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1 Exercise 1

1.1 Problem

For any nonnegative integers a and b and any real x, prove that(
x

a

)(
x

b

)
=

a+b∑
r=max{a,b}

(
a

a+ b− r

)(
r

a

)(
x

r

)
. (1)

1.2 Solution sketch

1.2.1 First solution

Let a and b be nonnegative integers. Let x be a real. Whenever k ∈ N, we shall use the
standard notation xk for the lower factorial x (x− 1) (x− 2) · · · (x− k + 1). Recall that(

x

k

)
=

xk

k!
for each k ∈ N. (2)

Applying this to k = r, we obtain (
x

r

)
=

xr

r!
. (3)

Let us also recall the following classical formula:(
n

k

)
=

n!

k! (n− k)!
for any n ∈ N and k ∈ N satisfying n ≥ k. (4)
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But Exercise 7 on homework set #1 yields

xaxb =
a+b∑

r=max{a,b}

a!b!

(r − a)! (r − b)! (a+ b− r)!
xr. (5)

Next, we claim:

Claim 1: Let r be an integer such that max {a, b} ≤ r ≤ a + b. Then,
1

(r − a)! (r − b)! (a+ b− r)!
is well-defined and satisfies

1

(r − a)! (r − b)! (a+ b− r)!
=

1

r!

(
a

a+ b− r

)(
r

a

)
. (6)

[Proof of Claim 1: We have a ≤ max {a, b} ≤ r, thus r− a ≥ 0 and therefore r− a ∈ N.
Hence, (r − a)! is a well-defined positive integer. The same argument (applied to b instead
of a) shows that (r − b)! is a well-defined positive integer. Also, a + b − r ≥ 0 (since
r ≤ a+ b), and thus a+ b− r ∈ N; hence, (a+ b− r)! is a well-defined positive integer. Now
we know that all three factorials (r − a)!, (r − b)! and (a+ b− r)! are well-defined positive
integers; thus, their product (r − a)! (r − b)! (a+ b− r)! is a well-defined positive integer as

well. Hence, this product is nonzero. Thus,
1

(r − a)! (r − b)! (a+ b− r)!
is well-defined. It

remains to prove the equality (6).
From r− a ≥ 0, we obtain r ≥ a. We have b ≤ max {a, b} ≤ r, thus r− b ≥ 0. We have

a ∈ N and a + b − r ∈ N and a ≥ a + b − r (since a − (a+ b− r) = r − b ≥ 0). Thus, (4)
(applied to n = a and k = a+ b− r) yields(

a

a+ b− r

)
=

a!

(a+ b− r)! (a− (a+ b− r))!
=

a!

(a+ b− r)! (r − b)!
.

Also, (4) (applied to n = r and k = a) yields(
r

a

)
=

r!

a! (r − a)!
(since r ∈ N and a ∈ N and r ≥ a) .

Multiplying the last two equalities, we find(
a

a+ b− r

)(
r

a

)
=

a!

(a+ b− r)! (r − b)!
· r!

a! (r − a)!
=

r!

(r − a)! (r − b)! (a+ b− r)!
.

Multiplying both sides of this equality by
1

r!
, we obtain

1

r!

(
a

a+ b− r

)(
r

a

)
=

1

r!
· r!

(r − a)! (r − b)! (a+ b− r)!
=

1

(r − a)! (r − b)! (a+ b− r)!
.

This proves (6). Hence, Claim 1 is proven.]
Now, applying (3) to r = a, we find(

x

a

)
=

xa

a!
.

Also, applying (3) to r = b, we find (
x

b

)
=

xb

b!
.
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Multiplying these two equalities, we obtain(
x

a

)(
x

b

)
=

xa

a!
· x

b

b!
=

1

a!
· 1
b!
· xaxb

=
1

a!
· 1
b!
·

a+b∑
r=max{a,b}

a!b!

(r − a)! (r − b)! (a+ b− r)!
xr (by (5))

=
a+b∑

r=max{a,b}

1

(r − a)! (r − b)! (a+ b− r)!︸ ︷︷ ︸
=
1

r!

(
a

a+ b− r

)(
r

a

)
(by (6))

xr =
a+b∑

r=max{a,b}

1

r!

(
a

a+ b− r

)(
r

a

)
xr

=
a+b∑

r=max{a,b}

(
a

a+ b− r

)(
r

a

)
xr

r!︸︷︷︸
=

(
x

r

)
(by (3))

=
a+b∑

r=max{a,b}

(
a

a+ b− r

)(
r

a

)(
x

r

)
.

This solves the exercise.

1.2.2 Second solution

Let me outline a different solution, which relies on the following fact:

Theorem 1.1. Let P and Q be two polynomials with real coefficients. Assume that P (x) =
Q (x) for every x ∈ N. Then, P = Q (as polynomials).

This theorem is essentially Theorem 2.20 (c) from the blackboard work on 26 September
2018 (except that the polynomials have real coefficients, not rational coefficients; but this
makes no difference to the proof). It is a consequence of the fact that a nonzero polynomial
(with real coefficients) cannot have infinitely many roots. We call it the “polynomial identity
trick” in class.

Next, we prove the particular case of the exercise in which x is a nonnegative integer:

Claim 2: Let a ∈ N, b ∈ N and x ∈ N. Then,(
x

a

)(
x

b

)
=

a+b∑
r=max{a,b}

(
a

a+ b− r

)(
r

a

)(
x

r

)
.

[Proof of Claim 2: Fix an x-element set X. Let us count all pairs (A,B) consisting of
an a-element subset A of X and a b-element subset B of X.

1st method: Clearly, we can choose such a pair by first choosing A and then choosing

B. Thus, the number of such pairs is
(
x

a

)(
x

b

)
(since we have

(
x

a

)
many options for A,

and
(
x

b

)
many options for B).

2nd method: Here is another method to construct such a pair:

• First, decide which size the union U := A ∪ B is going to have. Let r be this size.
Thus, r must be an integer satisfying max {a, b} ≤ r ≤ a + b (because any two finite
sets A and B satisfy max {|A| , |B|} ≤ |A ∪B| ≤ |A|+ |B|).
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• Then, choose this U itself. This has to be an r-element subset of X; thus, there are(
x

r

)
many options for it.

• Next, we choose A. This has to be an a-element subset of U ; thus, there are
(
r

a

)
many options for it.

• Finally, we choose B. This has to be a b-element subset of U whose complement U \B

is a subset of A (because otherwise, A∪B would not be U). Thus, there are
(

a

r − b

)
many options for it (since choosing such a B is tantamount to choosing its complement
U \B, which is merely required to be an (r − b)-element subset of A).

This gives us
a+b∑

r=max{a,b}

(
r

a

)(
a

r − b

)(
x

r

)
many options in total.

Comparing the results of these two methods, we obtain(
x

a

)(
x

b

)
=

a+b∑
r=max{a,b}

(
r

a

) (
a

r − b

)
︸ ︷︷ ︸

=

(
a

a− (r − b)

)
(by the symmetry of the
binomial coefficients)

(
x

r

)
=

a+b∑
r=max{a,b}

(
r

a

)(
a

a− (r − b)

)
︸ ︷︷ ︸
=

(
a

a+ b− r

)
(
x

r

)

=
a+b∑

r=max{a,b}

(
a

a+ b− r

)(
r

a

)(
x

r

)
.

Hence, Claim 2 is proven.]
Now, let a and b be nonnegative integers. Define two polynomials P and Q (in one

indeterminate X, with real coefficients) by

P =

(
X

a

)(
X

b

)
and Q =

a+b∑
r=max{a,b}

(
a

a+ b− r

)(
r

a

)(
X

r

)
.

(These are indeed polynomials, since
(
X

k

)
is a polynomial for each k ∈ N.) Claim 2

shows that P (x) = Q (x) for each x ∈ N. Thus, Theorem 1.1 shows that P = Q. Hence,
P (x) = Q (x) for every real x. In other words,(

x

a

)(
x

b

)
=

a+b∑
r=max{a,b}

(
a

a+ b− r

)(
r

a

)(
x

r

)
.

This solves the exercise once again.

1.3 Remark

Note that if we use the Second solution to solve the exercise, then we can walk the First
solution backwards to obtain a new solution to Exercise 7 on Homework set #1.
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2 Exercise 2

2.1 Problem

Let n ∈ N and k ∈ N. Prove that
n∑

i=0

(
n

i

)(
n− i

k − 2i

)
2k−2i =

(
2n

k

)
. (7)

[Hint: You have n pairs of shoes (L1, R1) , (L2, R2) , . . . , (Ln, Rn), where the 2n shoes
L1, R1, L2, R2, . . . , Ln, Rn are all distinguishable. You grab k of these 2n shoes at random
(i.e., pick a k-element subset of the set of all 2n shoes). For a given i ∈ {0, 1, . . . , n}, what
is the probability that among your k shoes are exactly i pairs?]

2.2 Solution sketch

2.2.1 First solution

We follow the hint (but, to stay true to our genre, we speak of counting instead of proba-
bilities).

Let S be a set consisting of 2n distinct elements L1, R1, L2, R2, . . . , Ln, Rn. (For the sake
of definiteness, you can set Li = i and Ri = −i for each i ∈ [n].) The elements of S will be
called shoes.

