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In this note, we will use the following notations (which come from Lampe’s notes
[Lampe| §2.1.1]):

e A quiver means a tuple Q = (Qop, Q1,s,t), where Qg and Q; are two finite sets
and where s and t are two maps from Q; to Qp. We call the elements of Qg
the vertices of the quiver Q, and we call the elements of Q; the arrows of the
quiver Q. For every e € Q1, we call s (e) the starting point of e (and we say
that e starts at s (e)), and we call ¢ (e) the terminal point of e (and we say that e
ends at t (e)). Furthermore, if e € Q;, then we say that e is an arrow from s (e)
to t (e).

So the notion of a quiver is one of many different versions of the notion of
a finite directed graph. (Notice that it is a version which allows multiple
arrows, and which distinguishes between them - i.e., the quiver stores not
just the information of how many arrows there are from a vertex to another,
but it actually has them all as distinguishable objects in Q;. Lampe himself
seems to later tacitly switch to a different notion of quivers, where edges from
a given to vertex to another are indistinguishable and only exist as a number.
This does not matter for the next exercise, which works just as well with either
notion of a quiver; but I just wanted to have it mentioned.)

e The underlying undirected graph of a quiver Q = (Qop, Q1,s,t) is defined as the
undirected multigraph with vertex set Qg and edge multiset

{{s(e),t(e)} | e € Qulmuttiset-

(“Multigraph” means that multiple edges are allowed, but we do not make
them distinguishable.)

*This used to be Chapter 7 of my notes “Notes on the combinatorial fundamentals of algebra”
(version of 7 November 2018), but has since been removed from the latter notes.
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e A quiver Q = (Qo, Q1,s,t) is said to be acyclic if there is no sequence
(ag,a1,...,a,) of elements of Qg such that n > 0 and a9 = a, and such
that Q has an arrow from a; to a;;1 for every i € {0,1,...,n —1}. (This is
equivalent to [Lampe| Definition 2.1.7].) Notice that this does not mean that
the underlying undirected graph of Q has no cycles.

e Let Q = (Qop, Q1,s,t). Then, a sink of Q means a vertex v € Qg such that no
e € Qg starts at v (in other words, no arrow of Q starts at v). A source of Q
means a vertex v € Qg such that no e € Qq ends at v (in other words, no
arrow of Q ends at v).

o Let Q = (Qo, Qy,s,t). If i € Qp is a sink of Q, then the mutation p; (Q) of Q at
i is the quiver obtained from Q simply by turningﬂ all arrows ending at i. (To
be really pedantic: We define u; (Q) as the quiver (Qo, Q1,5,t'), where

ro Jt(e), ift(e) =1
s (e) = {S (o), ift(e) £ for each e € Q4
and t' (e) = {i Eg/’ i i EZ; ; z' for each e € Q.

) If i € Qp is a source of Q, then the mutation yu; (Q) of Q at i is the quiver
obtained from Q by turning all arrows starting at i. (Notice that if i is both
a source and a sink of Q, then these two definitions give the same result;
namely, y; (Q) = Q in this case.)

If Q is an acyclic quiver, then y; (Q) is acyclic as well (whenever i € Qg is a
sink or a source of Q).

We use the word “mutation” not only for the quiver y; (Q), but also for the
operation that transforms Q into y; (Q). (We have defined this operation only
if 7 is a sink or a source of Q. It can be viewed as a particular case of the more
general definition of mutation given in [Lampe, Definition 2.2.1], at least if
one gives up the ability to distinguish different arrows from one vertex to
another.)

ITo turn an arrow e means to reverse its direction, i.e., to switch the values of s (¢) and t (e). We
model this as a change to the functions s and t, not as a change to the arrow itself.
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Exercise 0.1. Let Q = (Qo, Q1, s, t) be an acyclic quiver.

(a) Let A and B be two subsets of Qp such that ANB = @ and AUB = Q.
Assume that there exists no arrow of Q that starts at a vertex in B and ends at
a vertex in A. Then, by turning all arrows of Q which start at a vertex in A and
end at a vertex in B, we obtain a new acyclic quiver muty g Q.

(When we say “turning all arrows of Q which start at a vertex in A and end at
a vertex in B”, we mean “turning all arrows e of Q which satisfy s (¢) € A and
t(e) € B”. We do not mean that we fix a vertex 4 in A and a vertex b in B, and
only turn the arrows from a to b.)

