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In this note, we will use the following notations (which come from Lampe’s notes
[Lampe, §2.1.1]):

• A quiver means a tuple Q = (Q0, Q1, s, t), where Q0 and Q1 are two finite sets
and where s and t are two maps from Q1 to Q0. We call the elements of Q0
the vertices of the quiver Q, and we call the elements of Q1 the arrows of the
quiver Q. For every e ∈ Q1, we call s (e) the starting point of e (and we say
that e starts at s (e)), and we call t (e) the terminal point of e (and we say that e
ends at t (e)). Furthermore, if e ∈ Q1, then we say that e is an arrow from s (e)
to t (e).

So the notion of a quiver is one of many different versions of the notion of
a finite directed graph. (Notice that it is a version which allows multiple
arrows, and which distinguishes between them – i.e., the quiver stores not
just the information of how many arrows there are from a vertex to another,
but it actually has them all as distinguishable objects in Q1. Lampe himself
seems to later tacitly switch to a different notion of quivers, where edges from
a given to vertex to another are indistinguishable and only exist as a number.
This does not matter for the next exercise, which works just as well with either
notion of a quiver; but I just wanted to have it mentioned.)

• The underlying undirected graph of a quiver Q = (Q0, Q1, s, t) is defined as the
undirected multigraph with vertex set Q0 and edge multiset

{{s (e) , t (e)} | e ∈ Q1}multiset .

(“Multigraph” means that multiple edges are allowed, but we do not make
them distinguishable.)

∗This used to be Chapter 7 of my notes “Notes on the combinatorial fundamentals of algebra”
(version of 7 November 2018), but has since been removed from the latter notes.
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• A quiver Q = (Q0, Q1, s, t) is said to be acyclic if there is no sequence
(a0, a1, . . . , an) of elements of Q0 such that n > 0 and a0 = an and such
that Q has an arrow from ai to ai+1 for every i ∈ {0, 1, . . . , n− 1}. (This is
equivalent to [Lampe, Definition 2.1.7].) Notice that this does not mean that
the underlying undirected graph of Q has no cycles.

• Let Q = (Q0, Q1, s, t). Then, a sink of Q means a vertex v ∈ Q0 such that no
e ∈ Q1 starts at v (in other words, no arrow of Q starts at v). A source of Q
means a vertex v ∈ Q0 such that no e ∈ Q1 ends at v (in other words, no
arrow of Q ends at v).

• Let Q = (Q0, Q1, s, t). If i ∈ Q0 is a sink of Q, then the mutation µi (Q) of Q at
i is the quiver obtained from Q simply by turning1 all arrows ending at i. (To
be really pedantic: We define µi (Q) as the quiver (Q0, Q1, s′, t′), where

s′ (e) =

{
t (e) , if t (e) = i;
s (e) , if t (e) 6= i

for each e ∈ Q1

and t′ (e) =

{
s (e) , if t (e) = i;
t (e) , if t (e) 6= i

for each e ∈ Q1.

) If i ∈ Q0 is a source of Q, then the mutation µi (Q) of Q at i is the quiver
obtained from Q by turning all arrows starting at i. (Notice that if i is both
a source and a sink of Q, then these two definitions give the same result;
namely, µi (Q) = Q in this case.)

If Q is an acyclic quiver, then µi (Q) is acyclic as well (whenever i ∈ Q0 is a
sink or a source of Q).

We use the word “mutation” not only for the quiver µi (Q), but also for the
operation that transforms Q into µi (Q). (We have defined this operation only
if i is a sink or a source of Q. It can be viewed as a particular case of the more
general definition of mutation given in [Lampe, Definition 2.2.1], at least if
one gives up the ability to distinguish different arrows from one vertex to
another.)

