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1 Exercise 1

1.1 Problem

Let G be a connected multigraph. Let x, y, z and w be four vertices of G.
Assume that the two largest ones among the three numbers d (x, y) + d (z, w),

d (x, z) + d (y, w) and d (x,w) + d (y, z) are not equal.
Prove that G has a cycle of length ≤ d (x, z) + d (y, w) + d (x,w) + d (y, z).

1.2 Solution

Proof. For brevity, define the following:

a = d (x, y) + d (z, w)

b = d (x, z) + d (y, w)

c = d (x,w) + d (y, z) .

We are then asked to show that G has a cycle of length ≤ b+ c. For any unordered pair
of {u, v} of vertices of G, let us choose (and fix) a shortest path pu,v from u to v.
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Among the values a, b, and c, pick the two smallest. Let us call these two smallest
values b′ and c′. We can find a permutation (x′, y′, z′, w′) of (x, y, z, w) such that b′ =
d (x′, z′) + d (y′, w′) and c′ = d (x′, w′) + d (y′, z′).

Form a new multigraph G′ from G by restricting the edges and vertices to those
lying on (one of) the chosen shortest paths px′,z′ , py′,w′ , px′,w′ , py′,z′ . (For example, if a
and b are the two smallest among the values a, b, and c, then we restrict the vertices to
those lying on the paths px,y, pz,w, px,z, py,w.) Notice that the new multigraph G′ is still
connected.

Now, the two chosen sums of distances d (x′, z′) + d (y′, w′) and d (x′, w′) + d (y′, z′)
are the same in G and in G′, since the chosen shortest paths px′,z′ , py′,w′ , px′,w′ , py′,z′ are
retained. The third sum (the largest in G) cannot be smaller in G′, since G′ was obtained
from G by removing vertices and edges (so no new paths can have arisen, but old paths
might have disappeared). Hence, it is still the largest in G′. Thus, the two largest sums
in G′ are still unequal (as the smaller of them is the same as in G, while the larger one
is the same or larger). Therefore, G′ is not a tree (by Midterm 2, Exercise 6). Since G′

is connected, this shows that G′ contains a cycle.
But G′ has at most b′ + c′ = a+ b+ c−max{a, b, c} vertices, which is ≤ b+ c. Since

the vertices on a cycle are distinct, the cycle cannot have length greater than b+ c.

2 Exercise 2

2.1 Problem

(a) Let n > 1 be an integer. Prove that the chromatic polynomial of the cycle graph
Cn is

χCn = (x− 1)n + (−1)n (x− 1) .

(b) Let g ∈ N. Let G be the simple graph whose vertices are the 2g + 1 integers
−g,−g + 1, . . . , g − 1, g, and whose edges are

{0, i} for all i ∈ {1, 2, . . . , g} ;
{0,−i} for all i ∈ {1, 2, . . . , g} ;
{i,−i} for all i ∈ {1, 2, . . . , g}

(these are 3g edges in total).
Compute the chromatic polynomial χG of G.
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2.2 Solution

Proof of part (a): Let V = V (Cn), and E = E (Cn). First show that for F ⊆ E, we
have

conn (V, F ) =

{
n− |F | , if |F | < n;

1, if |F | = n.
(1)

[First proof of (1): We prove (1) by induction over |F |:
Base: |F | = 0. In this case, each vertex is isolated, so conn (V, F ) = n− |F | = n.
Step: Suppose conn (V, F ) = n − |F |. Consider the graph (V, F ∪ {e}), where e ∈

E\F . There are two cases to consider:

(1) The two endpoints of e are in the same connected component of (V, F ). In this
case, |F | must be n−1 (since adding e creates a cycle, but the only cycle that could
possibly be added is the one that contains all n vertices of Cn), so conn (V, F ∪ {e}) =
1.

(2) The two endpoints of e are not in the same connected component of (V, F ). In this
case, adding e joins two connected components, so conn (V, F ∪ {e}) = conn (V, F )−
1 = n− |F | − 1 = n− |F ∪ {e}| .

]
[Second proof of (1): If F is a proper subset of E, then the graph (V, F ) has

no cycles (since the only cycle it could have is the full n-vertex cycle, but this would
require F to be the whole set E), and thus is a forest. Therefore, in this case, we have
conn (V, F ) = n − |F | (since the number of connected components of a forest always
equals its number of vertices minus its number of edges1). Remains to handle the case
F = E; but this is clear.]

Since conn (V, F ) depends only on |F | (by (1)), we can sum over |F | rather than all
F ⊆ E. For each k ∈ {0, 1, . . . , n}, there are

(
n
k

)
possible subsets F of E having size

|F | = k, so we get

χCn =
∑
F⊆E

(−1)|F |xconn (V,F ) =
n−1∑
k=0

(
n

k

)
(−1)kxn−k + (−1)nx1

=
n∑

k=0

(
n

k

)
(−1)kxn−k − (−1)nxn−n + (−1)nx

=
n∑

k=0

(
n

k

)
(−1)kxn−k + (−1)n(x− 1)

= (x− 1)n + (−1)n(x− 1),

with the final equality using the binomial theorem.