For example, if Q = 3——4 and A = {1,3} and B = {2,4}, then

1—2
mutyp Q= 3+—4.

/]

1+—2
Prove that muty p Q can be obtained from Q by a sequence of mutations at

sinks. (More precisely, there exists a sequence (Q(O), Q(l), .. .,Q(Z)) of acyclic

quivers such that QO =, QW) = muty g Q, and for every i € {1,2,...,/}, the
quiver Q) is obtained from Q1) by mutation at a sink of Q(i’l).)

[In our above example, we can mutate at 4 first and then at 2.]

(b) If i € Qq is a source of Q, then show that the mutation y; (Q) can be
obtained from Q by a sequence of mutations at sinks.

(c) Assume now that the underlying undirected graph of Q is a tree. (In
particular, Q cannot have more than one edge between two vertices, as these
would form a cycle in the underlying undirected graph!) Show that any acyclic
quiver which can be obtained from Q by turning some of its arrows can also be
obtained from Q by a sequence of mutations at sinks.

Remark 0.1. More general results than those of Exercise are stated (for di-
rected graphs rather than quivers, but it is easy to translate from one language
into another) in [Pretzel]. An equivalent version of Exercise(0.1|(c) also appears as
Exercise 6 in [GrRaOg] (because a quiver Q whose underlying undirected graph
is a tree can be regarded as an orientation of the latter tree, and because the
concept of “pushing sources” in [GrRaOg] corresponds precisely to our concept
of mutations at sinks, except that all arrows need to be reversed).

Solution to Exercise (@) We prove the claim by induction over |B|.

Induction base: Assume that |B| = 0. Thus, B = &, and thus there are no arrows
of Q which start at a vertex in A and at a vertex in B. Hence, mutypQ = Q, and
this can clearly be obtained from Q by a sequence of mutations at sinks (namely,
by the empty sequence). Thus, Exercise [0.1| (a) holds if |B| = 0. This completes the
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induction baseZ

Induction stepff Let N € IN. Assume that Exercise[0.1](a) holds whenever |B| = N.
We now need to prove that Exercise [0.1] (a) holds whenever |B| = N + 1.

So let A and B be two subsets of Qg such that ANB = & and AUB = Q.
Assume that there exists no arrow of Q that starts at a vertex in B and ends at a
vertex in A. Assume further that |B| = N + 1. We need to prove that mut4 5 Q can
be obtained from Q by a sequence of mutations at sinks.

Notice that B = Qg \ A (since ANB =& and AU B = Q).

It is easy to see that there exists some b € B such that

there is no e € Q; satisfying f (¢) = b and s (¢) € B (1)

ﬂ Fix such a b. Clearly, b ¢ A (since b € B = Qg \ A).

Now, AU{b} and B\ {b} are two subsets of Qg such that (AU {b})N(B\ {b}) =
g and (AU{b})U (B\{b}) = Qo ﬂ Furthermore, there exists no arrow of Q
that starts at a vertex in B\ {b} and ends at a vertex in AU {b} [| Hence,
mut 4,8\ (v} Q is @ well-defined acyclic quiver. Moreover, since b € B, we have
|B\ {b}| = LBL —1 = N+1-1 = N. Thus, Exercise 0.1 (a) can be applied

—N+1

to AU {b} and B\ {b} instead of A and B (by the induction hypothesis). As
a consequence, we conclude that mut, g\ (33 Q can be obtained from Q by a
sequence of mutations at sinks.

2Yes, this was a completely honest induction base. You don’t need to start at |B| = 1 unless you
want to use something like |B| > 1 in the induction step (but even then, you should also handle
the case |B| = 0 separately).

3The letter IN denotes the set {0,1,2,...} here.

4Proof. Assume the contrary. Thus, for every b € B, there is an e € Q satisfying t (¢) = b and
s (e) € B. Let us fix such an e (for each b € B), and denote it by ey,

Thus, for every b € B, we have ¢, € Q; and f(e;) = b and s (e;) € B. We can thus define a
sequence (bg, by, by, ...) of vertices in B recursively as follows: Set by = b, and set b1 = s (eb,-)
for every i € IN. Thus, (bg, by, by, ...) is an infinite sequence of elements of B. Since B is a finite
set, this sequence must thus pass through an element twice (to say the least). In other words,
there are two positive integers 1 and v such that u < v and b, = b,. Consider these u and v.