1To turn an arrow e means to reverse its direction, i.e., to switch the values of s (e) and t (e). We
model this as a change to the functions s and t, not as a change to the arrow itself.
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Exercise 0.1. Let Q = (Q0, Q1, s, t) be an acyclic quiver.
(a) Let A and B be two subsets of Q0 such that A ∩ B = ∅ and A ∪ B = Q0.

Assume that there exists no arrow of Q that starts at a vertex in B and ends at
a vertex in A. Then, by turning all arrows of Q which start at a vertex in A and
end at a vertex in B, we obtain a new acyclic quiver mutA,B Q.

(When we say “turning all arrows of Q which start at a vertex in A and end at
a vertex in B”, we mean “turning all arrows e of Q which satisfy s (e) ∈ A and
t (e) ∈ B”. We do not mean that we fix a vertex a in A and a vertex b in B, and
only turn the arrows from a to b.)

For example, if Q = 3 // 4

1

OO @@

// 2

OO and A = {1, 3} and B = {2, 4}, then

mutA,B Q = 3 4oo

��

1

OO

2

OO

oo

.

Prove that mutA,B Q can be obtained from Q by a sequence of mutations at

sinks. (More precisely, there exists a sequence
(

Q(0), Q(1), . . . , Q(`)
)

of acyclic

quivers such that Q(0) = Q, Q(`) = mutA,B Q, and for every i ∈ {1, 2, . . . , `}, the
quiver Q(i) is obtained from Q(i−1) by mutation at a sink of Q(i−1).)

[In our above example, we can mutate at 4 first and then at 2.]
(b) If i ∈ Q0 is a source of Q, then show that the mutation µi (Q) can be

obtained from Q by a sequence of mutations at sinks.
(c) Assume now that the underlying undirected graph of Q is a tree. (In

particular, Q cannot have more than one edge between two vertices, as these
would form a cycle in the underlying undirected graph!) Show that any acyclic
quiver which can be obtained from Q by turning some of its arrows can also be
obtained from Q by a sequence of mutations at sinks.

Remark 0.1. More general results than those of Exercise 0.1 are stated (for di-
rected graphs rather than quivers, but it is easy to translate from one language
into another) in [Pretzel]. An equivalent version of Exercise 0.1 (c) also appears as
Exercise 6 in [GrRaOg] (because a quiver Q whose underlying undirected graph
is a tree can be regarded as an orientation of the latter tree, and because the
concept of “pushing sources” in [GrRaOg] corresponds precisely to our concept
of mutations at sinks, except that all arrows need to be reversed).

Solution to Exercise 0.1. (a) We prove the claim by induction over |B|.
Induction base: Assume that |B| = 0. Thus, B = ∅, and thus there are no arrows

of Q which start at a vertex in A and at a vertex in B. Hence, mutA,B Q = Q, and
this can clearly be obtained from Q by a sequence of mutations at sinks (namely,
by the empty sequence). Thus, Exercise 0.1 (a) holds if |B| = 0. This completes the
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induction base.2

Induction step:3 Let N ∈N. Assume that Exercise 0.1 (a) holds whenever |B| = N.
We now need to prove that Exercise 0.1 (a) holds whenever |B| = N + 1.

So let A and B be two subsets of Q0 such that A ∩ B = ∅ and A ∪ B = Q0.
Assume that there exists no arrow of Q that starts at a vertex in B and ends at a
vertex in A. Assume further that |B| = N + 1. We need to prove that mutA,B Q can
be obtained from Q by a sequence of mutations at sinks.

