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EXERCISE 1

PROBLEM

Let n € Nand o € S,. Let i and j be two elements of [n] such that ¢ < j and o (i) > o (j).
Let @ be the set of all k € {i+1,i+2,...,j — 1} satisfying o (i) > o (k) > o (j). Prove
that

l(ootj)=1L(0)—2|Q|—1.

REMARK

This exercise implies that, in particular, (o0 ot;;) < ¢(0); this answers the question on
page 213 of the notes from class (2018-10-22).

SOLUTION

For fixed 7,5 € [n] such that ¢ < j, the inversions of 7 € S,, can be divided into ten disjoint
categories (whose sizes sum to ¢(m)):

o A(m)={(k,y) € [n]*: k <yand {k,y} N {i,j} =0}
e B(m)={(k,i) € [n]*: k <iand 7(k) > m(i)}.
o O(m)={(i,k) € [n]*:i < k < jand 7(i) > m(k) > m(j)}.
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o D(n)={(i,k) € [n]? :i < k < j and 7(s) > n(k) and 7(j) > 7(k)}.

o E(m)={(i,k) €[n]?: k> jand 7(i) > w(k)}.

o F(m)={(k,j) € [n|*: k <iand n(k)>n(j)}.

o G(m)={(k,j) e [n?:i<k<jand w(k) > (i) and 7(k) > m(j)}.
)€ [n?:i<k<jand w(i) > w(k) > m(4)}.

o I(m)={(j,k) € n)?: k> jand n(j) > n(k)}.
)

o J(m) ={(i,4) : w(i) > 7(4)}.

Note that (0 ot;;)(1) = o(j) and (6 0t;,)(j) = o(i). Therefore, since i < j and o (i) > o(j),
we see that the inversions of o o ¢;; can be divided into the following disjoint categories
(whose sizes sum to {(mot; ;)):

o Aloot; ;)= Ao).

e |B(oot;;)| =|F(0)| (via the bijection B(cot; ;) — F (o) sending each (k, ) to (k, j));
|F(oot;;)| =|B(o)| (via the bijection B(cot; ;) — F(o) sending each (k, j) to (k,7)).

[} D(O’ @) tlv]) = D(O')

o |E(cot;;)| =|I(c)| (via the bijection E(c ot; ;) — I(0) sending each (i, k) to (7, k));
|I(ogot;;)| = |E(o)| (via the bijection I(0 ot; ;) — E(c) sending each (7, k) to (i, k)).

® G(O’ Oti,j) = G(O’)
[} C(O’ Oti,j) = H(O' Oti,j) = J(O' Ot’i,j) = @

Therefore ¢(o o t; ;) = l(o) — |C(0)| — |H(o)| — |J(0)|. By the definitions of C, H, J, and
@, one has that |C'(0)| = |H(0)| = |Q| and |J(0o)| = 1. The desired equality follows.

EXERCISE 2

PROBLEM
Let n e Nand 7 € S,,.

(a) Prove that

Y. @l -m@)= ) (i-j).

1<i<j<m; 1<i<j<m;
7(i)>7n(5) m(§)>7(f)
(b) Prove that
Yo wH @)= D, (G-
1<i<j<n; 1<i<j<n;
m(i)<m(5) m(i)<m(4)

[Hint: Exercise 5.23 in |Grinbel6] says something about sums of the form appearing in
part (a). (See also Nathaniel Gorski’s solution of the same exercise in Spring 2018 Math
4707 homework set #4.) You may want to use the result or the ideas.|
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SOLUTION

The following solution was inspired by that of Nathaniel Gorski, as suggested in the hint.
For i € [n], define the following subsets of [n]:

e U(i)=1{j€n]:j <iand 7(j) > m(i)}.
o M(i)=1{j€n]:j<iandn(j) <)}
o L(i)={j€n]:j>iandn(j) < (i)}
o T(i)=1{j€[n:j>iandn(j) > (i)}

PART (A)

Note first that U(i) U M(i) = {j € [n] : j < i}. Because U(i) and M (i) are disjoint,
U@+ M@ = [U@) UM (@) =Z—1

Note also that M (i) U L(i) = {j € [n] : 7(j) < 7(i)}. Because 7 is a permutation
of [n], this union has size 7 (i) — 1. Because M (i) and L(i) are disjoint, |M(i)| + |L(:)| =
IM(@) U LG) = (i) — 1.

Subtracting the second equality from the first yields |U(i)| — |L(i)| = ¢ — m(i). This
enables the following string of computations:

Y, @@ -m@)— Y, (i)

1<i<j<n; 1<i<j<n;
(i) >m(4) m(i)>m(4)
= Y (w@H+i- DY (@) +i)
1<i<yj<n; 1<i<j<n;
(‘)>Tr(j) Tf(i)>7r(j)
Jj=14€U(y =1 ]EL(z

= Z UG (7 () +37) = Z [L(@)] (7 (2) +14)

i=1
=YY W)

i=1 =1
=(1P+22+- - +0°) - (P+22+---+0n?)
= 0.

The desired equality follows.

PART (B)

Note that L(:)UT(i) = {j € [n] : j > i}. Because L(i) and T'(¢) are disjoint, |L(4)|+|T(i)| =
L) UT ()] =n—i.
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We know from part (a) that |M ()| + |L(i)| = 7(i) — 1. Subtracting the above equation
from this one gives |M (i)| — |T'(i)| = (i) +i —n — 1. Therefore:

Yo @i —r@) - Y (G-1)

1<i<j<n; 1<i<j<n;
w(i)<m(4) m(i)<m(4)
= Y w®H-H- >, @)-i
1<i<j<n; 1<i<j<n;
ﬂ(i)<7r(j) ﬂ(i)<7r(j)
Jj=1ieM(j =1 jeT(3)

=Z|M( ZIT — i)

=3 (M) — [T (x () — 1)

i=1

=1 i=1
= (1 4 -- +n2) o 4nf) —(n—-1)((1
= 0.