Now, for every i € IN, we have t (ej,) = b; (by the definition of e;,) and s (ep,) = bj11. Thus, for
every i € IN, the arrow e, is an arrow from b;; to b;. Thus, there is an arrow from b; 4 to b; for
every i € IN. In particular, we have an arrow from b, to b,_1, an arrow from b,_1 to b,_», etc.,
and an arrow from b, 11 to b,. Since b, = b,, these arrows form a cycle in Q, which contradicts
the hypothesis that the quiver Q is acyclic. This contradiction proves that our assumption was
wrong, gqed.

>Proof. These are easy exercises in set theory. Use ANB =@ and AUB = Qpand b € B.
®Proof. Assume the contrary. Thus, there exists an arrow of Q that starts at a vertex in B\ {b} and
ends at a vertex in AU {b}. Let e be such an arrow. Then, s (¢) € B\ {b} and t (¢) € AU {b}.

We have s (¢) € B\ {b} C B. Thus, t () # b (because having t (¢) = b would contradict (I}).
Combined with t (e) € AU {b}, this yields t (e) € (AU{b}) \ {b} C A. Thus, e is an arrow of
Q that starts at a vertex in B (since s (¢) € B) and ends at a vertex in A (since t (e) € A). This
contradicts our hypothesis that there exists no arrow of Q that starts at a vertex in B and ends
at a vertex in A. This is the desired contradiction, and so we are done.
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We shall now prove that muty g Q can be obtained from mut, ) p\ (5 Q by a
mutation at a sink. In fact, b is a sink of mut )\ (5 Q ﬂ Hence, the mutation

Hp <mut AU{b},B\ {b} Q) is well-defined. We now have

muty g Q = yp (mutAU{b},B\{b} Q) (2)

ﬂ Therefore, muty g Q can be obtained from mut 4,3 g\ (5 Q by a single mutation

Proof. Assume the contrary. Thus, there exists an arrow e of muty/ (v},8\{p} Q which starts at b.
Consider this e.

Recall that mut ¢4y p\ (5} Q Was obtained from Q by turning all arrows of Q which start at a
vertex in AU {b} and end at a vertex in B\ {b}. Thus, every arrow of mut4 () s\ (py Q which
starts at a vertex in B\ {b} and ends at a vertex in A U {b} has originally been going in the
opposite direction in Q (because there exists no arrow of Q that starts at a vertex in B \ {b} and
ends at a vertex in A U {b}), while all the other arrows of muty, {bg'B\ (v} Q have been copied
over unchanged from Q. The arrow e of muty ;) p\ 5y Q starts at b (which is not an element
of B\ {b}), so it does not start at a vertex in B\ {b} and end at a vertex in A U {b}; therefore,
the preceding sentence shows that this arrow e has been copied over unchanged from Q. In
other words, the arrow e starts at b when considered as an arrow of Q as well. In other words,
s(e) = b. (Recall that the functions s and f are part of the quiver Q; thus, they map every
arrow of Q to its starting point and its terminal point, respectively. The same arrows might have
different starting points and terminal points when regarded as arrows of mut ;)\ (5} Q)

Recall that there exists no arrow of Q that starts at a vertex in B and ends at a vertex in A.
Thus, an arrow of Q which starts at a vertex in B must not end at a vertex in A. In particular,
the arrow e of Q must not end at a vertex in A (because it starts at b € B). Hence, the arrow e of
Q ends at a vertex in Qp \ A = B. In other words, t (e) € B.

We cannot have t (¢) = s (e) (because otherwise, the arrow e would form a cycle, but the quiver
Q is acyclic). Hence, t (e) # s (e) = b (since e starts at b). Combined with ¢ (e) € B, this yields
t(e) € B\ {b}.

Thus, the arrow e of Q starts at a vertex in AU {b} (since s (e) = b € AU {b}) and ends at a
vertex in B\ {b} (since t (¢) € B\ {b}). As we know, mut, (s} p\ (5} Q was obtained from Q by
turning all such arrows. Hence, the arrow e must have been turned when it became an arrow of
muty ) B\ {p) Q- But this contradicts the fact that the arrow e has been copied over unchanged
from Q. This contradiction proves that our assumption was wrong, qed.