The 2-element subsets {L1, R1} , {L2, R2} , . . . , {Ln, Rn} of S will be called shoe-pairs.
Thus, there are exactly n shoe-pairs, and they are distinct 2-element subsets of S and cover
the whole S.

We say that a subset T contains a shoe-pair P if and only if P ⊆ T . (That is, “contains”
means “contains as a subset”, not “contains as an element”, in this context.)

Now we claim the following:

Claim 1: Let i ∈ {0, 1, . . . , n}. Then, the number of k-element subsets of S that
contain exactly i shoe-pairs is(

n

i

)(
n− i

k − 2i

)
2k−2i.

Note that we are not requiring k − 2i ≥ 0 in Claim 1. Convince yourself that both the
claim and the proof that we will now give are valid whether or not k − 2i is nonnegative.

[Proof of Claim 1: Any k-element subset X of S that contains exactly i shoe-pairs can
be constructed (uniquely) by the following procedure:

• First, we choose which i shoe-pairs our subset X will contain. We have
(
n

i

)
many

options in this choice (since we must choose i out of the n shoe-pairs).

• We shall refer to the chosen i shoe-pairs as taken; the remaining n− i shoe-pairs will
be called untaken. Our subset X must contain all taken shoe-pairs but none of the
untaken shoe-pairs. Thus, X must contain all the 2i shoes in the i taken shoe-pairs.

• We now need to pick k − 2i further shoes for X; these shoes need to come from the
untaken shoe-pairs. However, we can only pick at most one shoe from each untaken
shoe-pair, because otherwise our setX would contain the whole shoe-pair, which would
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contradict the fact that X must contain none of the untaken shoe-pairs. Thus, we need
to pick k− 2i shoes from the untaken shoe-pairs, in such a way that at most one shoe
from each untaken shoe-pair is picked.

• We do this as follows: First, we choose the shoe-pairs from which we are going to pick
exactly one shoe. In other words, we choose the set

Q := {P is a shoe-pair | X contains exactly one shoe from P} .

This set Q must be a subset of the set of all the n− i untaken shoe-pairs (because if P
is a shoe-pair contained in Q, then X contains exactly one shoe from P , and thus X
cannot contain P fully; but this means that P is untaken), and must have size k − 2i

1. Thus, we can choose Q in exactly
(
n− i

k − 2i

)
many ways.

• Finally, for each shoe-pair P ∈ Q, we choose exactly one shoe from P to be included in
X. This choice can be made in 2k−2i many ways (since there are k−2i many shoe-pairs
P ∈ Q, and for each of these shoe-pairs, we have exactly 2 options).

Thus, this procedure can be performed in precisely
(
n

i

)(
n− i

k − 2i

)
2k−2i many ways.

Hence, the number of k-element subsets X of S that contain exactly i shoe-pairs is(
n

i

)(
n− i

k − 2i

)
2k−2i.

This proves Claim 1.]

1Proof. Assume that X is already chosen. We know that X must contain a total of k shoes, and that
exactly 2i of these k shoes come from the taken shoe-pairs. The remaining k − 2i shoes in X must
therefore come from untaken shoe-pairs. In other words,

(the number of shoes in X contributed by untaken shoe-pairs) = k − 2i.

Each shoe-pair in Q contributes exactly one shoe to X (by the definition of Q). Thus,

(the number of shoes in X contributed by shoe-pairs in Q) = |Q| . (8)

Now, we observe the following:

– Any untaken shoe-pair that contributes a shoe to X must belong to Q. (Indeed, if it would contribute
both of its shoes to X, then it would be a taken shoe-pair, which contradicts that it is untaken;
therefore, it must contribute exactly one shoe to X, and therefore must belong to Q (by the definition
of Q).)

– Conversely, any shoe-pair in Qmust be untaken (since Q is a subset of the set of all untaken shoe-pairs)
and must contribute a shoe to X (by the definition of Q).

Combining these two observations, we conclude that the shoe-pairs in Q are precisely the untaken shoe-
pairs that contribute a shoe to X. Hence, a shoe in X is contributed by a shoe-pair in Q if and only if
it is contributed by an untaken shoe-pair. Hence,

(the number of shoes in X contributed by shoe-pairs in Q)

= (the number of shoes in X contributed by untaken shoe-pairs) = k − 2i.

Comparing this with (8), we obtain |Q| = k − 2i. In other words, the set Q has size k − 2i, qed.
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The set S has 2n elements. Hence, the number of k-element subsets of S is
(
2n

k

)
. Thus,

(
2n

k

)
= (the number of k-element subsets of S)

=
n∑

i=0

(the number of k-element subsets of S that contain exactly i shoe-pairs)︸ ︷︷ ︸
=

(
n

i

)(
n− i

k − 2i

)
2k−2i

(by Claim 1)(
because for any k-element subset I of S, there is a

unique i ∈ {0, 1, . . . , n} such that I contains exactly i shoe-pairs

)
=

n∑
i=0

(
n

i

)(
n− i

k − 2i

)
2k−2i.

This solves the exercise.

2.2.2 Second solution

Let us now give an algebraic proof. Let us forget that we fixed n and k. We will first prove the
following fact (Theorem 2 in https://artofproblemsolving.com/community/c6h87265):

Claim 2: Let n ∈ N and u ∈ Z. Then,
n∑

k=0

2n−2k−u
(

n

2k + u

)(
2k + u

k

)
=

(
2n

n+ u

)
.

[Proof of Claim 2: Recall that for any integer u, we have(
0

u

)
= [u = 0] and (9)(

u

0

)
= 1. (10)

(Here, we are using the Iverson bracket notation; thus, [u = 0] means

{
1, if u = 0;

0, if u 6= 0
.)

We will use Knuth’s sum convention: The summation sign “
∑
k

” shall always mean a

sum over all k ∈ Z. Such a sum is well-defined whenever it has only finitely many nonzero
addends. The sums that will appear in the following argument do have this property, and
thus are well-defined.

First we observe the following:

For every k ∈ Z \ {0, 1, . . . , n}, we have
(

n

2k + u

)(
2k + u

k

)
= 0. (11)

[Proof of (11): Let k ∈ Z \ {0, 1, . . . , n}. For the sake of contradiction, assume that(
n

2k + u

)(
2k + u

k

)
6= 0. Thus,

(
n

2k + u

)
6= 0 and

(
2k + u

k

)
6= 0.
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From
(

n

2k + u

)
6= 0 and n ≥ 0, we conclude that 2k + u ≥ 0 and 2k + u ≤ n. From(

2k + u

k

)
6= 0 and 2k + u ≥ 0, we conclude that k ≥ 0 and k ≤ 2k + u. Now, k ≤ 2k + u

and 2k + u ≤ n yield k ≤ n.
Now, k ≥ 0 and k ≤ n yield k ∈ {0, 1, . . . , n}, contradicting k ∈ Z \ {0, 1, . . . , n}. This

contradiction shows that our assumption (that
(

n

2k + u

)(
2k + u

k

)
6= 0) was wrong. Hence,

we have
(

n

2k + u

)(
2k + u

k

)
= 0. This proves (11).]

Next, we are going to prove that any integers n ≥ 0 and u satisfy

n∑
k=0

2n−2k−u
(

n

2k + u

)(
2k + u

k

)
=
∑
k

2n−2k−u
(

n

2k + u

)(
2k + u

k

)
(12)

and ∑
k

2n−2k−u
(

n

2k + u

)(
2k + u

k

)
=

(
2n

n+ u

)
. (13)

[Proof of (12): Let n ≥ 0 and u be two integers. Then,∑
k

2n−2k−u
(

n

2k + u

)(
2k + u

k

)
=

n∑
k=0

2n−2k−u
(

n

2k + u

)(
2k + u

k

)
+

∑
k∈Z\{0,1,...,n}

2n−2k−u
(

n

2k + u

)(
2k + u

k

)
︸ ︷︷ ︸

=0
(by (11))

=
n∑

k=0

2n−2k−u
(

n

2k + u

)(
2k + u

k

)
.

This proves (12).]
[Proof of (13): We shall prove (13) by induction over n:
Induction base: Let us first notice that 2−u [u = 0] = [u = 0]. 2

2Proof: We shall prove this equality by considering the cases u 6= 0 and u = 0 separately:

• In the case when u 6= 0, this equality holds because both of its sides are 0 (since [u = 0] = 0 in
this case).

• In the case when u = 0, this equality also holds (since 2−u = 2−0 = 1 in this case).

Thus, this equality always holds.
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For n = 0, we have∑
k

2n−2k−u
(

n

2k + u

)(
2k + u

k

)
=

n∑
k=0

2n−2k−u
(

n

2k + u

)(
2k + u

k

)
(by (12))

=
0∑

k=0

20−2k−u
(

0

2k + u

)(
2k + u

k

)
(since n = 0)

= 20−2·0−u
(

0

2 · 0 + u

)(
2 · 0 + u

0

)
= 2−u

(
0

u

)
︸︷︷︸
=[u=0]
(by (9))

(
u

0

)
︸︷︷︸
=1

= 2−u [u = 0]

= [u = 0] =

(
0

u

)
(by (9))

=

(
2 · 0
0 + u

)
=

(
2n

n+ u

)
(since 0 = n). Thus, (13) is proven for n = 0. This completes the induction base.

