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1 Exercise 1

1.1 Problem

Let n be a positive integer.
An n-tuple (i1, i2, . . . , in) ∈ {0, 1, 2, 3}n is said to be even if the sum i1 + i2 + · · ·+ in is

even. (For example, the 4-tuple (2, 3, 1, 2) is even, whereas (1, 2, 3, 1) is not.)
Compute the number of all even n-tuples (i1, i2, . . . , in) ∈ {0, 1, 2, 3}n.
(Here and in all future exercises, all answers need to be proven.)
[Hint: Compare with Exercise 3 on Homework set #0.]

1.2 Solution sketch

The number of all even n-tuples (i1, i2, . . . , in) ∈ {0, 1, 2, 3}n is 22n−1.
There are several possible proofs of this fact. Here are two:
First proof (outline).
We proceed similarly to the solution of Exercise 3 on homework set #0:
Let En be the set of all even n-tuples (i1, i2, . . . , in) ∈ {0, 1, 2, 3}n. Then, we must show

that |En| = 22n−1.
We shall achieve this by finding a bijection from En to {0, 1, 2, 3}n−1 × {0, 1}.
If a is an integer and b is a positive integer, then a//b shall denote the quotient obtained

when dividing a by b (with remainder), whereas a%b shall denote the remainder. For
example, 7 // 3 = 2 and 7%3 = 1. For any integer a and positive integer b, we have
a = (a // b) b+ (a%b).
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Note that if a is a nonnegative integer, then a%2 is the last bit1 of the binary represen-
tation of a, whereas a // 2 is the number obtained by throwing away this last bit.

If a ∈ {0, 1, 2, 3}, then the binary representation of a consists of at most two bits. If we
write it as a two-bit string (possibly with a leading zero), then its first bit is a // 2, whereas
the last bit is a%2. This should be kept in mind when reading what follows.

Define a map A : En → {0, 1, 2, 3}n−1 × {0, 1} by setting

A ((i1, i2, . . . , in)) = ((i1, i2, . . . , in−1) , in // 2) for each (i1, i2, . . . , in) ∈ En.

Thus, the map A essentially throws away the last bit of the last entry of the even n-tuple.
It is not hard to check that A is injective and surjective. (For example, to prove the

surjectivity of A, we just need to check that for any ((j1, j2, . . . , jn−1) , k) ∈ {0, 1, 2, 3}n−1 ×
{0, 1}, there exists some even n-tuple (i1, i2, . . . , in) ∈ En such that ((i1, i2, . . . , in−1) , in // 2) =
((j1, j2, . . . , jn−1) , k). This is easily done: Set ip = jp for all p ∈ [n− 1], and set in =

2k +

{
0, if i1 + i2 + · · ·+ in−1 is even;
1, if i1 + i2 + · · ·+ in−1 is odd.

.)

In other words, A : En → {0, 1, 2, 3}n−1 × {0, 1} is a bijection. Hence,

|En| =
∣∣{0, 1, 2, 3}n−1 × {0, 1}∣∣ = 4n−1 · 2 = 22n−1.

This solves the exercise.
Second proof (outline).
Exercise 3 on homework set #0 says that the number of even n-tuples (i1, i2, . . . , in) ∈

{0, 1}n is 2n−1. Applying this to 2n instead of n, we conclude that the number of even
2n-tuples (i1, i2, . . . , i2n) ∈ {0, 1}2n is 22n−1. In other words,∣∣{even 2n-tuples (i1, i2, . . . , i2n) ∈ {0, 1}2n

}∣∣ = 22n−1. (1)

Consider the map D : {0, 1}2 → {0, 1, 2, 3} given by

D (0, 0) = 0, D (0, 1) = 1, D (1, 0) = 3, D (1, 1) = 2.

(Strictly speaking, we should be writing D ((0, 0)) instead of D (0, 0), and so on. But that’s
a common shorthand.)

The map D is a bijection and has the property that

D (a, b) ≡ a+ b mod 2 for all (a, b) ∈ {0, 1}2 . (2)

Hence, the map{
even 2n-tuples (i1, i2, . . . , i2n) ∈ {0, 1}2n

}
→ {even n-tuples (i1, i2, . . . , in) ∈ {0, 1, 2, 3}n} ,

(a1, b1, a2, b2, . . . , an, bn) 7→ (D (a1, b1) , D (a2, b2) , . . . , D (an, bn))

is well-defined. It is not hard to see that this map is a bijection (indeed, its inverse sends
each even n-tuple (i1, i2, . . . , in) ∈ {0, 1, 2, 3}n to (a1, b1, a2, b2, . . . , an, bn) ∈ {0, 1}2n, where
the ak and bk are defined by letting (ak, bk) = D−1 (ik) for each k ∈ [n]). Thus,

|{even n-tuples (i1, i2, . . . , in) ∈ {0, 1, 2, 3}n}| =
∣∣{even 2n-tuples (i1, i2, . . . , i2n) ∈ {0, 1}2n

}∣∣
= 22n−1

(by (1)). This solves the exercise again.

1A bit means an element of {0, 1}. So the “digits” in the binary representation of an integer are bits.
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2 Exercise 2

2.1 Problem

Let n ∈ N.
An n-tuple (i1, i2, . . . , in) ∈ {0, 1, 2}n is said to be even if the sum i1 + i2 + · · · + in is

even. (For example, the 4-tuple (2, 1, 1, 2) is even, whereas (1, 2, 2, 2) is not.)
Let en be the number of all even n-tuples (i1, i2, . . . , in) ∈ {0, 1, 2}n.
Prove that en =

3n + 1

2
.

2.2 Solution sketch

We proceed by induction on n:
Induction base: There is only one 0-tuple (i1, i2, . . . , i0) ∈ {0, 1, 2}0, namely the empty

list (). This empty list is even (since the sum i1 + i2 + · · ·+ i0 = (empty sum) = 0 is even).

Thus, e0 = 1. Comparing this with
30 + 1

2
=

1 + 1

2
= 1, we conclude that e0 =

30 + 1

2
.

Hence, the exercise is solved for n = 0. This completes the induction base.
Induction step: Let N be a positive integer. Assume that the exercise holds for n =

N − 1. We must prove that the exercise holds for n = N .
In the following, the word “k-tuple” (for k being a nonnegative integer) shall always

mean “k-tuple in {0, 1, 2}k”. Thus, for each n ∈ N, the number en is simply the number of
all even n-tuples.

We have assumed that the exercise holds for n = N − 1. In other words, eN−1 =
3N−1 + 1

2
.

Recall that an (N − 1)-tuple (i1, i2, . . . , iN−1) ∈ {0, 1, 2}N−1 is even if and only if the
sum i1+ i2+ · · ·+ iN−1 is even. Let us introduce the natural counterpart to this notion: An
(N − 1)-tuple (i1, i2, . . . , iN−1) ∈ {0, 1, 2}N−1 is said to be odd if the sum i1+ i2+ · · ·+ iN−1
is odd.

Thus, each (N − 1)-tuple is either even or odd, but not both at the same time. Hence,

(the number of all (N − 1)-tuples)
= (the number of all even (N − 1)-tuples)︸ ︷︷ ︸

=eN−1

(by the definition of eN−1)

+(the number of all odd (N − 1)-tuples)

= eN−1 + (the number of all odd (N − 1)-tuples) .