8Proof of (2): We have Qy = AU B =AU{b}U(B\ {b}).
={b}u(B\{b})
Recall that the quiver muty ;) g\ () Q Was obtained from Q by turning all arrows of Q

which start at a vertex in AU {b} and end at a vertex in B\ {b}. Furthermore, the quiver
Uy (mutAU{b},B\{b} Q) was obtained from mut ) p\ 5} Q by turning all arrows ending at b.

Thus, uy (mut AU{b},B\{D} Q) can be obtained from Q by a two-step process, where

e in the first step, we turn all arrows of Q which start at a vertex in AU {b} and end at a
vertex in B\ {b};

e in the second step, we turn all arrows ending at b.

Now, let us analyze what this two-step process does to an arrow of Q, depending on where
the arrow starts and ends:

1. If e is an arrow of Q which ends at a vertex in A, then this arrow never gets turned during
our process. Indeed, let e be such an arrow. Then, e ends at a vertex in A, and thus does
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at a sink (namely, at the sink D). Since mut, )8\ (5 Q (in turn) can be obtained
from Q by a sequence of mutations at sinks, this shows that muts p Q can be ob-
tained from Q by a sequence of mutations at sinks (namely, we first need to mutate

not end at a vertex in B (since AN B = @); therefore, it does not end at a vertex in B \ {b}
either. Hence, the first step does not turn it. Therefore, after the first step, it still does not
end at a vertex in B (since it did not end at a vertex in B originally). In particular, it does
not end at b (since b € B). Hence, it does not get turned at the second step either. So, e
never turns, and thus retains its original direction throughout the process.

2. If e is an arrow of Q which ends at b, then this arrow gets turned once (namely, at the
second step). Thus, its direction is reversed at the end of the process.

3. If e is an arrow of Q which starts at a vertex in A and ends at a vertex in B\ {b}, then
this arrow gets turned once (namely, at the first step). Here is why: Let e be an arrow of
Q which starts at a vertex in A and ends at a vertex in B\ {b}. Then, e starts at a vertex
in AU{b} and ends at a vertex in B\ {b} (since A C AU {b}). Thus, it gets turned at the
first step. After this, it becomes an arrow which ends at a vertex in A (because originally
it started at a vertex in A), and so it does not end at b (because b ¢ A). Therefore, it does
not turn at the second step; hence, it has turned exactly once altogether. Its direction is
therefore reversed at the end of the process.

4. If e is an arrow of Q which starts at b and ends at a vertex in B\ {b}, then this arrow
gets turned twice (once at each step). Indeed, let e be such an arrow. Then, e starts at a
vertex in AU {b} (namely, at b) and ends at a vertex in B\ {b}. Hence, it gets turned at
the first step. After that, it ends at b (because it used to start at b before it was turned),
and therefore it gets turned again at the second step. Hence, the direction of e at the end
of the two-step process is again the same as it was in Q.

5. If e is an arrow of Q which starts at a vertex in B\ {b} and ends at a vertex in B\ {b},
then this arrow never gets turned. Indeed, it starts at a vertex in B\ {b}; thus, it does not
start at a vertex in A U {b} (since \P;_/ \{b} =(Qo\A)\{b} = Qo \ (AU {b})). Hence,

=Qo\A
it does not get turned at the first step. Moreover, in Q, this arrow e does not end at b
(because it ends at a vertex in B\ {b}); thus it does not end at b after the first step either
(since it does not get turned at the first step). Hence, it does not get turned at the second
step either. Therefore, e never gets turned, and thus retains its original direction from Q
after the two-step process.

The five cases we have just considered cover all possibilities (because every arrow e either ends
at a vertex in A or ends at b or ends at a vertex in B\ {b}; and in the latter case, it either starts
at a vertex in A, or starts at b, or starts at a vertex in B\ {b} (since Qo = AU {b} U (B\ {b}))).
From our case analysis, we can draw the following conclusions:

e If ¢ is an arrow of Q which starts at a vertex in A and ends at a vertex in B, then the arrow
e has reversed its orientation at the end of the two-step process. (This follows from our
Cases 2 and 3 above.)

e If e is an arrow of Q which starts at a vertex in B or ends at a vertex in A, then this arrow
e has the same orientation at the end of the two-step process as it did in Q. (Indeed, let
us prove this. Let e be an arrow of Q which starts at a vertex in B or ends at a vertex in
A. We need to show that ¢ has the same orientation at the end of the two-step process as
it did in Q. If e ends at a vertex in A, then this follows from our analysis of Case 1. So
let us assume that e does not end at a vertex in A. Hence, ¢ must start at a vertex in B
(since e starts at a vertex in B or ends at a vertex in A). In other words, s (e) € B. Hence,
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at the sinks that give us mut, ;1 p\ (5} Q, and then we have to mutate at b). This
proves that Exercise (@) holds whenever |B| = N + 1. The induction step is
complete, and thus Exercise (a) is solved.