Notice that B = Q0 \ A (since A ∩ B = ∅ and A ∪ B = Q0).
It is easy to see that there exists some b ∈ B such that

there is no e ∈ Q1 satisfying t (e) = b and s (e) ∈ B (1)

4. Fix such a b. Clearly, b /∈ A (since b ∈ B = Q0 \ A).
Now, A∪{b} and B \ {b} are two subsets of Q0 such that (A ∪ {b})∩ (B \ {b}) =

∅ and (A ∪ {b}) ∪ (B \ {b}) = Q0
5. Furthermore, there exists no arrow of Q

that starts at a vertex in B \ {b} and ends at a vertex in A ∪ {b} 6. Hence,
mutA∪{b},B\{b} Q is a well-defined acyclic quiver. Moreover, since b ∈ B, we have
|B \ {b}| = |B|︸︷︷︸

=N+1

−1 = N + 1 − 1 = N. Thus, Exercise 0.1 (a) can be applied

to A ∪ {b} and B \ {b} instead of A and B (by the induction hypothesis). As
a consequence, we conclude that mutA∪{b},B\{b} Q can be obtained from Q by a
sequence of mutations at sinks.

2Yes, this was a completely honest induction base. You don’t need to start at |B| = 1 unless you
want to use something like |B| > 1 in the induction step (but even then, you should also handle
the case |B| = 0 separately).

3The letter N denotes the set {0, 1, 2, . . .} here.
4Proof. Assume the contrary. Thus, for every b ∈ B, there is an e ∈ Q1 satisfying t (e) = b and

s (e) ∈ B. Let us fix such an e (for each b ∈ B), and denote it by eb.
Thus, for every b ∈ B, we have eb ∈ Q1 and t (eb) = b and s (eb) ∈ B. We can thus define a

sequence (b0, b1, b2, . . .) of vertices in B recursively as follows: Set b0 = b, and set bi+1 = s
(
ebi

)
for every i ∈ N. Thus, (b0, b1, b2, . . .) is an infinite sequence of elements of B. Since B is a finite
set, this sequence must thus pass through an element twice (to say the least). In other words,
there are two positive integers u and v such that u < v and bu = bv. Consider these u and v.

Now, for every i ∈N, we have t
(
ebi

)
= bi (by the definition of ebi

) and s
(
ebi

)
= bi+1. Thus, for

every i ∈N, the arrow ebi
is an arrow from bi+1 to bi. Thus, there is an arrow from bi+1 to bi for

every i ∈ N. In particular, we have an arrow from bv to bv−1, an arrow from bv−1 to bv−2, etc.,
and an arrow from bu+1 to bu. Since bu = bv, these arrows form a cycle in Q, which contradicts
the hypothesis that the quiver Q is acyclic. This contradiction proves that our assumption was
wrong, qed.

5Proof. These are easy exercises in set theory. Use A ∩ B = ∅ and A ∪ B = Q0 and b ∈ B.
6Proof. Assume the contrary. Thus, there exists an arrow of Q that starts at a vertex in B \ {b} and

ends at a vertex in A ∪ {b}. Let e be such an arrow. Then, s (e) ∈ B \ {b} and t (e) ∈ A ∪ {b}.
We have s (e) ∈ B \ {b} ⊆ B. Thus, t (e) 6= b (because having t (e) = b would contradict (1)).

Combined with t (e) ∈ A ∪ {b}, this yields t (e) ∈ (A ∪ {b}) \ {b} ⊆ A. Thus, e is an arrow of
Q that starts at a vertex in B (since s (e) ∈ B) and ends at a vertex in A (since t (e) ∈ A). This
contradicts our hypothesis that there exists no arrow of Q that starts at a vertex in B and ends
at a vertex in A. This is the desired contradiction, and so we are done.
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We shall now prove that mutA,B Q can be obtained from mutA∪{b},B\{b} Q by a
mutation at a sink. In fact, b is a sink of mutA∪{b},B\{b} Q 7. Hence, the mutation

µb

(
mutA∪{b},B\{b} Q

)
is well-defined. We now have

mutA,B Q = µb

(
mutA∪{b},B\{b} Q

)
(2)

8. Therefore, mutA,B Q can be obtained from mutA∪{b},B\{b} Q by a single mutation

7Proof. Assume the contrary. Thus, there exists an arrow e of mutA∪{b},B\{b} Q which starts at b.
Consider this e.