Thus,

(the number of all odd (N − 1)-tuples) = (the number of all (N − 1)-tuples)︸ ︷︷ ︸
=3N−1

−eN−1

= 3N−1 − eN−1.

Now, we want to count the even N -tuples (i1, i2, . . . , iN). Let us first count those among
these N -tuples whose last entry iN is 0; then, those whose last entry iN is 1; then, those
whose last entry iN is 2:

• There is a bijection

{even (N − 1)-tuples} → {even N -tuples (i1, i2, . . . , iN) with iN = 0} ,
(i1, i2, . . . , iN−1) 7→ (i1, i2, . . . , iN−1, 0) .
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2 Hence,

|{even (N − 1)-tuples}| = |{even N -tuples (i1, i2, . . . , iN) with iN = 0}| .

In other words,

(the number of all even (N − 1)-tuples)
= (the number of all even N -tuples (i1, i2, . . . , iN) with iN = 0) .

Hence,

(the number of all even N -tuples (i1, i2, . . . , iN) with iN = 0)

= (the number of all even (N − 1)-tuples)
= eN−1. (3)

• There is a bijection

{odd (N − 1)-tuples} → {even N -tuples (i1, i2, . . . , iN) with iN = 1} ,
(i1, i2, . . . , iN−1) 7→ (i1, i2, . . . , iN−1, 1) .

3 Hence,

|{odd (N − 1)-tuples}| = |{even N -tuples (i1, i2, . . . , iN) with iN = 1}| .

In other words,

(the number of all odd (N − 1)-tuples)
= (the number of all even N -tuples (i1, i2, . . . , iN) with iN = 1) .

Hence,

(the number of all even N -tuples (i1, i2, . . . , iN) with iN = 1)

= (the number of all odd (N − 1)-tuples)
= 3N−1 − eN−1. (4)

• There is a bijection

{even (N − 1)-tuples} → {even N -tuples (i1, i2, . . . , iN) with iN = 2} ,
(i1, i2, . . . , iN−1) 7→ (i1, i2, . . . , iN−1, 2) .

4 Hence,

|{even (N − 1)-tuples}| = |{even N -tuples (i1, i2, . . . , iN) with iN = 2}| .

In other words,

(the number of all even (N − 1)-tuples)
= (the number of all even N -tuples (i1, i2, . . . , iN) with iN = 2) .

Hence,

(the number of all even N -tuples (i1, i2, . . . , iN) with iN = 2)

= (the number of all even (N − 1)-tuples)
= eN−1. (5)

2We leave it to the reader to verify that this map is well-defined and is actually a bijection.
3We leave it to the reader to verify that this map is well-defined and is actually a bijection.
4We leave it to the reader to verify that this map is well-defined and is actually a bijection.
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But eN is the number of all even N -tuples. Thus,

eN = (the number of all even N -tuples (i1, i2, . . . , iN))
= (the number of all even N -tuples (i1, i2, . . . , iN) with iN = 0)︸ ︷︷ ︸

=eN−1

(by (3))

+ (the number of all even N -tuples (i1, i2, . . . , iN) with iN = 1)︸ ︷︷ ︸
=3N−1−eN−1

(by (4))

+ (the number of all even N -tuples (i1, i2, . . . , iN) with iN = 2)︸ ︷︷ ︸
=eN−1

(by (5))(
since each N -tuple (i1, i2, . . . , iN) satisfies exactly one

of the equations iN = 0 and iN = 1 and iN = 2

)
= eN−1 +

(
3N−1 − eN−1

)
+ eN−1 = 3N−1 + eN−1︸︷︷︸

=
3N−1 + 1

2

= 3N−1 +
3N−1 + 1

2
=

3 · 3N−1 + 1

2
=

3N + 1

2

(since 3 · 3N−1 = 3N). In other words, the exercise holds for n = N . This completes the
induction step. Hence, the exercise is solved.

3 Exercise 3

3.1 Problem

For any real number x and any k ∈ N, we define the lower factorial xk as in Exercise 2 of

Homework set #0. (Thus, xk = x (x− 1) (x− 2) · · · (x− k + 1) =
k−1∏
i=0

(x− i). This boils

down to x0 = 1 when k = 0, since empty products are defined to be 1.)
Let k, a and b be three positive integers such that k ≤ a ≤ b. Prove that

(k − 1)
b∑

i=a

1

ik
=

1

(a− 1)k−1
− 1

bk−1
. (6)

3.2 Remark

Remark 3.1. This is similar to Exercise 2 of Homework set #0, but here the lower factorials
are in the denominators. The analogous fact from calculus is

(k − 1)

∫ b

a

1

xk
dx =

1

ak−1
− 1

bk−1
.

3.3 Solution sketch

First of all, it is easy to see that all the fractions occurring in the exercise are well-defined:
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• For each i ∈ {a, a+ 1, . . . , b}, the number ik = i (i− 1) · · · (i− k + 1) is a product of
positive integers (since i ≥ a ≥ k and thus i − k + 1 ≥ k − k + 1 = 1 > 0), and thus

nonzero; hence,
1

ik
is well-defined.

• The number (a− 1)k−1 = (a− 1) (a− 2) · · · (a− k + 1) is a product of positive inte-
gers (since a ≥ k and thus a− k + 1 ≥ k − k + 1 = 1 > 0), and thus nonzero; hence,

1

(a− 1)k−1
is well-defined.

• The number bk−1 = b (b− 1) · · · (b− k + 2) is a product of positive integers (since

b ≥ a ≥ k and thus b− k + 2 ≥ k − k + 2 = 2 > 0), and thus nonzero; hence,
1

bk−1
is

well-defined.

Now, we can begin the actual solution. Recall the telescope principle (stated and proven
in the solution to Exercise 2 of Homework set #0):

Proposition 3.2. Let m ∈ N. Let a0, a1, . . . , am be m+ 1 real numbers. Then,
m∑
i=1

(ai − ai−1) = am − a0.

We can easily turn this formula around, obtaining a “reverse telescope principle”:

Proposition 3.3. Let m ∈ N. Let a0, a1, . . . , am be m+ 1 real numbers. Then,
m∑
i=1

(ai−1 − ai) = a0 − am.

Proof of Proposition 3.3. We have
m∑
i=1

(ai−1 − ai)︸ ︷︷ ︸
=(−ai)−(−ai−1)

=
m∑
i=1

((−ai)− (−ai−1)) = (−am)− (−a0)

(by Proposition 3.2, applied to −ai instead of ai)
= a0 − am.

This proves Proposition 3.3.

Next, we observe the following:

Lemma 3.4. Let k ∈ N. Let i ≥ k be a real number. Then,

k − 1

ik
=

1

(i− 1)k−1
− 1

ik−1
.

Proof of Lemma 3.4. We have i ≥ k, thus i− k ≥ 0 and therefore i− k + 1 > 0.
The definition of (i− 1)k−1 yields

(i− 1)k−1 = (i− 1) ((i− 1)− 1) ((i− 1)− 2) · · · ((i− 1)− (k − 1) + 1)

= (i− 1) (i− 2) · · · (i− k + 1) .