(b) Let i € Qg be a source in Q. Let A = {i} and B = Qg \ A. Then, A and B are
two subsets of Qg such that ANB = @ and AU B = Qp. There exists no arrow of Q
that starts at a vertex in B and ends at a vertex in A ﬂ Hence, the quiver mut, g Q
is well-defined. Moreover, this quiver mut4 g Q is obtained by turning all arrows
of Q which start at a vertex in A and end at a vertex in B. But these arrows are
precisely the arrows of Q starting at i Hence, mut, p Q is obtained by turning
all arrows of Q starting at i. But this is exactly how we defined y; (Q). Therefore,
muty g Q = 1; (Q). Now, Exercise (a) shows that mut, g Q can be obtained
from Q by a sequence of mutations at sinks. Hence, y; (Q) can be obtained from Q
by a sequence of mutations at sinks (since muts g Q = p; (Q)). Exercise (b) is
proven.

(c) Let Q' be any acyclic quiver which can be obtained from Q by turning some
of its arrows. We need to prove that Q" can also be obtained from Q by a sequence
of mutations at sinks. But [Lampe| proof of Proposition 2.2.8] shows that Q" can
be obtained from Q by a sequence of mutations at sinks and sources. Since every

t(e) # b (because if we had t(e) = b, then e would contradict (1)). But also t(¢) ¢ A
(since e does not end at a vertex in A), so that f (¢) € Qp\ A = B and thus t (¢) € B\ {b}
(since t (e) # b). Hence, the arrow e ends at a vertex in B\ {b}. It also starts at a vertex in
B; thus, it either starts at b or it starts at a vertex in B \ {b}. Our claim now follows from
our analysis of Case 4 (in the case when e starts at b) and from our analysis of Case 5 (in
the case when e starts at a vertex in B\ {b}). In either case, our claim is proven.)

To summarize, the outcome of our two-step process is that every arrow e of Q which starts at a
vertex in A and ends at a vertex in B reverses its orientation, while all other arrows preserve their
orientation. In other words, the outcome of our two-step process is the same as the outcome
of turning all arrows of Q which start at a vertex in A and end at a vertex in B. But the latter
outcome is muty p Q (because this is how muty4 g Q was defined), while the former outcome is

Uy (mutAU{b},B\{b} Q) (since we know that py (mutAU{h}/B\{b} Q) can be obtained from Q by

our two-step process). Thus, we have obtained y, (mut AU{b},B\{D} Q> = muty p Q. This proves
@.

Proof. Assume the contrary. Then, there exists an arrow of Q which starts at a vertex in B and
ends at a vertex in A. Let e be such an arrow. Then, ¢ ends at a vertex in A. In other words,
t(e) € A = {i}, so that t (e) = i. In other words, e ends at i. But this is impossible, since i is a
source. This contradiction proves that our assumption was wrong, ged.

19Proof. Each arrow of Q which starts at a vertex in A and ends at a vertex in B must be an arrow
starting at i (because it starts at a vertex in A = {i}, but the only vertex in {i} is 7). It thus
remains to prove the converse — i.e., to prove that each arrow of Q starting at i is an arrow of
Q which starts at a vertex in A and ends at a vertex in B. So let e be an arrow of Q starting
at i. Then, e clearly starts at a vertex in A (since i € {i} = A). It remains to prove that ¢ ends
at a vertex in B. But Q is acyclic, and thus we cannot have s (¢) = t(e) (since otherwise, the
arrow e would form a trivial cycle). Hence, s (¢) # t (e). But s (¢) = i (since e starts at i), so that
t(e) #s(e) =iand thus t(e) € Qo \ {i} = Qo\ A = B. Hence, ¢ ends at a vertex in B. This
~—

=A
completes our proof.
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mutation at a source can be simulated by a sequence of mutations at sinks (by
Exercise (b)), this yields that Q" can be obtained from Q by a sequence of
mutations at sinks. This solves Exercise [0.] (c). N
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