs an even number of times in this n-tuple (i.e., if for each $k \in [d]$, the number of all $i \in [n]$ satisfying $x_i = k$ is even). For example, the 4-tuple (1, 4, 4, 1) and the 6-tuples (1, 3, 3, 5, 1, 5) and (2, 4, 2, 4, 3, 3) are all-even, while the 4-tuples (1, 2, 2, 4) and (2, 4, 6, 4) are not.

Prove that the number of all all-even *n*-tuples $(x_1, x_2, \dots, x_n) \in [d]^n$ is

$$\frac{1}{2^d} \sum_{k=0}^d \binom{d}{k} \left(d - 2k\right)^n.$$

[Hint: Compute the sum $\sum_{(e_1,e_2,\dots,e_d)\in\{-1,1\}^d} (e_1+e_2+\dots+e_d)^n$ in two ways. One way

is to split it according to the number of $i \in [d]$ satisfying $e_i = -1$; this is a number $k \in \{0, 1, ..., d\}$. Another way is by using the product rule:

$$(e_1 + e_2 + \dots + e_d)^n = \sum_{(x_1, x_2, \dots, x_n) \in [d]^n} e_{x_1} e_{x_2} \cdots e_{x_n}$$

and then simplifying each sum $\sum_{(e_1,e_2,\ldots,e_d)\in\{-1,1\}^d} e_{x_1}e_{x_2}\cdots e_{x_n}$ using a form of destructive

interference. This is not unlike the number of 1-even n-tuples, which we computed at the end of the 2018-10-10 class.]

SOLUTION

The following solution will use the shorthand symbols \vec{x} and \vec{e} to represent (x_1, x_2, \dots, x_n) and (e_1, e_2, \dots, e_d) , respectively.

Let $f: \{-1, 1\}^d \to \{0, 1, \dots, d\}$ send each d-tuple \vec{e} to the number of $i \in [d]$ such that $e_i = -1$. For each $k \in \mathbb{Z}$, there are exactly $\binom{d}{k}$ such d-tuples \vec{e} satisfying $f(\vec{e}) = k$. Thus:

$$\sum_{\vec{e} \in \{-1,1\}^d} (e_1 + \dots + e_d)^n = \sum_{k=0}^d \sum_{\substack{\vec{e} \in \{-1,1\}^d; \\ f(\vec{e}) = k}} (e_1 + \dots + e_d)^n$$

$$= \sum_{k=0}^d \sum_{\substack{\vec{e} \in \{-1,1\}^d; \\ f(\vec{e}) = k}} (k(-1) + (d-k)(1))^n$$

$$= \sum_{k=0}^d \binom{d}{k} (d-2k)^n.$$

Now use the product rule to expand the left-hand sum, and flip the order of summation.

$$\sum_{\vec{e} \in \{-1,1\}^d} (e_1 + \dots + e_d)^n = \sum_{\vec{e} \in \{-1,1\}^d} \sum_{\vec{x} \in [d]^n} e_{x_1} e_{x_2} \dots e_{x_n}$$
$$= \sum_{\vec{x} \in [d]^n} \sum_{\vec{e} \in \{-1,1\}^d} e_{x_1} e_{x_2} \dots e_{x_n}.$$

Let $g:[d]^n \times [d] \to \{0,1,\ldots,n\}$ send each (\vec{x},j) to the number of $i \in [n]$ such that $x_i = j$. Then:

$$\sum_{\vec{x} \in [d]^n} \sum_{\vec{e} \in \{-1,1\}^d} e_{x_1} e_{x_2} \cdots e_{x_n} = \sum_{\vec{x} \in [d]^n} \sum_{\vec{e} \in \{-1,1\}^d} \prod_{j \in [d]} e_j^{g(\vec{x},j)}.$$

For every *n*-tuple $\vec{x} \in [d]^n$ which is not all-even, there exists $h(\vec{x}) \in [d]$ such that $g(\vec{x}, h(\vec{x}))$ is odd. For convenience's sake, let $\vec{e'}$ represent the (d-1)-tuple $(e_1, \ldots, e_{h(\vec{x})-1}, e_{h(\vec{x})+1}, \ldots, e_d)$. Then:

$$\begin{split} \sum_{\vec{x} \in [d]^n; \atop \vec{x} \text{ not all-even}} \sum_{\vec{e} \in \{-1,1\}^d} \prod_{j \in [d]} e_j^{g(\vec{x},j)} &= \sum_{\vec{x} \in [d]^n; \atop \vec{x} \text{ not all-even}} \sum_{e_{h(\vec{x})} \in \{-1,1\}} \sum_{\vec{e'} \in \{-1,1\}^{d-1}} \prod_{j \in [d]} e_j^{g(\vec{x},j)} \\ &= \sum_{\vec{x} \in [d]^n; \atop \vec{x} \text{ not all-even}} \sum_{e_{h(\vec{x})} \in \{-1,1\}} e_{h(\vec{x})}^{g(\vec{x},h(\vec{x}))} \sum_{\vec{e'} \in \{-1,1\}^{d-1}} \prod_{j \in [d] \backslash h(\vec{x})} e_j^{g(\vec{x},j)} \\ &= \sum_{\vec{x} \in [d]^n; \atop \vec{x} \text{ not all-even}} (-1+1) \sum_{\vec{e'} \in \{-1,1\}^{d-1}} \prod_{j \in [d] \backslash h(\vec{x})} e_j^{g(\vec{x},j)} \\ &= \sum_{\vec{x} \in [d]^n; \atop \vec{x} \text{ not all-even}} 0 \\ &= 0. \end{split}$$

Therefore the only *n*-tuples \vec{x} which contribute to the overall sum are those which are alleven. For these, $g(\vec{x}, j)$ is even for all $j \in [d]$, so $e_j^{g(\vec{x}, j)} = 1$ for all $j \in [d]$. Thus:

$$\begin{split} \sum_{\vec{x} \in [d]^n} \sum_{\vec{e} \in \{-1,1\}^d} \prod_{j \in [d]} e_j^{g(\vec{x},j)} &= \sum_{\vec{x} \in [d]^n; \\ \vec{x} \text{ all-even}} \sum_{\vec{e} \in \{-1,1\}^d} 1 \\ &= \sum_{\vec{x} \in [d]^n; \\ \vec{x} \text{ all-even}} 2^d \\ &= 2^d \cdot \text{(number of all-even } n\text{-tuples)}. \end{split}$$

Chaining these equalities together yields

$$\sum_{k=0}^{d} \binom{d}{k} (d-2k)^n = 2^d \cdot \text{(number of all-even } n\text{-tuples)},$$

and dividing by 2^d gives the desired result.

REFERENCES

[Grinbe16] Darij Grinberg, Notes on the combinatorial fundamentals of algebra, 10 January 2019.

http://www.cip.ifi.lmu.de/~grinberg/primes2015/sols.pdf The numbering of theorems and formulas in this link might shift when the project gets updated; for a "frozen" version whose numbering is guaranteed to match that in the citations above, see https://github.com/darijgr/detnotes/releases/tag/2019-01-10.