Hence, (i− 1)k−1 is a product of positive integers (since i−k+1 > 0), and therefore nonzero.

Thus, the fraction
1

(i− 1)k−1
is well-defined.
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The definition of ik−1 yields

ik−1 = i (i− 1) · · · (i− (k − 1) + 1) = i (i− 1) · · · (i− k + 2) .

Hence, ik−1 is a product of positive integers (since i− k + 2 > i− k + 1 > 0), and therefore

nonzero. Thus, the fraction
1

ik−1
is well-defined.

The definition of ik yields

ik = i (i− 1) · · · (i− k + 1) .

Hence, ik is a product of positive integers (since i−k+1 > 0), and therefore nonzero. Thus,

the fraction
1

ik
is well-defined.

We have

ik = i (i− 1) · · · (i− k + 1) = i · ((i− 1) (i− 2) · · · (i− k + 1))︸ ︷︷ ︸
=(i−1)k−1

= i · (i− 1)k−1 .

Hence,
1

ik
=

1

i · (i− 1)k−1
.

Multiplying this equality by i, we obtain

i

ik
=

1

(i− 1)k−1
. (7)

We have

ik = i (i− 1) · · · (i− k + 1) = i (i− 1) · · · (i− k + 2)︸ ︷︷ ︸
=ik−1

· (i− k + 1) = ik−1 · (i− k + 1) .

Hence,
1

ik
=

1

ik−1 · (i− k + 1)
.

Multiplying this equality by i− k + 1, we obtain

i− k + 1

ik
=

1

ik−1
. (8)

Subtracting this equality from (7), we obtain

i

ik
− i− k + 1

ik
=

1

(i− 1)k−1
− 1

ik−1
.

Hence,
1

(i− 1)k−1
− 1

ik−1
=

i

ik
− i− k + 1

ik
=
i− (i− k + 1)

ik
=
k − 1

ik
.

This proves Lemma 3.4.
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For each i ∈ {a, a+ 1, . . . , b}, we have i ≥ a ≥ k. Thus, for each i ∈ {a, a+ 1, . . . , b},
we have

k − 1

ik
=

1

(i− 1)k−1
− 1

ik−1
(by Lemma 3.4) .

Summing these equalities over all i ∈ {a, a+ 1, . . . , b}, we obtain

b∑
i=a

k − 1

ik
=

b∑
i=a

(
1

(i− 1)k−1
− 1

ik−1

)

=
b−a+1∑
i=1

(
1

(i+ a− 1− 1)k−1
− 1

(i+ a− 1)k−1

)
(here, we have substituted i+ a− 1 for i in the sum)

=
b−a+1∑
i=1

(
1

((i− 1) + a− 1)k−1
− 1

(i+ a− 1)k−1

)
(since i+ a− 1− 1 = (i− 1) + a− 1 for all i)

=
1

(0 + a− 1)k−1
− 1

((b− a+ 1) + a− 1)k−1(
by Proposition 3.3, applied to m = b− a+ 1 and ai =

1

(i+ a− 1)k−1

)
=

1

(a− 1)k−1
− 1

bk−1

(since (b− a+ 1) + a− 1 = b and 0 + a− 1 = a− 1) .

Hence,
1

(a− 1)k−1
− 1

bk−1
=

b∑
i=a

k − 1

ik
= (k − 1)

b∑
i=a

1

ik
.

This solves the exercise.

4 Exercise 4

4.1 Problem

Definition 4.1. The Fibonacci sequence is the sequence (f0, f1, f2, . . .) of integers which is
defined recursively by f0 = 0, f1 = 1, and

fn = fn−1 + fn−2 for all n ≥ 2. (9)

Here is a table of some of its first terms:

n 0 1 2 3 4 5 6 7 8 9
fn 0 1 1 2 3 5 8 13 21 34
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Let n ∈ N. Recall some definitions from class:
Let Rn,2 denote the set [n]× [2], which we regard as a rectangle of width n and height

2 (by identifying the squares with pairs of coordinates).
A vertical domino is a set of the form {(i, j) , (i, j + 1)} for some i ∈ Z and j ∈ Z.
A horizontal domino is a set of the form {(i, j) , (i+ 1, j)} for some i ∈ Z and j ∈ Z.
A domino tiling of Rn,2 means a set of disjoint dominos (i.e., vertical dominos and

horizontal dominos) whose union is Rn,2.
For example, there are 5 domino tilings of R4,2, namely

, ,

, , .

Written as a set of dominos, the second of these tilings is

{{(1, 1) , (1, 2)} , {(2, 1) , (2, 2)} , {(3, 1) , (4, 1)} , {(3, 2) , (4, 2)}} .

We have seen in class (September 5) that

the number of domino tilings of Rn,2 is fn+1. (10)

We have also counted “axisymmetric” domino tilings.
Let us now define a different kind of symmetry: A domino tiling S of Rn,2 is said to be

centrosymmetric if reflecting it across the center of the rectangle Rn,2 leaves it unchanged.
(Formally, if S is regarded as a set, it means that for every domino {(i, j) , (i′, j′)} ∈ S, its
“opposite domino” {(n+ 1− i, 3− j) , (n+ 1− i′, 3− j′)} is also in S.) For example, among
the 5 domino tilings of R4,2 listed above, exactly 3 are centrosymmetric (namely, the first,
the fourth and the fifth).

Let sn be the number of centrosymmetric domino tilings of Rn,2.

(a) Prove that sn = f(n+1)/2 if n is odd.

(b) Prove that sn = fn/2+2 if n is even.

(Note that these are the same numbers as for axisymmetric domino tilings!)
[Hint: This is a bit of a trick problem.]

4.2 Solution sketch

Let us first recall the definition of axisymmetric domino tilings (as given in the September
5 lecture and in Exercise 5 of UMN Spring 2018 Math 4707 Exercise 5):

A domino tiling S of Rn,2 is said to be axisymmetric if reflecting it across the vertical axis
of the rectangle Rn,2 leaves it unchanged. (Formally, if S is regarded as a set, it means that
for every domino {(i, j) , (i′, j′)} ∈ S, its “mirror domino” {(n+ 1− i, j) , (n+ 1− i′, j′)} is
also in S.) For example, among the 5 domino tilings of R4,2 listed in the exercise, exactly 3
are axisymmetric (namely, the first, the fourth and the fifth).

Now, the claim of our exercise is identical with the claim of UMN Spring 2018 Math 4707
Exercise 5, except that the word “axisymmetric” has been replaced by “centrosymmetric”.
This suggests that there might be a bijection between the axisymmetric domino tilings and
the centrosymmetric domino tilings. It turns out that this is the case, and this bijection is
as simple as one could hope for: It is the identity map! That is, the axisymmetric domino
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tilings are exactly the centrosymmetric domino tilings. We shall prove this below (in Claim
2).

First, we introduce one more concept: A domino tiling S of Rn,2 is said to be horisym-
metric if reflecting it across the horizontal axis of the rectangle Rn,2 leaves it unchanged.
(Formally, if S is regarded as a set, it means that for every domino {(i, j) , (i′, j′)} ∈ S, its
“up-down mirror domino” {(i, 3− j) , (i′, 3− j′)} is also in S.) Now, we claim the following:

Claim 1: Every domino tiling of Rn,2 is horisymmetric.