Induction step: Let N ≥ 0 be an integer. Assume that (13) is proven for n = N . We
have to prove (13) for n = N + 1.

Let U be an integer. We have assumed that the equality (13) is proven for n = N ; thus,
we can apply it to n = N and every u ∈ Z.

In particular:

• We can apply (13) to n = N and u = U and get∑
k

2N−2k−U
(

N

2k + U

)(
2k + U

k

)
=

(
2N

N + U

)
. (14)

• We can apply (13) to n = N and u = U − 1 and get∑
k

2N−2k−(U−1)
(

N

2k + (U − 1)

)(
2k + (U − 1)

k

)
=

(
2N

N + (U − 1)

)
. (15)

• We can apply (13) to n = N and u = U + 1 and get∑
k

2N−2k−(U+1)

(
N

2k + (U + 1)

)(
2k + (U + 1)

k

)
=

(
2N

N + (U + 1)

)
. (16)
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Now,∑
k

2(N+1)−2k−U
(
N + 1

2k + U

)
︸ ︷︷ ︸

=

(
N

2k + U

)
+

(
N

2k + U − 1

)
(by the recurrence relation of binomial coefficients)

(
2k + U

k

)

=
∑
k

2(N+1)−2k−U
((

N

2k + U

)
+

(
N

2k + U − 1

))(
2k + U

k

)
=
∑
k

2(N+1)−2k−U︸ ︷︷ ︸
=2·2N−2k−U

(
N

2k + U

)(
2k + U

k

)
+
∑
k

2(N+1)−2k−U
(

N

2k + U − 1

)(
2k + U

k

)
= 2 ·

∑
k

2N−2k−U
(

N

2k + U

)(
2k + U

k

)
+
∑
k

2(N+1)−2k−U
(

N

2k + U − 1

) (
2k + U

k

)
︸ ︷︷ ︸

=

(
2k + U − 1

k

)
+

(
2k + U − 1

k − 1

)
(by the recurrence relation of binomial coefficients)

= 2 ·
∑
k

2N−2k−U
(

N

2k + U

)(
2k + U

k

)
+
∑
k

2(N+1)−2k−U
(

N

2k + U − 1

)((
2k + U − 1

k

)
+

(
2k + U − 1

k − 1

))
= 2 ·

∑
k

2N−2k−U
(

N

2k + U

)(
2k + U

k

)
+
∑
k

2(N+1)−2k−U︸ ︷︷ ︸
=2N−2k−(U−1)

(
N

2k + U − 1

)
︸ ︷︷ ︸

=

(
N

2k + (U − 1)

)
(
2k + U − 1

k

)
︸ ︷︷ ︸

=

(
2k + (U − 1)

k

)
+
∑
k

2(N+1)−2k−U︸ ︷︷ ︸
=2N−2(k−1)−(U+1)

(
N

2k + U − 1

)
︸ ︷︷ ︸

=

(
N

2 (k − 1) + (U + 1)

)
(
2k + U − 1

k − 1

)
︸ ︷︷ ︸

=

(
2 (k − 1) + (U + 1)

k − 1

)
= 2 ·

∑
k

2N−2k−U
(

N

2k + U

)(
2k + U

k

)
+
∑
k

2N−2k−(U−1)
(

N

2k + (U − 1)

)(
2k + (U − 1)

k

)
+
∑
k

2N−2(k−1)−(U+1)

(
N

2 (k − 1) + (U + 1)

)(
2 (k − 1) + (U + 1)

k − 1

)
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= 2 ·
∑
k

2N−2k−U
(

N

2k + U

)(
2k + U

k

)
+
∑
k

2N−2k−(U−1)
(

N

2k + (U − 1)

)(
2k + (U − 1)

k

)
+
∑
k

2N−2k−(U+1)

(
N

2k + (U + 1)

)(
2k + (U + 1)

k

)
(here we substituted k for k − 1 in the last sum)

= 2 ·
(

2N

N + U

)
+

(
2N

N + (U − 1)

)
+

(
2N

N + (U + 1)

)
(by (14), (15) and (16))

= 2 ·
(

2N

N + U

)
+

(
2N

N + U − 1

)
+

(
2N

N + U + 1

)
=

((
2N

N + U

)
+

(
2N

N + U − 1

))
︸ ︷︷ ︸

=

(
2N + 1

N + U

)
(by the recurrence relation of binomial coefficients)

+

((
2N

N + U + 1

)
+

(
2N

N + U

))
︸ ︷︷ ︸

=

(
2N + 1

N + U + 1

)
(by the recurrence relation of binomial coefficients)

=

(
2N + 1

N + U

)
+

(
2N + 1

N + U + 1

)
=

(
2N + 2

N + U + 1

)
(by the recurrence relation of binomial coefficients)

=

(
2 (N + 1)

(N + 1) + U

)
.

We have proven this for every integer U . If we rename U as u, this becomes∑
k

2(N+1)−2k−u
(
N + 1

2k + u

)(
2k + u

k

)
=

(
2 (N + 1)

(N + 1) + u

)
.

In other words, (13) holds for n = N + 1. This completes the induction step. Hence, (13)
is proven for any integers n ≥ 0 and u.]

Now, let n ∈ N and u ∈ Z. Then, (12) becomes

n∑
k=0

2n−2k−u
(

n

2k + u

)(
2k + u

k

)
=
∑
k

2n−2k−u
(

n

2k + u

)(
2k + u

k

)
=

(
2n

n+ u

)
(by (13)). This proves Claim 2.]

We still haven’t solved the exercise. To do that, we need to recall two further identities
for binomial coefficients:

• The trinomial revision identity (Proposition 2.2 in blackboard work from 17 September
2018) says that(

n

a

)(
a

b

)
=

(
n

b

)(
n− b

a− b

)
for all reals n, a and b. (17)

(We shall only use it in the case when n, a and b are integers.)
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• The symmetry identity (Theorem 1.17 in blackboard work from 10 September 2018)
says that (

n

k

)
=

(
n

n− k

)
for all n ∈ N and k ∈ Z. (18)

We can use these to further transform Claim 2 into the following:

Claim 3: Let n ∈ N and u ∈ Z. Then,
n∑

i=0

2n−2i−u
(
n

i

)(
n− i

n− 2i− u

)
=

(
2n

n+ u

)
.

[Proof of Claim 3: Let i ∈ {0, 1, . . . , n}. Then, i ≤ n, so that n − i ≥ 0 and thus
n− i ∈ N. Hence, (18) (applied to n− i and i+ u instead of n and k) yields(

n− i

i+ u

)
=

(
n− i

(n− i)− (i+ u)

)
=

(
n− i

n− 2i− u

)
.

But (17) (applied to a = 2i+ u and b = i) yields(
n

2i+ u

)(
2i+ u

i

)
=

(
n

i

) (
n− i

(2i+ u)− i

)
︸ ︷︷ ︸

=

(
n− i

i+ u

)
=

(
n− i

n− 2i− u

) =

(
n

i

)(
n− i

n− 2i− u

)
. (19)

Now, forget that we fixed i. We thus have proven (19) for each i ∈ {0, 1, . . . , n}.
Now, Claim 2 yields

n∑
k=0

2n−2k−u
(

n

2k + u

)(
2k + u

k

)
=

(
2n

n+ u

)
.

Hence,(
2n

n+ u

)
=

n∑
k=0

2n−2k−u
(

n

2k + u

)(
2k + u

k

)
=

n∑
i=0

2n−2i−u
(

n

2i+ u

)(
2i+ u

i

)
︸ ︷︷ ︸
=

(
n

i

)(
n− i

n− 2i− u

)
(by (19))

(here, we have renamed the summation index k as i)

=
n∑

i=0

2n−2i−u
(
n

i

)(
n− i

n− 2i− u

)
.

This proves Claim 3.]
Now, let n ∈ N and k ∈ N. Claim 3 (applied to u = n− k) yields

n∑
i=0

2n−2i−(n−k)
(
n

i

)(
n− i

n− 2i− (n− k)

)
=

(
2n

n+ (n− k)

)
=

(
2n

2n− k

)
=

(
2n

2n− (2n− k)

)
(by (18), applied to 2n and 2n− k instead of n and k)

=

(
2n

k

)
.
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Hence, (
2n

k

)
=

n∑
i=0

2n−2i−(n−k)︸ ︷︷ ︸
=2k−2i

(
n

i

)(
n− i

n− 2i− (n− k)

)
︸ ︷︷ ︸

=

(
n− i

k − 2i

)
=

n∑
i=0

2k−2i
(
n

i

)(
n− i

k − 2i

)
=

n∑
i=0

(
n

i

)(
n− i

k − 2i

)
2k−2i.

This solves the exercise again.