Recall that mutA∪{b},B\{b} Q was obtained from Q by turning all arrows of Q which start at a
vertex in A ∪ {b} and end at a vertex in B \ {b}. Thus, every arrow of mutA∪{b},B\{b} Q which
starts at a vertex in B \ {b} and ends at a vertex in A ∪ {b} has originally been going in the
opposite direction in Q (because there exists no arrow of Q that starts at a vertex in B \ {b} and
ends at a vertex in A ∪ {b}), while all the other arrows of mutA∪{b},B\{b} Q have been copied
over unchanged from Q. The arrow e of mutA∪{b},B\{b} Q starts at b (which is not an element
of B \ {b}), so it does not start at a vertex in B \ {b} and end at a vertex in A ∪ {b}; therefore,
the preceding sentence shows that this arrow e has been copied over unchanged from Q. In
other words, the arrow e starts at b when considered as an arrow of Q as well. In other words,
s (e) = b. (Recall that the functions s and t are part of the quiver Q; thus, they map every
arrow of Q to its starting point and its terminal point, respectively. The same arrows might have
different starting points and terminal points when regarded as arrows of mutA∪{b},B\{b} Q.)

Recall that there exists no arrow of Q that starts at a vertex in B and ends at a vertex in A.
Thus, an arrow of Q which starts at a vertex in B must not end at a vertex in A. In particular,
the arrow e of Q must not end at a vertex in A (because it starts at b ∈ B). Hence, the arrow e of
Q ends at a vertex in Q0 \ A = B. In other words, t (e) ∈ B.

We cannot have t (e) = s (e) (because otherwise, the arrow e would form a cycle, but the quiver
Q is acyclic). Hence, t (e) 6= s (e) = b (since e starts at b). Combined with t (e) ∈ B, this yields
t (e) ∈ B \ {b}.

Thus, the arrow e of Q starts at a vertex in A ∪ {b} (since s (e) = b ∈ A ∪ {b}) and ends at a
vertex in B \ {b} (since t (e) ∈ B \ {b}). As we know, mutA∪{b},B\{b} Q was obtained from Q by
turning all such arrows. Hence, the arrow e must have been turned when it became an arrow of
mutA∪{b},B\{b} Q. But this contradicts the fact that the arrow e has been copied over unchanged
from Q. This contradiction proves that our assumption was wrong, qed.

8Proof of (2): We have Q0 = A ∪ B︸︷︷︸
={b}∪(B\{b})

= A ∪ {b} ∪ (B \ {b}).

Recall that the quiver mutA∪{b},B\{b} Q was obtained from Q by turning all arrows of Q
which start at a vertex in A ∪ {b} and end at a vertex in B \ {b}. Furthermore, the quiver
µb

(
mutA∪{b},B\{b} Q

)
was obtained from mutA∪{b},B\{b} Q by turning all arrows ending at b.

Thus, µb

(
mutA∪{b},B\{b} Q

)
can be obtained from Q by a two-step process, where

• in the first step, we turn all arrows of Q which start at a vertex in A ∪ {b} and end at a
vertex in B \ {b};

• in the second step, we turn all arrows ending at b.

Now, let us analyze what this two-step process does to an arrow of Q, depending on where
the arrow starts and ends:

1. If e is an arrow of Q which ends at a vertex in A, then this arrow never gets turned during
our process. Indeed, let e be such an arrow. Then, e ends at a vertex in A, and thus does
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at a sink (namely, at the sink b). Since mutA∪{b},B\{b} Q (in turn) can be obtained
from Q by a sequence of mutations at sinks, this shows that mutA,B Q can be ob-
tained from Q by a sequence of mutations at sinks (namely, we first need to mutate

not end at a vertex in B (since A∩ B = ∅); therefore, it does not end at a vertex in B \ {b}
either. Hence, the first step does not turn it. Therefore, after the first step, it still does not
end at a vertex in B (since it did not end at a vertex in B originally). In particular, it does
not end at b (since b ∈ B). Hence, it does not get turned at the second step either. So, e
never turns, and thus retains its original direction throughout the process.