Note that this isn’t completely obvious! For example, a rectangular strip of height 2
that is infinite in both directions has non-horisymmetric domino tilings:

· · · · · ·

Before we prove Claim 1, let us introduce some notations:

• We shall refer to the elements of Rn,2 as “squares”, even though they are just pairs of
integers.

• The words “domino tiling” will always mean “domino tiling of the rectangle Rn,2” (in
this exercise).

• The words “horizontal axis” will always mean the horizontal axis of symmetry of the
rectangle Rn,2. Likewise, the words “vertical axis” will always mean the vertical axis
of symmetry of the rectangle Rn,2. Finally, the word “center” will always mean the
center of the rectangle Rn,2.

• Let H : Rn,2 → Rn,2 be the map that sends each square (i, j) to (i, 3− j). Visually
speaking, H is just reflection in the horizontal axis.

• For each domino d, we let H (d) denote the domino {H (c) | c ∈ d}. Visually speaking,
H (d) is just the reflection of d in the horizontal axis.

• For each domino tiling D, we let H (D) denote the domino tiling
{
H (d) | d ∈ D

}
.

Visually speaking, H (D) is just the reflection of D in the horizontal axis.

• Let V : Rn,2 → Rn,2 be the map that sends each square (i, j) to (n+ 1− i, j). Visually
speaking, V is just reflection in the vertical axis.

• For each domino d, we let V (d) denote the domino {V (c) | c ∈ d}. Visually speaking,
V (d) is just the reflection of d in the vertical axis.

• For each domino tiling D, we let V (D) denote the domino tiling
{
V (d) | d ∈ D

}
.

Visually speaking, V (D) is just the reflection of D in the vertical axis.

• Let C : Rn,2 → Rn,2 be the map that sends each square (i, j) to (n+ 1− i, 3− j).
Visually speaking, C is just reflection across the center.

• For each domino d, we let C (d) denote the domino {C (c) | c ∈ d}. Visually speaking,
C (d) is just the reflection of d across the center.
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• For each domino tiling D, we let C (D) denote the domino tiling
{
C (d) | d ∈ D

}
.

Visually speaking, C (D) is just the reflection of D across the center.

Thus:

• A domino tiling D is horisymmetric if and only if H (D) = D.

• A domino tiling D is axisymmetric if and only if V (D) = D.

• A domino tiling D is centrosymmetric if and only if C (D) = D.

Note that C = V ◦H (this is easy to check by hand5). Thus, every domino d satisfies
C (d) = V

(
H (d)

)
. Hence, every domino tiling D satisfies

C (D) = V

(
H (D)

)
. (11)

We are now ready to prove Claim 1:
[Proof of Claim 1: Let D be a domino tiling. We must prove that D is horisymmetric.
Indeed, assume the contrary. Thus, there exists some domino d ∈ D such that H (d) /∈

D. We call such a domino asymmetric. Note that every asymmetric domino must be
horizontal (since a vertical domino d always satisfies H (d) = d).

If d = {(i, j) , (i+ 1, j)} is a horizontal domino, then we define the rightness of d to be
the number i. (Thus, visually speaking, the further to the right a horizontal domino lies,
the larger its rightness.)

We know that there exists an asymmetric domino d ∈ D. Each such domino is hori-
zontal, and thus has a well-defined rightness. Consider an asymmetric domino d ∈ D with
minimum rightness. This domino d is asymmetric and therefore horizontal. Thus, we
can write d in the form d = {(i, j) , (i+ 1, j)} for some i and j. Consider these i and j,
and note that i is the rightness of d (by the definition of rightness). We have H (d) /∈ D
(since d is asymmetric). We have either j = 1 or j = 2 (in other words, the domino d lies
either in the bottom half or in the top half of our rectangle Rn,2). We WLOG assume that
j = 1, since the proof in the case j = 2 is analogous. Thus, d = {(i, 1) , (i+ 1, 1)}, so that
H (d) = {(i, 2) , (i+ 1, 2)}.

Now, the square (i, 2) of Rn,2 must be covered by some domino e ∈ D (since D is a
domino tiling). Consider this e. If e was vertical, then e would contain (i, 1) as well, which
would contradict the fact that (i, 1) is covered by the horizontal domino d. Hence, e must
be horizontal. Thus, e is either {(i, 2) , (i+ 1, 2)} or {(i− 1, 2) , (i, 2)}.

But if e was {(i, 2) , (i+ 1, 2)}, then we would have e = {(i, 2) , (i+ 1, 2)} = H (d)

and therefore H (d) = e ∈ D, which would contradict H (d) /∈ D. Hence, e cannot be
{(i, 2) , (i+ 1, 2)}. Thus, e must be {(i− 1, 2) , (i, 2)} (since e is either {(i, 2) , (i+ 1, 2)} or
{(i− 1, 2) , (i, 2)}). We can thus visualize d and e as follows:

· · · e e
d d

· · ·

(where we are showing only columns i− 1, i, i+ 1).
5Note the geometric meaning of this equality: It says that the reflection across the center is the composition
of the reflection in the horizontal axis and the reflection in the vertical axis.
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From e = {(i− 1, 2) , (i, 2)}, we obtain H (e) = {(i− 1, 1) , (i, 1)}. Compare this with
d = {(i, 1) , (i+ 1, 1)}. Thus, the two dominos H (e) and d are distinct, but both contain
the square (i, 1). Hence, the two dominos H (e) and d are distinct but not disjoint. Thus,
H (e) and d cannot both belong to D (since D is a domino tiling). Since d ∈ D, we thus
conclude that H (e) /∈ D.

Thus, e ∈ D is a domino such that H (e) /∈ D. In other words, the domino e is
asymmetric. Hence, the rightness of e must be ≥ to the rightness of d (since d was defined
to be an asymmetric domino with minimum rightness). But this contradicts the fact that
the rightness of e is < to the rightness of d (indeed, the rightness of e is i − 1, while the
rightness of d is i). This contradiction shows that our assumption was false. Hence, Claim
1 is proven.]

Next, we claim the following:

Claim 2: The axisymmetric domino tilings of Rn,2 are exactly the centrosym-
metric domino tilings.

[Proof of Claim 2: Let D be a domino tiling. We need to show that D is axisymmetric
if and only if D is centrosymmetric.

Claim 1 shows that D is horisymmetric. In other words, H (D) = D.

Recall that D is axisymmetric if and only if V (D) = D. Thus, we have the following
chain of equivalences:

(D is axisymmetric) ⇐⇒
(

V (D) = D

)
⇐⇒

(
V

(
H (D)

)
= D

) (
since D = H (D)

)
⇐⇒

(
C (D) = D

)
(
since (11) yields V

(
H (D)

)
= C (D)

)
⇐⇒ (D is centrosymmetric)

(since D is centrosymmetric if and only if C (D) = D). In other words, D is axisymmetric
if and only if D is centrosymmetric. This proves Claim 2.]

It is now easy to complete the solution: We have defined sn as the number of cen-
trosymmetric domino tilings of Rn,2. Because of Claim 2, this shows that sn is the number
of axisymmetric domino tilings of Rn,2. Thus, our sn is precisely the same number as the sn
from UMN Spring 2018 Math 4707 Exercise 5. Hence, the two claims of our exercise follow
from the two claims of the latter exercise.