2.3 Remark

The addends
(
n

i

)(
n− i

k − 2i

)
2k−2i in the sum on the left hand side of (7) equal 0 when i > n

(because
(
n

i

)
= 0 in this case) and also equal 0 when i > k (because in this case, we have

k− 2i < k− 2k = −k ≤ 0 and thus
(
n− i

k − 2i

)
= 0). Hence, we can replace the “

n∑
i=0

” sign by

a “
k∑

i=0

” sign without changing the value of the sum. Thus, the identity (7) can be rewritten
as

k∑
i=0

(
n

i

)(
n− i

k − 2i

)
2k−2i =

(
2n

k

)
. (20)

This equality (20) has the nice property that both of its sides are polynomial functions in
n; in other words, it can be restated as P (n) = Q (n), where P and Q are two polynomials
(in one variable X) defined by

P =
k∑

i=0

(
X

i

)(
X − i

k − 2i

)
2k−2i and Q =

(
2X

k

)
.

Thus, Theorem 1.1 yields that P = Q (since the exercise yields P (n) = Q (n) for all n ∈ N).
Hence, P (x) = Q (x) for each x ∈ R. In other words,

k∑
i=0

(
x

i

)(
x− i

k − 2i

)
2k−2i =

(
2x

k

)
for each x ∈ R.

3 Exercise 3

3.1 Problem

Let n ∈ N. For each i ∈ {0, 1, 2}, we let gn,i denote the number of all subsets S of [n]
satisfying |S| ≡ i mod 3.

(a) Show that if n > 0, then

gn,0 = gn−1,0 + gn−1,2; gn,1 = gn−1,1 + gn−1,0; gn,2 = gn−1,2 + gn−1,1.
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(b) Find closed-form expressions (with no summation signs) for gn,0, gn,1, gn,2 depending
on the remainder of n upon division by 3.

3.2 Remark

Remark 3.1. The combinatorial interpretation of binomial coefficients shows that

gn,i =
∑
k∈Z;

k≡i mod 3

(
n

k

)
for each i.

This is not what the problem is asking for – find formulas with no summation signs.

3.3 Solution sketch

3.3.1 Solution to part (a)

(a) Let us extend the definition gn,i to the case when i is an arbitrary integer (as opposed
to being an element of {0, 1, 2}). Then, of course, if i and j are two integers satisfying i ≡ j
mod 3, and if n ∈ N, then gn,i = gn,j (because a subset S of [n] satisfies |S| ≡ i mod 3 if
and only if it satisfies |S| ≡ j mod 3). Applying this equality to i = −1 and j = 2, we
obtain

gn,−1 = gn,2 (21)

(since −1 ≡ 2 mod 3).
Next, I will prove the following:

Claim 1: Let i ∈ Z. Let n > 0 be an integer. Then, gn,i = gn−1,i + gn−1,i−1.

[Proof of Claim 1: The map

{subsets S of [n− 1] satisfying |S| ≡ i mod 3}
→{subsets T of [n] satisfying |T | ≡ i mod 3 and n /∈ T}

that sends each S to S itself is well-defined and bijective (since the subsets S of [n− 1]
satisfying |S| ≡ i mod 3 are exactly the subsets T of [n] satisfying |T | ≡ i mod 3 and
n /∈ T ). Thus,

|{subsets T of [n] satisfying |T | ≡ i mod 3 and n /∈ T}|
= |{subsets S of [n− 1] satisfying |S| ≡ i mod 3}| .

In other words,

(the number of subsets T of [n] satisfying |T | ≡ i mod 3 and n /∈ T )

= (the number of subsets S of [n− 1] satisfying |S| ≡ i mod 3)

= gn−1,i (22)

(since gn−1,i was defined as the number of subsets S of [n− 1] satisfying |S| ≡ i mod 3).
The map

{subsets S of [n− 1] satisfying |S| ≡ i− 1 mod 3}
→{subsets T of [n] satisfying |T | ≡ i mod 3 and n ∈ T}
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that sends each S to S ∪ {n} is well-defined and bijective (in fact, its inverse map sends
each T to T \ {n}). Thus,

|{subsets T of [n] satisfying |T | ≡ i mod 3 and n ∈ T}|
= |{subsets S of [n− 1] satisfying |S| ≡ i− 1 mod 3}| .

In other words,

(the number of subsets T of [n] satisfying |T | ≡ i mod 3 and n ∈ T )

= (the number of subsets S of [n− 1] satisfying |S| ≡ i− 1 mod 3)

= gn−1,i−1 (23)

(since gn−1,i−1 was defined as the number of subsets S of [n− 1] satisfying |S| ≡ i − 1
mod 3).

Now, the definition of gn,i yields

gn,i = (the number of subsets S of [n] satisfying |S| ≡ i mod 3)

= (the number of subsets T of [n] satisfying |T | ≡ i mod 3)

= (the number of subsets T of [n] satisfying |T | ≡ i mod 3 and n /∈ T )︸ ︷︷ ︸
=gn−1,i

(by (22))

+ (the number of subsets T of [n] satisfying |T | ≡ i mod 3 and n ∈ T )︸ ︷︷ ︸
=gn−1,i−1

(by (23))

= gn−1,i + gn−1,i−1.

This proves Claim 1.]
Now, let n > 0 be an integer. Claim 1 (applied to i = 0) yields

gn,0 = gn−1,0 + gn−1,−1︸ ︷︷ ︸
=gn−1,2

(by (21))

= gn−1,0 + gn−1,2.

Claim 1 (applied to i = 1) yields

gn,1 = gn−1,1 + gn−1,0.

Claim 1 (applied to i = 2) yields

gn,2 = gn−1,2 + gn−1,1.

Thus, part (a) of the exercise is solved.

3.3.2 Solution to part (b)

(b) We claim that every n ∈ N and i ∈ {0, 1, 2} satisfy

gn,i =
2n − (−1)n

3
+ (−1)n [n ≡ −i mod 3] (24)

(where we are using the Iverson bracket notation).
This can be proven by a straightforward induction on n, where the induction step relies

on the recurrences proven in part (a) of the exercise3. We leave the details to the reader.
3It also relies on the fact that

[n ≡ −i mod 3] + [n− 1 ≡ −i mod 3] + [n− 1 ≡ − (i− 1) mod 3] = 1

for any integers n and i. This fact is a consequence of the fact that every integer n is congruent to
exactly one of the three numbers 0, 1, 2 modulo 3.
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3.4 Remark

There is also a different approach to solving part (b), using the so-called roots-of-unity
filter. See the proof of Proposition 2.32 in the class work from 3 October 2018 for an outline
of this approach (and https://math.stackexchange.com/questions/1960129 for further
information).

Here is a different comment: How could you come up with the answer (24)? Here is
one way: Tabulate the values of gn,i for the first few values of n and each of i ∈ {0, 1, 2}.
You will soon observe (experimentally, so far) that for each n ∈ N, two of the three values
gn,0, gn,1 and gn,2 are equal, whereas the third of these three values differs from these two
by 1. But the sum gn,0 + gn,1 + gn,2 of these three values is 2n (since it counts all subsets
of [n]). Hence, these three values gn,0, gn,1 and gn,2 divide 2n into three parts that are “as
close to each other as possible” while being integers (since we cannot divide 2n evenly by 3).
This lets you find an explicit formula for these parts. It is also not hard to see the pattern
that governs which two of the parts are equal. After some work, the formula (24) (or an
equivalent formula) emerges.

4 Exercise 4

4.1 Problem

Let n ∈ N be positive. Let m ∈ N. Prove that

m∑
k=0

(−1)k
(
n

k

)
= (−1)m

(
n− 1

m

)
. (25)

4.2 Solution sketch

4.2.1 First solution

We can prove (25) by induction on m:

Induction base: We have
(
n

0

)
=

(
n− 1

0

)
(since both sides of this equality equal 1).

Now,

0∑
k=0

(−1)k
(
n

k

)
= (−1)0

(
n

0

)
︸︷︷︸

=

(
n− 1

0

) = (−1)0
(
n− 1

0

)
.

In other words, (25) holds for m = 0. This completes the induction base.
Induction step: Let p ∈ N. Assume that (25) holds for m = p. We must now prove that

(25) holds for m = p+ 1.
We have assumed that (25) holds for m = p. In other words, we have

p∑
k=0

(−1)k
(
n

k

)
= (−1)p

(
n− 1

p

)
. (26)
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But the recurrence relation of the binomial coefficients yields(
n

p+ 1

)
=

(
n− 1

(p+ 1)− 1

)
+

(
n− 1

p+ 1

)
=

(
n− 1

p

)
+

(
n− 1

p+ 1

)
.

Hence,
p+1∑
k=0

(−1)k
(
n

k

)
=

p∑
k=0

(−1)k
(
n

k

)
︸ ︷︷ ︸
=(−1)p

(
n− 1

p

)
+(−1)p+1︸ ︷︷ ︸

=−(−1)p

(
n

p+ 1

)
︸ ︷︷ ︸

=

(
n− 1

p

)
+

(
n− 1

p+ 1

)
= (−1)p

(
n− 1

p

)
+ (− (−1)p)

((
n− 1

p

)
+

(
n− 1

p+ 1

))
= (−1)p

(
n− 1

p

)
− (−1)p

(
n− 1

p

)
− (−1)p

(
n− 1

p+ 1

)
= − (−1)p︸ ︷︷ ︸

=(−1)p+1

(
n− 1

p+ 1

)
= (−1)p+1

(
n− 1

p+ 1

)
.