:Z(ﬂ(i)) Z? n—l( m( Zi)
+ .- 4n

)= (L4 m))

The desired equality follows.

EXERCISE 3

PROBLEM
Let n € N. For each p € Z, we let

D,,, = {0 € S, | 0 has exactly p descents} .

(Recall that a descent of a permutation o € S,, denotes an element k € [n — 1] satisfying
o(k)>o(k+1).)
Let p € Z. Prove that |D,, p| = |Dnpn-1-p|-

SOLUTION

Let 0 € D, , and let H ={k € [n—1] | o(k) > o(k+ 1)} be the set of all descents of o. For
all k € H, we have (wpoo)(k) =n+1—o(k) <n+1l—o(k+1) = (wooo)(k+1), so k is not a
descent of wgoo. For all k € [n—1]\ H, we have (wgoo)(k) = n+1—o(k) > n+l1—0o(k+1) =
(wooo)(k+1),so k is a descent of wyoo. Thus wyoo hasn—1—|H| =n—1—p descents,
so the map f: D, , = D, ,_1_, defined by f(c) = wy o o is well-defined.
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For any o € D,,,, we have wg o f(0) = wo o wy oo = ¢. This implies that f is injective,
50 Dyl < Dt

The same chain of reasoning, applied to D,,, from D, ,,_1_,, can be used to show that
| Dnn—1-p| < |Dpyp|- Therefore [Dyp| = [Dno1-p|.

EXERCISE 7

PROBLEM

Let n € Nand d € N. An n-tuple (21,22, ...,%,) € [d]" is said to be all-even if each element
of [d] occurs an even number of times in this n-tuple (i.e., if for each k € [d], the number of
all ¢ € [n] satisfying x; = k is even). For example, the 4-tuple (1,4,4,1) and the 6-tuples
(1,3,3,5,1,5) and (2,4,2,4,3,3) are all-even, while the 4-tuples (1,2,2,4) and (2,4,6,4)
are not.

Prove that the number of all all-even n-tuples (z1, 22, ...,x,) € [d]" is
d
1 d n
32 () (@20
k=0
[Hint: Compute the sum > (e1+ex+---+eq)" in two ways. One way
(e1,€2,-eq)€{—1,1}¢
is to split it according to the number of i € [d] satisfying e; = —1; this is a number

k€ {0,1,...,d}. Another way is by using the product rule:

(e1+ea+ - +eq) = > €2,€ay ** Eay,

and then simplifying each sum > €x,€zy * ** €4, Using a form of destructive
(e1,e2,ea)E{~1,1}*
interference. This is not unlike the number of 1-even n-tuples, which we computed at the

end of the 2018-10-10 class!|

SOLUTION

The following solution will use the shorthand symbols & and € to represent (x1, s, ..., z,)
and (eq,es,...,€q), respectively.

Let f:{-1,1}* = {0,1,...,d} send each d-tuple € to the number of i € [d] such that
e; = —1. For each k € Z, there are exactly (i) such d-tuples € satisfying f(€) = k. Thus:

dolette)" =) > (et +ed

é'E{*l,l}d k=0 66{*1,1}d;
J@) =k
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Now use the product rule to expand the left-hand sum, and flip the order of summation.

Z (14 +eq)" = Z Zemexz“'xn

ee{-1,1}4 ee{-1,1}¢ Ze[d

= E E €z, €y " * " €y

Zeld™ ee{-1,1}4

Let g : [d]" x [d] — {0,1,...,n} send each (,j) to the number of i € [n] such that

x; = 7. Then:
D D Cmenen, Z > 1147
Zeld™ ec{-1,1}4 din ee{—1,1}¢ j€[d]
For every n-tuple Z € [d]" which is not all-even, there exists h(Z) € [d] such that g(Z, h(T)) is
odd. For convenience’s sake, let €’ represent the (d — 1)-tuple (e1, ..., €n@)-1, €n@)+1; - - - €d)-
Then:
J) (£.3)
Z > I«a~= > X X 147
o ee(-L1) jeld T enmel-L1} Jef11)d-1jeld
z not all even Z not all-even
_ 9(Z,h(Z))
= > 2 dm . > Il e
Zed™; e e{-1,1} ee{—1,1}a-1 JE[A\A(Z)

T not all-even

SEDDRRCEED o | S

Zeld)™; ee{—1,1}a-1 JE[A\h(Z)
Z not all-even

= > 0
reld]™;
Z not all-even

=0.

Therefore the only n-tuples ¥ which contribute to the overall sum are those which are all-
even. For these, g(Z, ) is even for all j € [d], so eg(x,y =1 for all j € [d]. Thus:

DI ICEED YD

Zeld]” ee{-1,1}¢ jeld] zeld]™; ee{-1,1}¢
T all-even

-2
Teld™;
T all-even

= 2¢. (number of all-even n-tuples).
Chaining these equalities together yields

d
Z ( ) (d — 2k)™ = 2% . (number of all-even n-tuples),
-0

and dividing by 2¢ gives the desired result.
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http://www.cip.ifi.lmu.de/ grinberg/primes2015/sols.pdf

The numbering of theorems and formulas in this link might shift when the
project gets updated; for a “frozen” version whose numbering is guaranteed
to match that in the citations above, see https://github.com/darijgr/
detnotes/releases/tag/2019-01-10 .
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