5 Exercise 5

5.1 Problem

Let n ∈ N. Let Sn,2 be the set

([n+ 1]× [2]) \ {(1, 2) , (n+ 1, 1)} .
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For example, here is how S6,2 looks like:

Find the number of domino tilings of Sn,2.

5.2 Solution sketch

Let sn denote the number of domino tilings of Sn,2. Then, we claim that

sn = [n is even] . (12)

(Here, we are using the Iverson bracket notation; thus, [n is even] equals 1 if n is even, and
0 otherwise.)

It remains to prove (12).
To do so, we first notice that s0 = 1 (indeed, the set S0,2 is the empty set, and thus has

exactly 1 domino tiling).

Furthermore, s1 = 0 (indeed, the set S1,2 has the form , and thus has 0 domino

tilings).
Next, we shall show that

sn = sn−2 for every integer n ≥ 2. (13)

[Proof of (13): Let n ≥ 2 be an integer.
We shall refer to the elements of Sn,2 as “squares”, although they are just pairs of

numbers. We denote the four squares (n+ 1, 2), (n, 2), (n, 1) and (n− 1, 1) as α, β, γ and
δ, respectively. All these four squares belong to Sn,2 (since n ≥ 2). Let us show their
locations on a picture (in the case n = 6 as an example):

β α

δ γ

Let D be a domino tiling of Sn,2. Then, the square α must belong to some domino in D.
This domino must be a horizontal domino (since a vertical domino containing α would also
contain the square (n+ 1, 1), which is however not in Sn,2), and thus must be the domino
{α, β} (since the other alternative would be a domino that contains the square (n+ 2, 2),
which is however not in Sn,2). Hence, the domino {α, β} must belong to D. Furthermore,
the square γ must belong to some domino in D. This domino must be a horizontal domino
(since a vertical domino containing γ would also contain the square β, which is however
already contained in the horizontal domino {α, β}), and thus must be the domino {γ, δ}
(since the other alternative would be a domino that contains the square (n+ 1, 1), which is
however not in Sn,2). Hence, the domino {γ, δ} must belong to D. Thus, we have shown that
the domino tiling D contains the two dominos {α, β} and {γ, δ}. Hence, D\{{α, β} , {γ, δ}}
is a domino tiling of the set Sn,2 \ {α, β, γ, δ} = Sn−2,2.

Now, forget that we fixed D. We thus have shown that if D is a domino tiling of Sn,2,
then D contains the two dominos {α, β} and {γ, δ}, and the set D \ {{α, β} , {γ, δ}} is a
domino tiling of the set Sn−2,2. Hence, the map

{domino tilings of Sn,2} → {domino tilings of Sn−2,2} ,
D 7→ D \ {{α, β} , {γ, δ}}
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is well-defined. This map is also invertible6, and thus is a bijection. Hence,

|{domino tilings of Sn,2}| = |{domino tilings of Sn−2,2}| .

In view of

|{domino tilings of Sn,2}| = (the number of domino tilings of Sn,2) = sn

(by the definition of sn) and

|{domino tilings of Sn−2,2}| = sn−2

(for similar reasons), this rewrites as sn = sn−2. This proves (13).]
[Proof of (12): Using the equality (12) repeatedly, we see that

• each even n ∈ N satisfies sn = sn−2 = sn−4 = · · · = s2 = s0 = 1;

• each odd n ∈ N satisfies sn = sn−2 = sn−4 = · · · = s3 = s1 = 0.

Combining these two results, we obtain precisely (12).]

6 Exercise 6

6.1 Problem

Let n ∈ N. If S is a finite nonempty set of integers, then maxS denotes the maximum of S
(that is, the largest element of S).

(a) Find the number of nonempty subsets S of [n] satisfying maxS = |S|.

(b) Find the number of nonempty subsets S of [n] satisfying maxS = |S|+ 1.

6.2 Solution sketch

Before we solve this exercise, let us observe the following: Every integer m ≥ −1 satisfies

m∑
i=1

i =
m (m+ 1)

2
. (14)

(Indeed, this formula is well-known in the case when m ∈ N, and boils down to 0 = 0 in the
case when m = −1.)

(a) This number is n.
[Proof. We shall first prove the following claim:

6Indeed, its inverse is

{domino tilings of Sn−2,2} → {domino tilings of Sn,2} ,
E 7→ E ∪ {{α, β} , {γ, δ}} .
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Claim 1: Let i ∈ [n]. Then, the number of nonempty i-element subsets S of [n]
satisfying maxS = |S| is 1.

[Proof of Claim 1: If S is a nonempty i-element subset of [n] satisfying maxS = |S|,
then maxS = |S| = i (since S is an i-element set), and therefore all elements of S are ≤ i;
but this entails that S ⊆ [i], and therefore S = [i] (since the only i-element subset of [i] is
[i] itself). Thus, there exists at most one nonempty i-element subset S of [n] satisfying
maxS = |S|. But it is also clear that there exists at least one such subset (namely, [i]).
Hence, there exists exactly one such subset. In other words, the number of such subsets
is 1. This proves Claim 1.]

Clearly, if S is a nonempty subset of [n], then |S| ∈ [n]. Hence,

(the number of nonempty subsets S of [n] satisfying maxS = |S|)

=
∑
i∈[n]

(the number of nonempty subsets S of [n] satisfying maxS = |S| and |S| = i)︸ ︷︷ ︸
=(the number of nonempty i-element subsets S of [n] satisfying maxS = |S|)=1

(by Claim 1)

=
∑
i∈[n]

1 = |[n]| · 1 = |[n]| = n.

This concludes our proof.]

(b) This number is n (n− 1) /2.
[Proof. We shall first prove the following claim:

Claim 2: Let i ∈ [n− 1]. Then, the number of nonempty i-element subsets S of
[n] satisfying maxS = |S|+ 1 is i.

[Proof of Claim 2: Let S be a nonempty i-element subset of [n] satisfyingmaxS = |S|+1.
Then, |S| = i (since S is an i-element set) and maxS = |S| + 1 = i + 1 (since |S| = i).
Hence, all elements of S are ≤ i + 1; in other words, S ⊆ [i+ 1]. Thus, |[i+ 1] \ S| =
|[i+ 1]|︸ ︷︷ ︸

=i+1

− |S|︸︷︷︸
=i

= (i+ 1) − i = 1. Hence, [i+ 1] \ S is a 1-element set; in other words,

[i+ 1] \ S = {j} for some element j. Consider this j. We have j ∈ [i+ 1] \ S; in other
words, j ∈ [i+ 1] and j /∈ S. We have j 6= i + 1 (since j /∈ S but i + 1 = maxS ∈ S).
Combining this with j ∈ [i+ 1], we obtain j ∈ [i+ 1] \ {i+ 1} = [i]. Also, from S ⊆ [i+ 1],
we obtain S = [i+ 1] \ ([i+ 1] \ S)︸ ︷︷ ︸

={j}

= [i+ 1] \ {j}.

