Math 5705: Enumerative Combinatorics, Fall 2018: Homework 3

Darij Grinberg

October 15, 2018

due date: Wednesday, 10 October 2018 at the beginning of class, or before that by email or canvas.

Please solve at most 4 of the 6 exercises!

1 Exercise 1

1.1 Problem

Let A and B be two sets, and let $f: A \to B$ be a map. A left inverse of f shall mean a map $g: B \to A$ such that $g \circ f = \mathrm{id}_A$. We say that f is left-invertible if and only if a left inverse of f exists. (It is usually not unique.)

Assume that the sets A and B are finite.

- (a) If the set A is nonempty, then prove that f is left-invertible if and only if f is injective. 1
- (b) Assume that f is injective. Prove that the number of left inverses of f is $|A|^{|B|-|A|}$.

1.2 SOLUTION

 $^{^{1}}$ This holds even when A and B are infinite. Feel free to prove this if you wish.

2 Exercise 2

2.1 Problem

Let A and B be two sets, and let $f: A \to B$ be a map. A right inverse of f shall mean a map $h: B \to A$ such that $f \circ h = \mathrm{id}_B$. We say that f is right-invertible if and only if a right inverse of f exists. (It is usually not unique.)

Assume that the sets A and B are finite.

- (a) Prove that f is right-invertible if and only if f is surjective.²
- (b) Prove that the number of right inverses of f is $\prod_{b \in B} |f^{-1}(b)|$. Here, $f^{-1}(b)$ denotes the set of all $a \in A$ satisfying f(a) = b.

2.2 Solution

[...]

3 Exercise 3

3.1 Problem

(a) Prove that

$$\binom{-1/2}{n} = \left(\frac{-1}{4}\right)^n \binom{2n}{n} \quad \text{for each } n \in \mathbb{N}.$$

(b) Prove that

$$\sum_{k=0}^{n} {2k \choose k} {2(n-k) \choose n-k} = 4^{n} \quad \text{for each } n \in \mathbb{N}.$$

[Hint: Part (b) is highly difficult to prove combinatorially. Try using part (a) instead.]

3.2 SOLUTION

²This holds even when A and B are infinite, if you assume the axiom of choice. But this is not the subject of our class.

4 Exercise 4

4.1 Problem

Recall once again the Fibonacci sequence $(f_0, f_1, f_2, ...)$, which is defined recursively by $f_0 = 0, f_1 = 1$, and

$$f_n = f_{n-1} + f_{n-2}$$
 for all $n \ge 2$. (1)

It is easy to see that f_1, f_2, f_3, \ldots are positive integers (which will allow us to divide by them soon).

For any $n \in \mathbb{N}$ and $k \in \mathbb{Z}$, define the rational number $\binom{n}{k}_F$ (a slight variation on the corresponding binomial coefficient) by

$$\binom{n}{k}_F = \begin{cases} \frac{f_n f_{n-1} \cdots f_{n-k+1}}{f_k f_{k-1} \cdots f_1}, & \text{if } n \ge k \ge 0; \\ 0, & \text{otherwise.} \end{cases}$$

(a) Let n be a positive integer, and let $k \in \mathbb{N}$ be such that $n \geq k$. Prove that

$$\binom{n}{k}_{F} = f_{k+1} \binom{n-1}{k}_{F} + f_{n-k-1} \binom{n-1}{k-1}_{F},$$

where we set $f_{-1} = 1$.

(b) Prove that $\binom{n}{k}_F \in \mathbb{N}$ for any $n \in \mathbb{N}$ and $k \in \mathbb{N}$.

4.2 SOLUTION

[...]

5 Exercise 5

5.1 Problem

Let $j \in \mathbb{N}$, $r \in \mathbb{R}$ and $s \in \mathbb{R}$. Prove that

$$\sum_{k=0}^{j} (-1)^k \binom{j}{k} \binom{r-sk}{j} = s^j.$$

[Hint: First, argue that it suffices to prove this only for $s \in \mathbb{N}$ and $r \in \mathbb{Z}$ satisfying $r \geq sj$. Next, consider r distinct stones, sj of which are arranged in j piles containing s stones each, while the remaining r - sj stones are forming a separate heap. How many ways are there to pick j of these r stones such that each of the j piles loses at least one stone?]

5.2 SOLUTION

6 Exercise 6

6.1 Problem

Let $n \in \mathbb{N}$. The summation sign $\sum_{I \subseteq [n]}$ shall always stand for a sum over all subsets I of [n]. (This sum has 2^n addends.)

Let A_1, A_2, \ldots, A_n be n numbers or polynomials or square matrices of the same size. (Allowing matrices means that A_iA_j is not necessarily equal to A_jA_i , so beware of using the binomial formula or similar identities!)

(a) Show that

$$\sum_{I \subseteq [n]} (-1)^{n-|I|} \left(\sum_{i \in I} A_i \right)^m = \sum_{\substack{(i_1, i_2, \dots, i_m) \in [n]^m; \\ \{i_1, i_2, \dots, i_m\} = [n]}} A_{i_1} A_{i_2} \cdots A_{i_m} \quad \text{for all } m \in \mathbb{N}.$$

(Example: If n = 2 and m = 3, then this is saying

$$(A+B)^3 - A^3 - B^3 + 0^3 = AAB + ABA + ABB + BAA + BAB + BBA,$$

where we have renamed A_1 and A_2 as A and B.)

(b) Show that

$$\sum_{I\subseteq [n]} (-1)^{n-|I|} \left(\sum_{i\in I} A_i\right)^m = 0 \qquad \text{for all } m\in \mathbb{N} \text{ satisfying } m< n.$$

(Example: If n=3 and m=2, then this is saying

$$(A+B+C)^2 - (A+B)^2 - (A+C)^2 - (B+C)^2 + A^2 + B^2 + C^2 - 0^2 = 0.$$

where we have renamed A_1, A_2, A_3 as A, B, C.)

(c) Show that

$$\sum_{I\subseteq[n]} (-1)^{n-|I|} \left(\sum_{i\in I} A_i\right)^n = \sum_{\sigma\in S_n} A_{\sigma(1)} A_{\sigma(2)} \cdots A_{\sigma(n)},$$

where S_n stands for the set of all (n!) permutations of [n].

(Example: If n = 3, then this is saying

$$(A+B+C)^3 - (A+B)^3 - (A+C)^3 - (B+C)^3 + A^3 + B^3 + C^3 - 0^3$$

= ABC + ACB + BAC + BCA + CAB + CBA.

where we have renamed A_1, A_2, A_3 as A, B, C.)

[Hint: You can use the *product rule*, which says the following:

Proposition 6.1 (Product rule). Let m and n be two nonnegative integers. Let $P_{u,v}$, for all $u \in [m]$ and $v \in [n]$, be numbers or polynomials or square matrices of the same size. Then,

$$(P_{1,1} + P_{1,2} + \dots + P_{1,n}) (P_{2,1} + P_{2,2} + \dots + P_{2,n}) \dots (P_{m,1} + P_{m,2} + \dots + P_{m,n})$$

$$= \sum_{(i_1,i_2,\dots,i_m)\in[n]^m} P_{1,i_1} P_{2,i_2} \dots P_{m,i_m}.$$

(This frightening formula merely says that a product of sums can be expanded, and the result will be a sum of products, with each of the latter products being obtained by multiplying together one addend from each sum. You have probably used this sometime already.)

6.2 SOLUTION