2. If e is an arrow of Q which ends at b, then this arrow gets turned once (namely, at the
second step). Thus, its direction is reversed at the end of the process.

3. If e is an arrow of Q which starts at a vertex in A and ends at a vertex in B \ {b}, then
this arrow gets turned once (namely, at the first step). Here is why: Let e be an arrow of
Q which starts at a vertex in A and ends at a vertex in B \ {b}. Then, e starts at a vertex
in A ∪ {b} and ends at a vertex in B \ {b} (since A ⊆ A ∪ {b}). Thus, it gets turned at the
first step. After this, it becomes an arrow which ends at a vertex in A (because originally
it started at a vertex in A), and so it does not end at b (because b /∈ A). Therefore, it does
not turn at the second step; hence, it has turned exactly once altogether. Its direction is
therefore reversed at the end of the process.

4. If e is an arrow of Q which starts at b and ends at a vertex in B \ {b}, then this arrow
gets turned twice (once at each step). Indeed, let e be such an arrow. Then, e starts at a
vertex in A ∪ {b} (namely, at b) and ends at a vertex in B \ {b}. Hence, it gets turned at
the first step. After that, it ends at b (because it used to start at b before it was turned),
and therefore it gets turned again at the second step. Hence, the direction of e at the end
of the two-step process is again the same as it was in Q.

5. If e is an arrow of Q which starts at a vertex in B \ {b} and ends at a vertex in B \ {b},
then this arrow never gets turned. Indeed, it starts at a vertex in B \ {b}; thus, it does not
start at a vertex in A ∪ {b} (since B︸︷︷︸

=Q0\A

\ {b} = (Q0 \ A) \ {b} = Q0 \ (A ∪ {b})). Hence,

it does not get turned at the first step. Moreover, in Q, this arrow e does not end at b
(because it ends at a vertex in B \ {b}); thus it does not end at b after the first step either
(since it does not get turned at the first step). Hence, it does not get turned at the second
step either. Therefore, e never gets turned, and thus retains its original direction from Q
after the two-step process.

The five cases we have just considered cover all possibilities (because every arrow e either ends
at a vertex in A or ends at b or ends at a vertex in B \ {b}; and in the latter case, it either starts
at a vertex in A, or starts at b, or starts at a vertex in B \ {b} (since Q0 = A ∪ {b} ∪ (B \ {b}))).
From our case analysis, we can draw the following conclusions:

• If e is an arrow of Q which starts at a vertex in A and ends at a vertex in B, then the arrow
e has reversed its orientation at the end of the two-step process. (This follows from our
Cases 2 and 3 above.)

• If e is an arrow of Q which starts at a vertex in B or ends at a vertex in A, then this arrow
e has the same orientation at the end of the two-step process as it did in Q. (Indeed, let
us prove this. Let e be an arrow of Q which starts at a vertex in B or ends at a vertex in
A. We need to show that e has the same orientation at the end of the two-step process as
it did in Q. If e ends at a vertex in A, then this follows from our analysis of Case 1. So
let us assume that e does not end at a vertex in A. Hence, e must start at a vertex in B
(since e starts at a vertex in B or ends at a vertex in A). In other words, s (e) ∈ B. Hence,
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at the sinks that give us mutA∪{b},B\{b} Q, and then we have to mutate at b). This
proves that Exercise 0.1 (a) holds whenever |B| = N + 1. The induction step is
complete, and thus Exercise 0.1 (a) is solved.