Now, forget that we fixed S. We thus have shown that if S is a nonempty i-element subset
of [n] satisfying maxS = |S|+ 1, then there exists some j ∈ [i] such that S = [i+ 1] \ {j}.
In other words, if S is a nonempty i-element subset of [n] satisfying maxS = |S| + 1, then
S must be one of the i sets S = [i+ 1] \ {j} with j ∈ [i]. Hence, there exist at most i
nonempty i-element subsets S of [n] satisfying maxS = |S| + 1. But it is also clear that
there exist at least i such subsets (namely, the i distinct subsets [i+ 1] \ {j} with j ∈ [i]
7). Hence, there exist exactly i such subsets. In other words, the number of such subsets
is i. This proves Claim 2.]

7You need to check that these i subsets are actually distinct and that they do fit the bill (i.e., that they
are nonempty i-element subsets S of [n] satisfying maxS = |S|+ 1). This is straightforward, so I leave
it to the reader.
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Now, if S is a nonempty subset of [n] satisfying maxS = |S|+1, then |S| ∈ [n− 1] 8.
Hence,

(the number of nonempty subsets S of [n] satisfying maxS = |S|+ 1)

=
∑

i∈[n−1]

(the number of nonempty subsets S of [n] satisfying maxS = |S|+ 1 and |S| = i)︸ ︷︷ ︸
=(the number of nonempty i-element subsets S of [n] satisfying maxS = |S|+ 1)=i

(by Claim 2)

=
∑

i∈[n−1]

i =
n−1∑
i=1

i =
(n− 1) ((n− 1) + 1)

2
(by (14))

= n (n− 1) /2.

This concludes our proof.]

6.3 Remark

Exercise 7 from Spring 2018 Math 4707 Homework set #1 looks similar to part (a) of this
exercise, but uses the minimum instead of the maximum. The answers, however, are not
similar at all.

7 Exercise 7

7.1 Problem

For any nonnegative integers a and b and any real x, prove that

xaxb =
a+b∑

r=max{a,b}

a!b!

(r − a)! (r − b)! (a+ b− r)!
xr. (15)

7.2 Solution sketch

First, we prove an auxiliary fact:

Claim 1: Let k ∈ N. Let x be any real. Then,

xk+1 = xk (x− k) (16)

and
xxk = xk+1 + kxk. (17)

[Proof of Claim 1: The definition of xk yields xk = x (x− 1) (x− 2) · · · (x− k + 1). But
the definition of xk+1 yields

xk+1 = x (x− 1) (x− 2) · · · (x− (k + 1) + 1)

= x (x− 1) (x− 2) · · · (x− k)
= (x (x− 1) (x− 2) · · · (x− k + 1))︸ ︷︷ ︸

=xk

(x− k) = xk (x− k) .

8Proof. Let S be a nonempty subset of [n] satisfying maxS = |S|+1. Then, |S| > 0 (since S is nonempty).
Also, maxS ∈ S ⊆ [n], so that maxS ≤ n and thus |S|+1 = maxS ≤ n, so that |S| ≤ n−1. Combining
this with |S| > 0, we obtain |S| ∈ [n− 1]. Qed.
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This proves (16).
Furthermore, (16) becomes

xk+1 = xk (x− k) = (x− k)xk = xxk − kxk.

Solving this equation for xxk, we obtain xxk = xk+1 + kxk. This proves (17). Thus, Claim
1 is proven.]

Next, let us show that the fraction on the right hand side of (15) is well-defined:

Claim 2: Let a ∈ N, b ∈ N and r ∈ N be such that max {a, b} ≤ r ≤ a + b.
Then, (r − a)! (r − b)! (a+ b− r)! is a well-defined nonzero integer.

[Proof of Claim 2: We have a ≤ max {a, b} ≤ r, so that r ≥ a and thus r − a ∈ N.
Hence, (r − a)! is a well-defined positive integer. Similarly, (r − b)! is a well-defined positive
integer. Also, r ≤ a+ b, so that a+ b− r ≥ 0 and thus a+ b− r ∈ N. Hence, (a+ b− r)! is
a well-defined positive integer.

Now, we know that (r − a)!, (r − b)! and (a+ b− r)! are well-defined positive integers.
Hence, their product (r − a)! (r − b)! (a+ b− r)! is a well-defined positive integer as well –
and therefore a well-defined nonzero integer. This proves Claim 2.]

We now introduce a notation that will shorten our computations:
For any a ∈ N, b ∈ N and r ∈ N satisfying max {a, b} ≤ r ≤ a + b, we define a rational

number ga,b,r by

ga,b,r =
a!b!

(r − a)! (r − b)! (a+ b− r)!
. (18)

This is well-defined, because Claim 2 shows that (r − a)! (r − b)! (a+ b− r)! is a well-defined
nonzero integer.

For ease of access, we state a few simple properties of the numbers we have just defined:

Claim 3:

(a) If a ∈ N, b ∈ N and r ∈ N satisfy max {a, b} ≤ r ≤ a + b, then ga,b,r is a
positive integer.

(b) Any b ∈ N satisfies g0,b,b = 1.

(c) If a ∈ N, b ∈ N and r ∈ N satisfy a+ 1 ≤ b and b+ 1 ≤ r ≤ a+ b+ 1, then

ga,b,r−1 =
r − b
a+ 1

ga+1,b,r. (19)

(In particular, both ga,b,r−1 and ga+1,b,r are well-defined.)

(d) If a ∈ N, b ∈ N and r ∈ N satisfy a+ 1 ≤ b and b ≤ r ≤ a+ b, then

(r − a) ga,b,r =
a+ b+ 1− r

a+ 1
ga+1,b,r. (20)

(In particular, both ga,b,r and ga+1,b,r are well-defined.)

(We won’t actually need part (a) of this.)
[Proof of Claim 3: (a) Let a ∈ N, b ∈ N and r ∈ N satisfy max {a, b} ≤ r ≤ a + b.

We know that ga,b,r is well-defined. Also, (18) shows that ga,b,r is a quotient of products of
factorials; hence, ga,b,r is positive (since factorials are positive).
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We have r ≤ a+ b, thus a+ b ≥ r, and therefore a ≥ r− b and a+ b− r ≥ 0. The latter
inequality yields a + b − r ∈ N; thus, (a+ b− r)! is a well-defined positive integer. Also,
b ≤ max {a, b} ≤ r, so that r − b ≥ 0 and thus r − b ∈ N.

Recall that
(
n

k

)
∈ N for any n ∈ N and k ∈ N. Applying this to n = a and k = r−b, we

obtain
(

a

r − b

)
∈ N (since a ∈ N and r− b ∈ N). In other words,

(
a

r − b

)
is a nonnegative

integer. The same argument (with the roles of a and b interchanged) shows that
(

b

r − a

)
is a nonnegative integer.

Recall the classical formula which says that(
n

k

)
=

n!

k! (n− k)!
for any n ∈ N and k ∈ N satisfying n ≥ k. (21)

Applying this formula to n = a and k = r − b, we obtain(
a

r − b

)
=

a!

(r − b)! (a− (r − b))!
(since a ∈ N and r − b ∈ N and a ≥ r − b)

=
a!

(r − b)! (a+ b− r)!
.

The same argument (with the roles of a and b interchanged) shows that(
b

r − a

)
=

b!