In other words, (25) holds for m = p+ 1. This completes the induction step. Thus, (25) is
proven by induction. This solves the exercise.

4.2.2 Second solution

Recall the telescope principle (which we have already encountered in the solutions to home-
work set #0):

Proposition 4.1. Let m ∈ N. Let a0, a1, . . . , am be m+ 1 real numbers. Then,
m∑
i=1

(ai − ai−1) = am − a0.

Let us restate this proposition in a slightly modified way:

Proposition 4.2. Let m ∈ {−1, 0, 1, 2, . . .}. Let a−1, a0, . . . , am be m + 2 real numbers.
Then,

m∑
i=0

(ai − ai−1) = am − a−1.

Proof of Proposition 4.2. Proposition 4.1 (applied to m + 1 and aj−1 instead of m and aj)
yields

m+1∑
i=1

(
ai−1 − a(i−1)−1

)
= a(m+1)−1 − a0−1 = am − a−1.

Comparing this with
m+1∑
i=1

(
ai−1 − a(i−1)−1

)
=

m∑
i=0

(ai − ai−1) (here, we have substituted i for i− 1 in the sum) ,

we obtain
m∑
i=0

(ai − ai−1) = am − a−1.

This proves Proposition 4.2.
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Every i ∈ Z satisfies (
n

i

)
=

(
n− 1

i− 1

)
+

(
n− 1

i

)
(by the recurrence relation of the binomial coefficients) and therefore

(−1)i
(
n

i

)
= (−1)i

((
n− 1

i− 1

)
+

(
n− 1

i

))
= (−1)i︸ ︷︷ ︸

=−(−1)i−1

(
n− 1

i− 1

)
+ (−1)i

(
n− 1

i

)

= − (−1)i−1
(
n− 1

i− 1

)
+ (−1)i

(
n− 1

i

)
= (−1)i

(
n− 1

i

)
− (−1)i−1

(
n− 1

i− 1

)
. (27)

Now,

m∑
k=0

(−1)k
(
n

k

)
=

m∑
i=0

(−1)i
(
n

i

)
︸ ︷︷ ︸

=(−1)i
(
n− 1

i

)
−(−1)i−1

(
n− 1

i− 1

)
(by (27))

=
m∑
i=0

(
(−1)i

(
n− 1

i

)
− (−1)i−1

(
n− 1

i− 1

))
= (−1)m

(
n− 1

m

)
− (−1)−1

(
n− 1

−1

)
︸ ︷︷ ︸

=0
(since −1 < 0)(

by Proposition 4.2, applied to aj = (−1)j
(
n− 1

j

))
= (−1)m

(
n− 1

m

)
.

This solves the exercise.

4.2.3 Third solution

Let me sketch a combinatorial proof, similar to the 3rd proof of Corollary 2.3 in the black-
board work on 19 September 2018 (but written up more systematically, since our situation
is more complicated).

If S is any set, then P (S) shall denote the set of all subsets of S. This is called the
powerset (or power set) of S.

If S is any set and i is any integer, then:

• We let Pi (S) denote the set of all i-element subsets of S.

• We let P≤i (S) denote the set of all subsets of S that have at most i elements.

(Thus, P≤i (S) = P0 (S) ∪ P1 (S) ∪ · · · ∪ Pi (S) for any i and S.)
The core of our argument can be abstracted into the following general lemma:
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Lemma 4.3. Let S be a finite set. Let X be a subset of P (S). (That is, X is a set of
subsets of S.) Let f : X → X be a bijection. Assume that

|f (I)| ≡ |I|+ 1 mod 2 for each I ∈ X. (28)

Then, ∑
I∈X

(−1)|I| = 0.

Roughly speaking, Lemma 4.3 says that if X is a set of subsets of a finite set S, and
there exists a permutation f of X that flips the parity of the size of every subset it is applied
to, then X contains equally many even-sized sets as it contains odd-sized sets (indeed, this
is what the equality

∑
I∈X

(−1)|I| = 0 says). The intuitive reason for this is that the bijection

f “matches” the even-sized sets in X with the odd-sized sets in X (though we need to be
careful here, since we are not requiring f ◦ f to be id). The following proof of this lemma
formalizes this intuition:

Proof of Lemma 4.3. Every I ∈ X is a subset of S, and thus a finite set (since S is finite).
Thus, |I| is well-defined for every I ∈ X.

If I ∈ X is such that |I| is odd, then |f (I)| is even4. Hence, the map

{I ∈ X | |I| is odd} → {I ∈ X | |I| is even} ,
I 7→ f (I)

is well-defined. Let us denote this map by p.
On the other hand, the map f : X → X is a bijection; thus, the map f−1 : X → X is

well-defined. If I ∈ X is such that |I| is even, then |f−1 (I)| is odd5. Hence, the map

{I ∈ X | |I| is even} → {I ∈ X | |I| is odd} ,
I 7→ f−1 (I)

is well-defined. Let us denote this map by q.
The maps p and q are mutually inverse (since p is a restriction of f , whereas q is a

restriction of f−1). Thus, the map p is invertible, i.e., a bijection.
Now, if I ∈ X, then |I| is either even or odd (but not both at the same time). Hence,

4because (28) yields |f (I)| ≡ |I|︸︷︷︸
≡1 mod 2

(since |I| is odd)

+1 ≡ 1 + 1 ≡ 0 mod 2

5because (28) (applied to f−1 (I) instead of I) yields
∣∣f (f−1 (I))∣∣ ≡ ∣∣f−1 (I)∣∣+ 1 mod 2, which leads to

∣∣f−1 (I)∣∣ + 1 ≡

∣∣∣∣∣∣∣f
(
f−1 (I)

)︸ ︷︷ ︸
=I

∣∣∣∣∣∣∣ = |I| ≡ 0 mod 2 (since |I| is even), which leads to
∣∣f−1 (I)∣∣ ≡ 0 − 1 ≡ 1

mod 2
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we can split the sum
∑
I∈X

(−1)|I| = 0 as follows:∑
I∈X

(−1)|I| =
∑
I∈X;
|I| is even

(−1)|I|︸ ︷︷ ︸
=1

(since |I| is even)

+
∑
I∈X;
|I| is odd

(−1)|I|︸ ︷︷ ︸
=−1

(since |I| is odd)

=
∑
I∈X;
|I| is even

1 +
∑
I∈X;
|I| is odd

(−1)

=
∑
I∈X;
|I| is odd

1 +
∑
I∈X;
|I| is odd

(−1)

 here, we have substituted p (I) for I in the first sum, since the map
p : {I ∈ X | |I| is odd} → {I ∈ X | |I| is even}

is a bijection


=

∑
I∈X;
|I| is odd

(1 + (−1))︸ ︷︷ ︸
=0

=
∑
I∈X;
|I| is odd

0 = 0.

This proves Lemma 4.3.

Now, recall once again the concept of a symmetric difference: If X and Y are two sets,
then the symmetric difference of X and Y is the set X4Y , defined by

X4Y = (X ∪ Y ) \ (X ∩ Y ) = (X \ Y ) ∪ (Y \X) .

Thus, in particular, if I is any set and a is any object, then

I4{a} =

{
I ∪ {a} , if a /∈ I;

I \ {a} , if a ∈ I.

Thus, if I is any finite set, and if a is any object, then the set I4{a} is finite again, and
satisfies

|I4{a}| ≡ |I|+ 1 mod 2 (29)
(in fact, |I4{a}| is either |I|+ 1 or |I| − 1, depending on whether a /∈ I or a ∈ I).

Furthermore, any set I and any object a satisfy

(I4{a})4{a} = I. (30)

Now, let us return to the exercise. Let X be the subset P≤m ([n])\Pm ([n− 1]) of P ([n]).
This subset X consists of all subsets S of [n] that

• belong to P≤m ([n]) (i.e., have at most m elements), and

• do not belong to Pm ([n− 1]) (i.e., are not m-element subsets of [n− 1]).

In other words, a subset S of [n] belongs to X if and only if it has at most m elements and
has the property that if it has exactly m elements, then it must contain n (since this is
what it means to not be a subset of [n− 1]).

Now, it is easy to see that for each I ∈ X, we have I4{n} ∈ X. 6 Hence, we can
define a map

X → X,

I 7→ I4{n} .
6Proof. Let I ∈ X. Thus, I belongs to P≤m ([n]) but does not belong to Pm ([n− 1]) (by the definition of
X). From I ∈ P≤m ([n]), we obtain |I| ≤ m.

Darij Grinberg, 00000000 20 dgrinber@umn.edu



Solutions to homework set #2 page 21 of 30

Let us denote this map by f .
The equality (30) (applied to a = n) shows that (I4{n})4{n} = I for each I ∈ X.

In other words, f (f (I)) = I for each I ∈ X. Thus, f ◦ f = id. Thus, the maps f and f are
mutually inverse. Hence, the map f is invertible, i.e., a bijection. Moreover, it satisfies

|f (I)| ≡ |I|+ 1 mod 2 for each I ∈ X

(by (29), applied to a = n).
Hence, Lemma 4.3 (applied to S = [n]) yields that∑

I∈X

(−1)|I| = 0.