(b) Let i ∈ Q0 be a source in Q. Let A = {i} and B = Q0 \ A. Then, A and B are
two subsets of Q0 such that A∩ B = ∅ and A∪ B = Q0. There exists no arrow of Q
that starts at a vertex in B and ends at a vertex in A 9. Hence, the quiver mutA,B Q
is well-defined. Moreover, this quiver mutA,B Q is obtained by turning all arrows
of Q which start at a vertex in A and end at a vertex in B. But these arrows are
precisely the arrows of Q starting at i 10. Hence, mutA,B Q is obtained by turning
all arrows of Q starting at i. But this is exactly how we defined µi (Q). Therefore,
mutA,B Q = µi (Q). Now, Exercise 0.1 (a) shows that mutA,B Q can be obtained
from Q by a sequence of mutations at sinks. Hence, µi (Q) can be obtained from Q
by a sequence of mutations at sinks (since mutA,B Q = µi (Q)). Exercise 0.1 (b) is
proven.

(c) Let Q′ be any acyclic quiver which can be obtained from Q by turning some
of its arrows. We need to prove that Q′ can also be obtained from Q by a sequence
of mutations at sinks. But [Lampe, proof of Proposition 2.2.8] shows that Q′ can
be obtained from Q by a sequence of mutations at sinks and sources. Since every

t (e) 6= b (because if we had t (e) = b, then e would contradict (1)). But also t (e) /∈ A
(since e does not end at a vertex in A), so that t (e) ∈ Q0 \ A = B and thus t (e) ∈ B \ {b}
(since t (e) 6= b). Hence, the arrow e ends at a vertex in B \ {b}. It also starts at a vertex in
B; thus, it either starts at b or it starts at a vertex in B \ {b}. Our claim now follows from
our analysis of Case 4 (in the case when e starts at b) and from our analysis of Case 5 (in
the case when e starts at a vertex in B \ {b}). In either case, our claim is proven.)

To summarize, the outcome of our two-step process is that every arrow e of Q which starts at a
vertex in A and ends at a vertex in B reverses its orientation, while all other arrows preserve their
orientation. In other words, the outcome of our two-step process is the same as the outcome
of turning all arrows of Q which start at a vertex in A and end at a vertex in B. But the latter
outcome is mutA,B Q (because this is how mutA,B Q was defined), while the former outcome is

µb

(
mutA∪{b},B\{b} Q

)
(since we know that µb

(
mutA∪{b},B\{b} Q

)
can be obtained from Q by

our two-step process). Thus, we have obtained µb

(
mutA∪{b},B\{b} Q

)
= mutA,B Q. This proves

(2).
9Proof. Assume the contrary. Then, there exists an arrow of Q which starts at a vertex in B and

ends at a vertex in A. Let e be such an arrow. Then, e ends at a vertex in A. In other words,
t (e) ∈ A = {i}, so that t (e) = i. In other words, e ends at i. But this is impossible, since i is a
source. This contradiction proves that our assumption was wrong, qed.

10Proof. Each arrow of Q which starts at a vertex in A and ends at a vertex in B must be an arrow
starting at i (because it starts at a vertex in A = {i}, but the only vertex in {i} is i). It thus
remains to prove the converse – i.e., to prove that each arrow of Q starting at i is an arrow of
Q which starts at a vertex in A and ends at a vertex in B. So let e be an arrow of Q starting
at i. Then, e clearly starts at a vertex in A (since i ∈ {i} = A). It remains to prove that e ends
at a vertex in B. But Q is acyclic, and thus we cannot have s (e) = t (e) (since otherwise, the
arrow e would form a trivial cycle). Hence, s (e) 6= t (e). But s (e) = i (since e starts at i), so that
t (e) 6= s (e) = i and thus t (e) ∈ Q0 \ {i}︸︷︷︸

=A

= Q0 \ A = B. Hence, e ends at a vertex in B. This

completes our proof.
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mutation at a source can be simulated by a sequence of mutations at sinks (by
Exercise 0.1 (b)), this yields that Q′ can be obtained from Q by a sequence of
mutations at sinks. This solves Exercise 0.1 (c).
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