(r − a)! (b+ a− r)!
=

b!

(r − a)! (a+ b− r)!
.

Multiplying the last two equalities, we obtain(
a

r − b

)(
b

r − a

)
=

a!

(r − b)! (a+ b− r)!
· b!

(r − a)! (a+ b− r)!
.

Multiplying both sides of this equality by (a+ b− r)!, we obtain

(a+ b− r)!
(

a

r − b

)(
b

r − a

)
= (a+ b− r)! · a!

(r − b)! (a+ b− r)!
· b!

(r − a)! (a+ b− r)!

=
a!b!

(r − a)! (r − b)! (a+ b− r)!
= ga,b,r (by (18)) .

But the left hand side of this equality is an integer (since all of (a+ b− r)!,
(

a

r − b

)
and(

b

r − a

)
are integers). Hence, its right hand side is an integer as well. In other words, ga,b,r

is an integer. Thus, ga,b,r is a positive integer (since we know that ga,b,r is positive). This
proves Claim 3 (a).

(b) Let b ∈ N. Thus, b ≥ 0, so that max {0, b} = b ≤ b ≤ 0 + b. Hence, g0,b,b is
well-defined. The definition of g0,b,b yields

g0,b,b =
0!b!

(b− 0)! (b− b)! (0 + b− b)!
=

0!b!

b!0!0!
=

1

0!
= 1

(since 0! = 1). This proves Claim 3 (b).
(c) Let a ∈ N, b ∈ N and r ∈ N satisfy a+ 1 ≤ b and b+ 1 ≤ r ≤ a+ b+ 1.
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Let us first show that all the expressions appearing in (19) are well-defined.
From a ≤ a+1 ≤ b, we obtain max {a, b} = b. Also, from b+1 ≤ r, we obtain b ≤ r−1.

Hence, max {a, b} = b ≤ r− 1 ≤ a+ b (since r ≤ a+ b+1). Also, from a+1 ≤ b, we obtain
max {a+ 1, b} = b ≤ r − 1 ≤ r ≤ a+ b+ 1 = (a+ 1) + b.

From b ≤ r − 1, we obtain r − 1 ≥ b ≥ 0 and thus r − 1 ∈ N. Also, recall that
max {a, b} ≤ r − 1 ≤ a+ b. Hence, ga,b,r−1 is well-defined.

Also, recall that max {a+ 1, b} ≤ r ≤ (a+ 1) + b. Hence, ga+1,b,r is well-defined.

Also, the quotient
r − b
a+ 1

is well-defined, since a+ 1 > 0 (because a ∈ N).
Thus, all the expressions appearing in (19) are well-defined. It remains to prove (19)

itself.
We have b + 1 ≤ r, thus r ≥ b + 1 and therefore r − b ≥ 1. Hence, (r − b)! =

(r − b) · (r − b− 1)!.
The definition of ga+1,b,r yields

ga+1,b,r =
(a+ 1)!b!

(r − (a+ 1))! (r − b)! ((a+ 1) + b− r)!
=

(a+ 1)!b!

(r − a− 1)! (r − b)! (a+ b− r + 1)!

=
(a+ 1) · a!b!

(r − a− 1)! (r − b) · (r − b− 1)! (a+ b− r + 1)!

(since (a+ 1)! = (a+ 1) · a! and (r − b)! = (r − b) · (r − b− 1)!) .

Multiplying both sides of this equality by
r − b
a+ 1

, we find

r − b
a+ 1

ga+1,b,r =
r − b
a+ 1

· (a+ 1) · a!b!
(r − a− 1)! (r − b) · (r − b− 1)! (a+ b− r + 1)!

=
a!b!

(r − a− 1)! (r − b− 1)! (a+ b− r + 1)!
.

Comparing this with

ga,b,r−1 =
a!b!

((r − 1)− a)! ((r − 1)− b)! (a+ b− (r − 1))!
(by the definition of ga,b,r−1)

=
a!b!

(r − a− 1)! (r − b− 1)! (a+ b− r + 1)!
,

we obtain ga,b,r−1 =
r − b
a+ 1

ga+1,b,r. This proves (19). Thus, Claim 3 (c) is proven.

(d) Let a ∈ N, b ∈ N and r ∈ N satisfy a+ 1 ≤ b and b ≤ r ≤ a+ b.
Let us first show that all the expressions appearing in (20) are well-defined.
From a ≤ a + 1 ≤ b, we obtain max {a, b} = b. Hence, max {a, b} = b ≤ r ≤ a + b.

Thus, ga,b,r is well-defined.
Also, from a+1 ≤ b, we obtain max {a+ 1, b} = b ≤ r ≤ a+ b ≤ a+ b+1 = (a+ 1)+ b.

Hence, ga+1,b,r is well-defined.

Also, the quotient
a+ b+ 1− r

a+ 1
is well-defined, since a+ 1 > 0 (because a ∈ N).

Thus, all the expressions appearing in (20) are well-defined. It remains to prove (20)
itself.

We have a+ b+ 1− r︸︷︷︸
≤a+b

≥ a+ b+ 1− (a+ b) = 1. Thus,

(a+ b+ 1− r)! = (a+ b+ 1− r) · ((a+ b+ 1− r)− 1)! = (a+ b+ 1− r) · (a+ b− r)!
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(since (a+ b+ 1− r)− 1 = a+ b− r).
From a + 1 ≤ b ≤ r, we obtain r ≥ a + 1, thus r − a ≥ 1. Hence, (r − a)! =

(r − a) · (r − a− 1)!.
The definition of ga+1,b,r yields

ga+1,b,r =
(a+ 1)!b!

(r − (a+ 1))! (r − b)! ((a+ 1) + b− r)!
=

(a+ 1)!b!

(r − a− 1)! (r − b)! (a+ b− r + 1)!

=
(a+ 1) · a!b!

(r − a− 1)! (r − b)! (a+ b+ 1− r) · (a+ b− r)!
(since (a+ 1)! = (a+ 1) · a! and (a+ b+ 1− r)! = (a+ b+ 1− r) · (a+ b− r)!) .

Multiplying both sides of this equality by
a+ b+ 1− r

a+ 1
, we find

a+ b+ 1− r
a+ 1

ga+1,b,r =
a+ b+ 1− r

a+ 1
· (a+ 1) · a!b!
(r − a− 1)! (r − b)! (a+ b+ 1− r) · (a+ b− r)!

=
a!b!

(r − a− 1)! (r − b)! (a+ b− r)!
.

Comparing this with

(r − a) ga,b,r = (r − a) a!b!

(r − a)! (r − b)! (a+ b− r)!
(by (18))

= (r − a) a!b!

(r − a) · (r − a− 1)! (r − b)! (a+ b− r)!
(since (r − a)! = (r − a) · (r − a− 1)!)

=
a!b!

(r − a− 1)! (r − b)! (a+ b− r)!
,

we obtain (r − a) ga,b,r =
a+ b+ 1− r

a+ 1
ga+1,b,r. This proves (20). Thus, Claim 3 (d) is

proven.]
Next, we observe that a and b play symmetric roles in the exercise. Thus, it suffices to

solve the exercise in the case when a ≤ b (since the other case then follows by the same
argument, with the roles of a and b interchanged). To do so, we shall prove the following
claim:

Claim 4: Let a ∈ N and b ∈ N be such that a ≤ b. Let x be any real. Then,

xaxb =
a+b∑
r=b

ga,b,rx
r. (22)

(In particular, the numbers ga,b,r are well-defined for all r ∈ {b, b+ 1, . . . , a+ b}.)