In view of X = P≤m ([n]) \ Pm ([n− 1]), this rewrites as∑
I∈P≤m([n])\Pm([n−1])

(−1)|I| = 0.

But each m-element subset of [n− 1] is clearly a subset of [n] that has at most m
elements. In other words, Pm ([n− 1]) is a subset of P≤m ([n]). Each I ∈ P≤m ([n]) satisfies
either I ∈ Pm ([n− 1]) or I /∈ Pm ([n− 1]) (but not both). Thus,∑

I∈P≤m([n])

(−1)|I| =
∑

I∈P≤m([n]);
I∈Pm([n−1])

(−1)|I| +
∑

I∈P≤m([n]);
I /∈Pm([n−1])

(−1)|I| . (31)

On the right hand side of this equality, we can replace the summation sign “
∑

I∈P≤m([n]);
I∈Pm([n−1])

”

by “
∑

I∈Pm([n−1])
” (since Pm ([n− 1]) is a subset of P≤m ([n])), and we can also replace the

Now, we must prove that I4{n} ∈ X. We are in one of the following two cases:

• Case 1: We have n ∈ I.

• Case 2: We have n /∈ I.

Let us first consider Case 1. In this case, we have n ∈ I. Hence, I4{n} = I \ {n}, so that |I4{n}| =
|I \ {n}| = |I|−1 (since n ∈ I). Thus, |I4{n}| = |I|−1 ≤ m−1 (since |I| ≤ m), so that |I4{n}| 6= m.
Now, the set I4{n} belongs to P≤m ([n]) (since I4{n} ⊆ [n] and |I4{n}| ≤ m − 1 ≤ m) and does
not belong to Pm ([n− 1]) (since |I4{n}| 6= m). In other words, I4{n} ∈ X (by the definition of X).
Hence, I4{n} ∈ X is proven in Case 1.
Let us now consider Case 2. In this case, we have n /∈ I. Hence, I4{n} = I ∪ {n}, so that
|I4{n}| = |I ∪ {n}| = |I|+1 (since n ∈ I). Also, I is a subset of [n] satisfying n /∈ I; thus, I is a subset
of [n] \ {n} = [n− 1]. Hence, if we had |I| = m, then we would have I ∈ Pm ([n− 1]) (since I would be
an m-element subset of [n− 1]), which would contradict the fact that I does not belong to Pm ([n− 1]).
Hence, we cannot have |I| = m. Thus, |I| 6= m. Combined with |I| ≤ m, this yields |I| < m, so that
|I| ≤ m − 1 (since |I| and m are integers). Thus, |I| + 1 ≤ m. Furthermore, the set I4{n} = I ∪ {n}
contains n (since n ∈ {n}), and thus cannot be a subset of [n− 1]. In other words, I4{n} 6⊆ [n− 1].

Now, the set I4{n} belongs to P≤m ([n]) (since I4{n} ⊆ [n] and |I4{n}| = |I|+ 1 ≤ m) and does
not belong to Pm ([n− 1]) (since I4{n} 6⊆ [n− 1]). In other words, I4{n} ∈ X (by the definition of
X). Hence, I4{n} ∈ X is proven in Case 2.
We have now proven I4{n} ∈ X in each of the two Cases 1 and 2. Thus, I4{n} ∈ X always holds.

Qed.
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summation sign “
∑

I∈P≤m([n]);
I /∈Pm([n−1])

” by “
∑

I∈P≤m([n])\Pm([n−1])
”. Thus, (31) rewrites as

∑
I∈P≤m([n])

(−1)|I| =
∑

I∈Pm([n−1])

(−1)|I| +
∑

I∈P≤m([n])\Pm([n−1])

(−1)|I|

︸ ︷︷ ︸
=0

=
∑

I∈Pm([n−1])

(−1)|I|︸ ︷︷ ︸
=(−1)m

(since |I| = m (because I ∈ Pm ([n− 1])))

=
∑

I∈Pm([n−1])

(−1)m

= |Pm ([n− 1])|︸ ︷︷ ︸
=(the number of all m-element subsets of [n− 1])

=

(
n− 1

m

)
(since n− 1 ∈ N)

· (−1)m =

(
n− 1

m

)
· (−1)m

= (−1)m
(
n− 1

m

)
.

On the other hand, the I ∈ P≤m ([n]) are precisely the subsets I of [n] that satisfy |I| ≤ m.
In other words, the I ∈ P≤m ([n]) are precisely the subsets I of [n] that satisfy |I| ∈
{0, 1, . . . ,m}. Thus,∑

I∈P≤m([n])

(−1)|I| =
∑

I∈P([n]);
|I|∈{0,1,...,m}

(−1)|I| =
∑

k∈{0,1,...,m}

∑
I∈P([n]);
|I|=k

(−1)|I|︸ ︷︷ ︸
=(−1)k

(since |I| = k)

=
∑

k∈{0,1,...,m}

∑
I∈P([n]);
|I|=k

(−1)k

︸ ︷︷ ︸
=(the number of all I ∈ P ([n]) satisfying |I| = k)·(−1)k

=
∑

k∈{0,1,...,m}︸ ︷︷ ︸
=

m∑
k=0

(the number of all I ∈ P ([n]) satisfying |I| = k)︸ ︷︷ ︸
=(the number of all k-element subsets of [n])

=

(
n

k

) · (−1)k

=
m∑
k=0

(
n

k

)
· (−1)k =

m∑
k=0

(−1)k
(
n

k

)
.

Hence,
m∑
k=0

(−1)k
(
n

k

)
=

∑
I∈P≤m([n])

(−1)|I| = (−1)m
(
n− 1

m

)
.

Thus, the exercise is solved again.

4.3 Remark

The equality (25) holds not only for any positive integer n, but also for any real number
n. Indeed, the first and second solutions given above still apply in this generality (although
the third solution does not).

Let us also remark that this exercise generalizes the following known fact (which was
Corollary 2.3 in the blackboard work on 19 September 2018):
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Corollary 4.4. Let n ∈ N. Then,
n∑

k=0

(−1)k
(
n

k

)
= [n = 0]

(where we are using the Iverson bracket notation).

To derive this corollary from the exercise, we recall the following fact (that we proved
in class):

Proposition 4.5. Let m ∈ N and n ∈ N be such that m < n. Then,
(
m

n

)
= 0.

Proof of Corollary 4.4. In the case when n = 0, it is straightforward to verify Corollary 4.4
by direct computation (it simply becomes 1 = 1 in this case). Thus, for the rest of this
proof, we WLOG assume that we don’t have n = 0. Thus, n 6= 0, so that n is a positive
integer and satisfies [n = 0] = 0.

Also, n − 1 ∈ N (since n is a positive integer) and n − 1 < n. Hence, Proposition 4.5

(applied to m = n− 1) yields
(
n− 1

n

)
= 0.

Now, (25) (applied to m = n) yields
n∑

k=0

(−1)k
(
n

k

)
= (−1)n

(
n− 1

n

)
︸ ︷︷ ︸

=0

= 0 = [n = 0] .

This proves Corollary 4.4.

5 Exercise 5

5.1 Problem

Let n ∈ N. If i = (i1, i2, . . . , in) ∈ {0, 1}n and k ∈ [n], then

• we say that k is a 1-position of i if ik = 1;

• we say that k is a 10-position of i if k < n, ik = 1 and ik+1 = 0.

For example, the 7-tuple (0, 1, 1, 0, 1, 0, 1) has 1-positions 2, 3, 5, 7 and 10-positions 3, 5.
It is easy to see that for each k ∈ Z, the number of all n-tuples i ∈ {0, 1}n having exactly

k 1-positions is
(
n

k

)
. (In fact, these n-tuples are in bijection with the k-element subsets of

[n].) In this problem, we shall count the n-tuples having exactly k 10-positions.
We use the notation a%b for the remainder of an integer a upon division by a positive

integer b. For example, 5%3 = 2. Also, bxc denotes the integer part (i.e., floor) of a real
number x (that is, the largest integer that is smaller or equal to x).

Let A : {0, 1}n → {0, 1}n be the map that sends any n-tuple (i1, i2, . . . , in) to the n-tuple
(j1, j2, . . . , jn), where

jk = (i1 + i2 + · · ·+ ik)%2 for all k.

For example, A ((0, 1, 1, 0, 0, 1, 0)) = (0, 1, 0, 0, 0, 1, 1).
Prove the following:
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(a) The map A is bijective.

(b) If the number of 1-positions of some n-tuple i ∈ {0, 1}n is p, then the number of
10-positions of the n-tuple A (i) is bp/2c.

(c) Let k ∈ Z. Then, the number of n-tuples i ∈ {0, 1}n having exactly k 10-positions is(
n+ 1

2k + 1

)
.

5.2 Solution sketch

Before we step to the actual problem, let us notice two simple facts about remainders modulo
2:

• For any integer u, we have
u ≡ u%2 mod 2. (32)

• If u and v are two integers satisfying u ≡ v mod 2, then

u%2 = v%2. (33)

(Both of these facts remain true if 2 is replaced by any other positive integer.)