1For a proof, see Corollary 20 in the handwritten Lecture 9.
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Proof of part (b): Let V = V (G), and E = E (G). A lobe shall mean a subgraph of G
comprising the vertices i, −i, and 0 and the edges {0, i}, {0,−i}, and {i,−i}. The hub
of a subgraph (V, F ) (with F ⊆ E) shall refer to the connected component containing
the vertex 0 in (V, F ).

Consider how the vertices in a lobe can become part of a connected component
distinct from the hub in a graph (V, F ). As long as at least 2 of the edges {0, i}, {0,−i},
and {i,−i} are in F , each of i and −i remains connected to the hub. If only one of the
edges {0, i}, {0,−i}, and {i,−i} is in F , then one connected component separates from
the hub (either one isolated vertex or both vertices depending on which edge remains).
If none of the edges are in F , then each of i and −i becomes a connected component.
Thus the number of connected components in (V, F ) can be determined by the number
of lobes with 0, 1, 2, and 3 edges removed in (V, F ).

For a subset F of E, define four nonnegative integers ℓ0, ℓ1, ℓ2, ℓ3 as follows:

for i = 0, 1, 2, 3, set ℓi = #(lobes with i edges removed in (V, F )).

We can express the size of F as |F | = 3ℓ0 + 2ℓ1 + ℓ2. There are
(

g
ℓ0,ℓ1,ℓ2,ℓ3

)
choices2 of

how many edges to remove from each lobe. For each such choice, we have 3ℓ13ℓ2 choices
of edges to remove. Finally, for each choice of lobes and edges, there are 1 + ℓ2 + 2ℓ3
connected components. We can now express χG as the following cumbersome sum:

χG =
∑
F⊆E

(−1)|F |xconn (V,F ) =
∑

ℓ0,ℓ1,ℓ2,ℓ3,
ℓ0+ℓ1+ℓ2+ℓ3=g

(
g

ℓ0, ℓ1, ℓ2, ℓ3

)
3ℓ13ℓ2(−1)3ℓ0+2ℓ1+ℓ2x1+ℓ2+2ℓ3

=
∑

ℓ0,ℓ1,ℓ2,ℓ3,
ℓ0+ℓ1+ℓ2+ℓ3=g

(
g

ℓ0, ℓ1, ℓ2, ℓ3

)
x[(−1)3]ℓ0 [3(−1)2]ℓ1 [3x(−1)]ℓ2 [x2]ℓ3

= x
∑

ℓ0,ℓ1,ℓ2,ℓ3,
ℓ0+ℓ1+ℓ2+ℓ3=g

(
g

ℓ0, ℓ1, ℓ2, ℓ3

)
(−1)ℓ03ℓ1(−3x)ℓ2(x2)ℓ3

= x(−1 + 3− 3x+ x2)g = x(x− 1)g(x− 2)g,

with the last line using the multinomial theorem.

3 Exercise 3

3.1 Problem

Let (G;X, Y ) be a bipartite graph such that |Y | ≥ 2 |X| − 1. Prove that there exists
an injective map f : X → Y such that each x ∈ X satisfies one of the following two

2Here,
(

g
ℓ0,ℓ1,ℓ2,ℓ3

)
denotes a multinomial coefficient; it is defined as g!

ℓ0!ℓ1!ℓ2!ℓ3!
.
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statements:

• Statement 1: The vertices x and f (x) of G are adjacent.

• Statement 2: There exists no x′ ∈ X such that the vertices x and f (x′) of G are
adjacent.

3.2 Solution

Proof. Induction on |X|.
Base: |X| ≤ 1. In this case, the proof is easy: If |X| = 1, then mapping the single

vertex in X to any of the ≥ 1 vertices in Y satisfies the proposition. If |X| = 0, then
everything is obvious.

Step: Suppose there is a map f satisfying the proposition for every bipartite graph
(H;A,B) with |A| < |X| and |B| ≥ 2 |A| − 1. Assume without loss of generality that
there are fewer than |X| isolated vertices in Y . (If there are at least |X| isolated vertices
in Y , then we can choose any injective map from X to these isolated vertices.) Let Y ′ be
the set of non-isolated vertices in Y . Choose the smallest nonempty S ⊆ Y ′ such that
|N(S)| ≤ |S|. (If there is no such S, then for every S ⊆ Y ′, |N(S)| > |S| and we have a
Y ′-complete matching which can be used to define a map in which each vertex satisfies
Statement 1.) For this S, it cannot be that |N(S)| < |S|, since each subset P ⊂ S of size
|S| − 1 has at least |S| neighbors (and since the vertices in S are non-isolated). Thus
|N(S)| = |S|. Now we have for each P ⊆ S, |N(P )| ≥ |P | and |N(S)| = |S|, so there is
a perfect matching M of N(S) to S.