[Proof of Claim 4: We first notice that for every r ∈ {b, b+ 1, . . . , a+ b}, the number
ga,b,r is well-defined9. Thus, the equality (22) makes sense.

Now, forget that we fixed a. Our goal is to prove the equality (22) for each a ∈ N
satisfying a ≤ b. In other words, our goal is to prove the equality (22) for each a ∈
{0, 1, . . . , b}. We shall prove (22) by induction on a:

9Proof. Let r ∈ {b, b+ 1, . . . , a+ b}. Thus, r ≥ b and r ≤ a + b. But a ≤ b, so that max {a, b} = b ≤ r
(since r ≥ b). Hence, max {a, b} ≤ r ≤ a+ b. Thus, the number ga,b,r is well-defined, qed.
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Induction base: The definition of x0 yields

x0 = x (x− 1) (x− 2) · · · (x− 0 + 1) = (empty product) = 1.

Thus,
x0︸︷︷︸
=1

xb = xb.

Comparing this with

0+b∑
r=b

g0,b,rx
r =

b∑
r=b

g0,b,rx
r = g0,b,b︸︷︷︸

=1
(by Claim 3 (b))

xb = xb,

we obtain

x0xb =
0+b∑
r=b

g0,b,rx
r.

In other words, (22) holds for a = 0. This completes the induction base.
Induction step: Fix some c ∈ N such that c+ 1 ∈ {0, 1, . . . , b}. Assume that (22) holds

for a = c. We must show that (22) holds for a = c+ 1.
Each r ∈ N satisfies

(x− c)xr = xxr︸︷︷︸
=xr+1+rxr

(by (17))

−cxr = xr+1 + rxr − cxr

= xr+1 + (r − c)xr. (23)

We have c ≤ c+ 1 ≤ b (since c+ 1 ∈ {0, 1, . . . , b}). Hence,

xcxb =
c+b∑
r=b

gc,b,rx
r (24)

(since we assumed that (22) holds for a = c).
Now, (16) (applied to k = c) yields

xc+1 = xc (x− c) .

Hence,

xc+1xb = xc (x− c)xb = (x− c)xcxb = (x− c)
c+b∑
r=b

gc,b,rx
r (by (24))

=
c+b∑
r=b

gc,b,r (x− c)xr︸ ︷︷ ︸
=xr+1+(r−c)xr

(by (23))

=
c+b∑
r=b

gc,b,r
(
xr+1 + (r − c)xr

)

=
c+b∑
r=b

gc,b,rx
r+1 +

c+b∑
r=b

gc,b,r (r − c)xr. (25)

We shall now analyze the two addends on the right hand side of this equation separately.
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Substituting r − 1 for r in the sum
c+b∑
r=b

gc,b,rx
r+1, we obtain

c+b∑
r=b

gc,b,rx
r+1 =

c+b+1∑
r=b+1

gc,b,r−1︸ ︷︷ ︸
=
r − b
c+ 1

gc+1,b,r

(by (19), applied to a = c)

x(r−1)+1︸ ︷︷ ︸
=xr

=
c+b+1∑
r=b+1

r − b
c+ 1

gc+1,b,rx
r.

Comparing this with

c+b+1∑
r=b

r − b
c+ 1

gc+1,b,rx
r =

b− b
c+ 1︸ ︷︷ ︸
=0

gc+1,b,bx
b +

c+b+1∑
r=b+1

r − b
c+ 1

gc+1,b,rx
r

(here, we have split off the addend for r = b from the sum)

=
c+b+1∑
r=b+1

r − b
c+ 1

gc+1,b,rx
r,

we obtain

c+b∑
r=b

gc,b,rx
r+1 =

c+b+1∑
r=b

r − b
c+ 1

gc+1,b,rx
r. (26)

On the other hand,

c+b∑
r=b

gc,b,r (r − c)xr =
c+b∑
r=b

(r − c) gc,b,r︸ ︷︷ ︸
=
c+ b+ 1− r

c+ 1
gc+1,b,r

(by (20), applied to a = c)

xr =
c+b∑
r=b

c+ b+ 1− r
c+ 1

gc+1,b,rx
r.

Comparing this with

c+b+1∑
r=b

c+ b+ 1− r
c+ 1

gc+1,b,rx
r

=
c+b∑
r=b

c+ b+ 1− r
c+ 1

gc+1,b,rx
r +

c+ b+ 1− (c+ b+ 1)

c+ 1︸ ︷︷ ︸
=0

gc+1,b,c+b+1x
c+b+1

(here, we have split off the addend for r = c+ b+ 1 from the sum)

=
c+b∑
r=b

c+ b+ 1− r
c+ 1

gc+1,b,rx
r,

we obtain

c+b∑
r=b

gc,b,r (r − c)xr =
c+b+1∑
r=b

c+ b+ 1− r
c+ 1

gc+1,b,rx
r. (27)
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Adding this equality to (26), we find

c+b∑
r=b

gc,b,rx
r+1 +

c+b∑
r=b

gc,b,r (r − c)xr

=
c+b+1∑
r=b

r − b
c+ 1

gc+1,b,rx
r +

c+b+1∑
r=b

c+ b+ 1− r
c+ 1

gc+1,b,rx
r

=
c+b+1∑
r=b

(
r − b
c+ 1

+
c+ b+ 1− r

c+ 1

)
︸ ︷︷ ︸

=1

gc+1,b,rx
r =

c+b+1∑
r=b

gc+1,b,rx
r.

Hence, (25) becomes

xc+1xb =
c+b∑
r=b

gc,b,rx
r+1 +

c+b∑
r=b

gc,b,r (r − c)xr =
c+b+1∑
r=b

gc+1,b,rx
r =

(c+1)+b∑
r=b

gc+1,b,rx
r

(since c+ b+ 1 = (c+ 1) + b). In other words, (22) holds for a = c+ 1. This completes the
induction step. Hence, (22) is proven by induction. Thus, Claim 4 is proven.]

Now, let us solve the actual exercise. Let a and b be nonnegative integers, and let x be
a real. We must prove the equality (15). The variables a and b play symmetric roles in this
equality (that is, if we swap a with b, then the meaning of (15) does not change). Thus,
we can WLOG assume that a ≤ b (since otherwise, we can simply swap a with b). Assume
this. Hence, Claim 4 yields

xaxb =
a+b∑
r=b

ga,b,rx
r.

Comparing this with

a+b∑
r=max{a,b}

a!b!

(r − a)! (r − b)! (a+ b− r)!︸ ︷︷ ︸
=ga,b,r
(by (18))

xr =
a+b∑

r=max{a,b}

ga,b,rx
r =

a+b∑
r=b

ga,b,rx
r

(since max {a, b} = b (since a ≤ b)) ,

we obtain

xaxb =
a+b∑

r=max{a,b}

a!b!

(r − a)! (r − b)! (a+ b− r)!
xr.

This solves the exercise.
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