(a) Let B : {0, 1}n → {0, 1}n be the map that sends any n-tuple (j1, j2, . . . , jn) to the
n-tuple (i1, i2, . . . , in), where

ik = (jk − jk−1)%2 for all k,

where j0 is understood to be 0. For example, B ((0, 1, 1, 0, 0, 1, 0)) = (0, 1, 0, 1, 0, 1, 1).
We shall show that the maps A and B are mutually inverse. Indeed:

• Let us first check that B ◦ A = id.

Indeed, let i ∈ {0, 1}n be arbitrary. Write i in the form i = (i1, i2, . . . , in). Set

jk = (i1 + i2 + · · ·+ ik)%2 for all k ∈ [n]. (34)

Then, A (i) = (j1, j2, . . . , jn) (by the definition of A).

Next, set j0 = 0. Set

hk = (jk − jk−1)%2 for all k ∈ [n]. (35)

Then, B (A (i)) = (h1, h2, . . . , hn) (by the definition ofB, becauseA (i) = (j1, j2, . . . , jn)).

For each k ∈ [n], we have

jk = (i1 + i2 + · · ·+ ik)%2 (by (34))
≡ i1 + i2 + · · ·+ ik mod 2 (by (32), applied to u = i1 + i2 + · · ·+ ik) .

This congruence also holds for k = 0 (since j0 = 0 ≡ 0 = i1 + i2 + · · · + i0 mod 2).
Thus, it holds for all k ∈ {0, 1, . . . , n}. In other words, we have

jk ≡ i1 + i2 + · · ·+ ik mod 2 for all k ∈ {0, 1, . . . , n}. (36)
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Now, let k ∈ [n]. Then,

jk︸︷︷︸
≡i1+i2+···+ik mod 2

(by (36))

− jk−1︸︷︷︸
≡i1+i2+···+ik−1 mod 2

(by (36), applied to k − 1 instead of k)

≡ (i1 + i2 + · · ·+ ik)− (i1 + i2 + · · ·+ ik−1) = ik mod 2.

Hence, (33) (applied to u = jk − jk−1 and v = ik) yields (jk − jk−1)%2 = ik%2. But
ik ∈ {0, 1}; thus, ik is its own remainder upon division by 2. In other words, ik%2 = ik.
Hence, (jk − jk−1)%2 = ik%2 = ik. Now, (35) becomes hk = (jk − jk−1)%2 = ik.

Now, forget that we fixed k. We thus have shown that hk = ik for each k ∈ [n]. In
other words, (h1, h2, . . . , hn) = (i1, i2, . . . , in). Now,

(B ◦ A) (i) = B (A (i)) = (h1, h2, . . . , hn) = (i1, i2, . . . , in) = i = id (i) .

Now, forget that we fixed i. We thus have shown that (B ◦ A) (i) = id (i) for each
i ∈ {0, 1}n. In other words, B ◦ A = id.

• Let us now prove that A ◦B = id.

Indeed, let j ∈ {0, 1}n be arbitrary. Write j in the form j = (j1, j2, . . . , jn). Set j0 = 0.
Now, set

ik = (jk − jk−1)%2 for all k ∈ [n]. (37)

Then, B (j) = (i1, i2, . . . , in) (by the definition of B).

Next, set
j′k = (i1 + i2 + · · ·+ ik)%2 for all k ∈ [n]. (38)

Then, A (B (j)) = (j′1, j
′
2, . . . , j

′
n) (by the definition ofA, becauseB (j) = (i1, i2, . . . , in)).

The equality (37) shows that for each k ∈ [n], we have

ik = (jk − jk−1)%2 ≡ jk − jk−1 mod 2 (39)

(by (32), applied to u = jk − jk−1).

For each m ∈ [n], we have

i1 + i2 + · · ·+ im =
m∑
k=1

ik︸︷︷︸
≡jk−jk−1 mod 2

(by (39))

≡
m∑
k=1

(jk − jk−1)

= jm − j0︸︷︷︸
=0

(by the telescope principle)

= jm mod 2,

and therefore

(i1 + i2 + · · ·+ im)%2

= jm%2 (by (33), applied to u = i1 + i2 + · · ·+ ik and v = jm)

= jm (since jm ∈ {0, 1}) . (40)

Now, for each k ∈ [n], we have

j′k = (i1 + i2 + · · ·+ ik)%2 (by (34))
= jk
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(by (40), applied to m = k). In other words, we have (j′1, j
′
2, . . . , j

′
n) = (j1, j2, . . . , jn).

Now,

(A ◦B) (j) = A (B (j)) = (j′1, j
′
2, . . . , j

′
n) = (j1, j2, . . . , jn) = j = id (j) .

Now, forget that we fixed j. We thus have shown that (A ◦B) (j) = id (j) for each
j ∈ {0, 1}n. In other words, A ◦B = id.

Combining A◦B = id with B◦A = id, we conclude that the maps A and B are mutually
inverse. Thus, the map A is invertible, i.e., bijective.

(b) Let i ∈ {0, 1}n be an n-tuple. Let p be the number of 1-positions of i. We need to
prove that the number of 10-positions of the n-tuple A (i) is bp/2c.

Indeed, let h1, h2, . . . , hp be the 1-positions of i, labeled from first to last (so that h1 <
h2 < · · · < hp). We shall prove that h2− 1, h4− 1, . . . , h2bp/2c− 1 are the 10-positions of the
n-tuple A (i). In other words, we shall prove that{

h2 − 1, h4 − 1, . . . , h2bp/2c − 1
}
= {10-positions of A (i)} .

This will, of course, entail that the number of 10-positions of the n-tuple A (i) is bp/2c (since
h2 − 1 < h4 − 1 < · · · < h2bp/2c − 1).

But first, let us write i in the form i = (i1, i2, . . . , in). Set

jk = (i1 + i2 + · · ·+ ik)%2 for all k ∈ [n]. (41)

Then, A (i) = (j1, j2, . . . , jn) (by the definition of A).
Now we claim that every k ∈ [n] satisfies

jk = (the number of 1-positions of i that are ≤ k)%2. (42)

[Proof of (42): Let k ∈ [n]. Then,

i1 + i2 + · · ·+ ik =
∑
r∈[k]

ir =
∑
r∈[k];
ir=0

ir︸︷︷︸
=0

+
∑
r∈[k];
ir=1

ir︸︷︷︸
=1

(since each r ∈ [k] satisfies either ir = 0 or ir = 1 (but not both))

=
∑
r∈[k];
ir=0

0

︸ ︷︷ ︸
=0

+
∑
r∈[k];
ir=1

1 =
∑
r∈[k];
ir=1

1

= (the number of all r ∈ [k] satisfying ir = 1) · 1
= (the number of all r ∈ [k] satisfying ir = 1)

= (the number of all 1-positions of i that belong to [k])(
since the r ∈ [k] satisfying ir = 1 are precisely

the 1-positions of i that belong to [k]

)
= (the number of 1-positions of i that are ≤ k)

(since the 1-positions of i that belong to [k] are precisely the 1-positions of i that are ≤ k).
Hence, (41) yields

jk = (i1 + i2 + · · ·+ ik)︸ ︷︷ ︸
=(the number of 1-positions of i that are ≤ k)

%2

= (the number of 1-positions of i that are ≤ k)%2.
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This proves (42).]
Next, we claim that{

h2 − 1, h4 − 1, . . . , h2bp/2c − 1
}
⊆ {10-positions of A (i)} . (43)

[Proof of (43): Let q ∈
{
h2 − 1, h4 − 1, . . . , h2bp/2c − 1

}
. We need to show that q ∈

{10-positions of A (i)}.
We have q ∈

{
h2 − 1, h4 − 1, . . . , h2bp/2c − 1

}
; thus, q = hx − 1 for some even x ∈ [p].

Consider this x.
We know that x is even; thus, x− 1 is odd.
We have x ≥ 2 (since x ∈ [p] is even). But h1 < h2 < · · · < hp; thus, h1 < hx (since

x ≥ 2 > 1). Hence, hx > h1 ≥ 1, so that hx − 1 > 0. Hence, q = hx − 1 > 0. Combined
with q = hx − 1 < hx ≤ n, this yields q ∈ [n− 1]. Thus, jq and jq+1 are well-defined.

Recall that the 1-positions of i are h1, h2, . . . , hp; these 1-positions are listed in strictly
increasing order (i.e., we have h1 < h2 < · · · < hp). Hence, the first x−1 of these 1-positions
are < hx, whereas the remaining p−x+1 of these 1-positions are ≥ hx. Thus, the 1-positions
of i that are < hx are precisely h1, h2, . . . , hx−1. Similar reasoning shows that the 1-positions
of i that are ≤ hx are precisely h1, h2, . . . , hx.

From (42) (applied to k = q), we obtain

jq = (the number of 1-positions of i that are ≤ q)%2

= (the number of 1-positions of i that are ≤ hx − 1)︸ ︷︷ ︸
=(the number of 1-positions of i that are < hx)

=x−1
(since the 1-positions of i that are < hx are precisely h1, h2, . . . , hx−1)

%2 (since q = hx − 1)

= (x− 1)%2 = 1

(since x− 1 is odd).
But q + 1 = hx (since q = hx − 1). From (42) (applied to k = q + 1), we obtain

jq+1 = (the number of 1-positions of i that are ≤ q + 1)%2

= (the number of 1-positions of i that are ≤ hx)︸ ︷︷ ︸
=x

(since the 1-positions of i that are ≤ hx are precisely h1, h2, . . . , hx)

%2 (since q + 1 = hx)

= x%2 = 0

(since x is even).
Recall that A (i) = (j1, j2, . . . , jn). Thus, an integer k ∈ [n] is a 10-position of A (i) if

and only if k < n, jk = 1 and jk+1 = 0 (by the definition of a “10-position”). We can apply
this to k = q (since q ∈ [n− 1] ⊆ [n]); thus, we conclude that q is a 10-position of A (i) (since
it does satisfy q < n and jq = 1 and jq+1 = 0). In other words, q ∈ {10-positions of A (i)}.

Now, forget that we fixed q. We thus have shown that q ∈ {10-positions of A (i)} for each
q ∈

{
h2 − 1, h4 − 1, . . . , h2bp/2c − 1

}
. In other words,

{
h2 − 1, h4 − 1, . . . , h2bp/2c − 1

}
⊆

{10-positions of A (i)}. This proves (43).]
Next, we claim that

{10-positions of A (i)} ⊆
{
h2 − 1, h4 − 1, . . . , h2bp/2c − 1

}
. (44)

[Proof of (43): Let q ∈ {10-positions of A (i)}. We need to show that
q ∈

{
h2 − 1, h4 − 1, . . . , h2bp/2c − 1

}
.

We have q ∈ {10-positions of A (i)}. In other words, q is a 10-position of A (i).
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Recall that A (i) = (j1, j2, . . . , jn). Thus, an integer k ∈ [n] is a 10-position of A (i) if
and only if k < n, jk = 1 and jk+1 = 0 (by the definition of a “10-position”). We can apply
this to k = q; thus we conclude that q ∈ [n] satisfies q < n, jq = 1 and jq+1 = 0 (since q is a
10-position of A (i)).

From (42) (applied to k = q), we obtain

jq = (the number of 1-positions of i that are ≤ q)%2. (45)

But q + 1 ∈ [n] (since q ∈ [n] and q < n); thus, (42) (applied to k = q + 1) yields

jq+1 = (the number of 1-positions of i that are ≤ q + 1)%2.

Hence,

(the number of 1-positions of i that are ≤ q + 1)%2

= jq+1 = 0 6= 1 = jq = (the number of 1-positions of i that are ≤ q)%2

(by (45)). Therefore,

(the number of 1-positions of i that are ≤ q + 1)

6= (the number of 1-positions of i that are ≤ q) . (46)

Thus, q+1 must be a 1-position of i (because otherwise, the 1-positions of i that are ≤ q+1
would be exactly the 1-positions of i that are ≤ q; but this would yield

(the number of 1-positions of i that are ≤ q + 1)

= (the number of 1-positions of i that are ≤ q) ,

which would contradict (46)). In other words, q + 1 is one of the numbers h1, h2, . . . , hp

(since h1, h2, . . . , hp are the 1-positions of i). In other words, there exists some x ∈ [p] such
that q + 1 = hx. Consider this x. From q + 1 = hx, we obtain q = hx − 1.

Recall that the 1-positions of i are h1, h2, . . . , hp; these 1-positions are listed in strictly
increasing order (i.e., we have h1 < h2 < · · · < hp). Hence, the first x of these 1-positions
are ≤ hx, whereas the remaining p− x of these 1-positions are > hx. Thus, the 1-positions
of i that are ≤ hx are precisely h1, h2, . . . , hx.

From (42) (applied to k = q + 1), we obtain

jq+1 = (the number of 1-positions of i that are ≤ q + 1)%2

= (the number of 1-positions of i that are ≤ hx)︸ ︷︷ ︸
=x

(since the 1-positions of i that are ≤ hx are precisely h1, h2, . . . , hx)

%2 (since q + 1 = hx)

= x%2.

Therefore, x%2 = jq+1 = 0. In other words, x is even.
Now,

q = hx − 1 ∈ {hk − 1 | k ∈ [p] is even} (since x ∈ [p] is even)
=
{
h2 − 1, h4 − 1, . . . , h2bp/2c − 1

}
.

Forget that we fixed q. We thus have shown that q ∈
{
h2 − 1, h4 − 1, . . . , h2bp/2c − 1

}
for each q ∈ {10-positions of A (i)}. In other words,
{10-positions of A (i)} ⊆

{
h2 − 1, h4 − 1, . . . , h2bp/2c − 1

}
. This proves (44).]

Combining (43) with (44), we obtain

{10-positions of A (i)} =
{
h2 − 1, h4 − 1, . . . , h2bp/2c − 1

}
. (47)

In other words, the 10-positions of A (i) are precisely h2 − 1, h4 − 1, . . . , h2bp/2c − 1. Since
these bp/2c elements h2 − 1, h4 − 1, . . . , h2bp/2c − 1 are distinct7, we thus conclude that the

7This follows easily from h1 < h2 < · · · < hp.
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number of 10-positions of A (i) is bp/2c. This solves part (b) of the exercise.

(c) The map A is bijective (according to part (a) of the exercise). Thus,

(the number of i ∈ {0, 1}n such that i has exactly k 10-positions)
= (the number of i ∈ {0, 1}n such that A (i) has exactly k 10-positions) (48)

(here, we have substituted A (i) for i in the count, since the map A is bijective).
But for each n-tuple i ∈ {0, 1}n, we have the following logical equivalence:

(A (i) has exactly k 10-positions)
⇐⇒ (i has exactly 2k or 2k + 1 1-positions) . (49)

[Proof of (49): Let i ∈ {0, 1}n be an n-tuple. Let p be the number of 1-positions of i.
Then, part (b) of the exercise shows that the number of 10-positions of the n-tuple A (i) is
bp/2c. Now, we have the following chain of logical equivalences:

(A (i) has exactly k 10-positions)
⇐⇒ (the number of 10-positions of the n-tuple A (i) is k)
⇐⇒ (bp/2c = k)

(since the number of 10-positions of the n-tuple A (i) is bp/2c)
⇐⇒ (k ≤ p/2 < k + 1)

(by the definition of bp/2c)
⇐⇒ (2k ≤ p < 2 (k + 1))

⇐⇒ (p is either 2k or 2k + 1)

(since p is an integer)
⇐⇒ (the number of 1-positions of i is either 2k or 2k + 1)

(since p is the number of 1-positions of i)
⇐⇒ (i has exactly 2k or 2k + 1 1-positions) .

This proves (49).]
Recall furthermore the following fact (already mentioned in the exercise):

Claim 1: Let j ∈ Z. Then,

(the number of all n-tuples i ∈ {0, 1}n having exactly j 1-positions) =
(
n

j

)
.

[Proof of Claim 1: Let Pj ([n]) denote the set of all j-element subsets of the set [n].

Then, |Pj ([n])| =
(
n

j

)
(by the combinatorial interpretation of the binomial coefficients).

But the map

{i ∈ {0, 1}n | i has exactly j 1-positions} → Pj ([n]) ,

(i1, i2, . . . , in) 7→ {p ∈ [n] | ip = 1}

is a bijection (indeed, its inverse is the map

Pj ([n])→ {i ∈ {0, 1}n | i has exactly j 1-positions} ,
S 7→ ([1 ∈ S] , [2 ∈ S] , . . . , [n ∈ S]) ,
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where we are using the Iverson bracket notation). Hence,

|{i ∈ {0, 1}n | i has exactly j 1-positions}| = |Pj ([n])| =
(
n

j

)
.

Thus,

(the number of all n-tuples i ∈ {0, 1}n having exactly j 1-positions)

= |{i ∈ {0, 1}n | i has exactly j 1-positions}| =
(
n

j

)
.

This proves Claim 1.]
Now, all we need is to combine what we have proven. We have

(the number of n-tuples i ∈ {0, 1}n having exactly k 10-positions)
= (the number of i ∈ {0, 1}n such that i has exactly k 10-positions)

=

the number of i ∈ {0, 1}n such that A (i) has exactly k 10-positions︸ ︷︷ ︸
⇐⇒ (i has exactly 2k or 2k+1 1-positions)

(by (49))


(by (48))

= (the number of i ∈ {0, 1}n such that i has exactly 2k or 2k + 1 1-positions)
= (the number of i ∈ {0, 1}n such that i has exactly 2k 1-positions)︸ ︷︷ ︸

=(the number of all n-tuples i∈{0,1}n having exactly 2k 1-positions)

=

(
n

2k

)
(by Claim 1, applied to j=2k)

+ (the number of i ∈ {0, 1}n such that i has exactly 2k + 1 1-positions)︸ ︷︷ ︸
=(the number of all n-tuples i∈{0,1}n having exactly 2k+1 1-positions)

=

(
n

2k + 1

)
(by Claim 1, applied to j=2k+1)

=

(
n

2k

)
+

(
n

2k + 1

)
=

(
n+ 1

2k + 1

)

(since the recurrence relation of the binomial coefficients yields
(
n+ 1

2k + 1

)
=

(
(n+ 1)− 1

(2k + 1)− 1

)
+(

(n+ 1)− 1

2k + 1

)
=

(
n

2k

)
+

(
n

2k + 1

)
). This solves part (c) of the exercise.
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