Now, consider the bipartite graph (G\(N(S) ∪ S);X\N(S), Y \S). Since |N(S)| =
|S|, we still have |Y \S| ≥ 2 |X\N(S)| − 1. Hence by the induction hypothesis, there is
a map f : X\N(S) → Y \S satisfying the conditions of the exercise. If we extend this
map to f ′ by setting f ′(v) to the vertex to which v is matched in the perfect matching
M for each v ∈ N(S), then f ′ satisfies the proposition:

• For each v ∈ N(S), v is adjacent to f ′(v).

• For each v ∈ X\N(S), either v is adjacent to f ′(v), or no other vertex is mapped to
any of its neighbors. (In fact, for v not adjacent to f ′(v), the induction hypothesis
guarantees that no other vertex in X\N(S) maps to a neighbor of v, and since each
vertex in N(S) is mapped to a vertex in S, it cannot be mapped to a neighbor of
v either.)
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4 Exercise 4

4.1 Problem

Let n ∈ N be even. Let σ ∈ Sn be a permutation.
(a) Show that the perfect matching

Mσ = {{σ (1) , σ (2)} , {σ (3) , σ (4)} , {σ (5) , σ (6)} , . . . , {σ (n− 1) , σ (n)}}

satisfies
(−1)xing(Mσ) (−1)k = (−1)σ ,

where k is the number of i ∈ {1, 2, . . . , n/2} satisfying σ (2i− 1) > σ (2i).
(b) Let

M =
{
{a1, b1} , {a2, b2} , . . . ,

{
an/2, bn/2

}}
be any perfect matching. Define a new perfect matching σM by

σM =
{
{σ (a1) , σ (b1)} , {σ (a2) , σ (b2)} , . . . ,

{
σ
(
an/2

)
, σ

(
bn/2

)}}
.

Let p be the number of i ∈ {1, 2, . . . , n/2} satisfying ai > bi.
Let q be the number of i ∈ {1, 2, . . . , n/2} satisfying σ (ai) > σ (bi).
Prove that

(−1)xing(σM) (−1)p = (−1)σ (−1)xingM (−1)q .

4.2 Solution

Recall the following basic fact: If {i, j} and {k, ℓ} are two disjoint edges, then

[{i, j} crosses {k, ℓ}] ≡ [i > k] + [i > ℓ] + [j > k] + [j > ℓ] mod 2. (2)

Proof of part (a): It suffices to show that xingMσ + k ≡ ℓ(σ) mod 2. Here begins a
lot of sum manipulation. Below I just split the sum in the definition of xingMσ, and

Nicholas Rancourt, 6
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change the indices:

xingMσ =
∑

1≤i<j≤n/2

[{σ(2i− 1), σ(2i)} crosses {σ(2j − 1), σ(2j)}]︸ ︷︷ ︸
≡[σ(2i−1)>σ(2j−1)]+[σ(2i−1)>σ(2j)]+[σ(2i)>σ(2j−1)]+[σ(2i)>σ(2j)] mod 2

(by (2))

≡
∑

1≤i<j≤n/2

([σ(2i− 1) > σ(2j − 1)] + [σ(2i− 1) > σ(2j)]

+[σ(2i) > σ(2j − 1)] + [σ(2i) > σ(2j)])

=
∑

1≤i<j≤n/2

[σ(2i− 1) > σ(2j − 1)] +
∑

1≤i<j≤n/2

[σ(2i− 1) > σ(2j)]

+
∑

1≤i<j≤n/2

[σ(2i) > σ(2j − 1)] +
∑

1≤i<j≤n/2

[σ(2i) > σ(2j)]

=
∑

1≤i<j≤n,
i odd, j odd

[σ(i) > σ(j)] +
∑

1≤i<j≤n,
i odd, j even,

j>i+1

[σ(i) > σ(j)]

+
∑

1≤i<j≤n,
i even, j odd

[σ(i) > σ(j)] +
∑

1≤i<j≤n,
i even, j even

[σ(i) > σ(j)] mod 2.

Now

k =
∑

1≤i≤n/2

[σ(2i− 1) > σ(2i)] =
∑

1≤i≤n,
i odd

[σ(i) > σ(i+ 1)] =
∑

1≤i<j≤n,
i odd, j even,

j=i+1

[σ(i) > σ(j)].

This can be combined with the second of the four sums in the last expression above to
get

xingMσ + k ≡
∑

1≤i<j≤n,
i odd, j odd

[σ(i) > σ(j)] +
∑

1≤i<j≤n,
i odd, j even

[σ(i) > σ(j)]

+
∑

1≤i<j≤n,
i even, j odd

[σ(i) > σ(j)] +
∑

1≤i<j≤n,
i even, j even

[σ(i) > σ(j)]

=
∑

1≤i<j≤n

[σ(i) > σ(j)] = ℓ (σ) mod 2.

Proof of part (b): This is equivalent to showing that ℓ(σ) ≡ xingM + p+xing(σM) + q
mod 2. Rename each ai and bi as follows: for i = 1, 2, . . . , n/2, let c2i−1 = ai and
c2i = bi. We can use the result of part (a) by noting that p, xingM , and ci here
correspond respectively to k, xing(Mσ), and σ(i) in part (a), so we get

xingM + p ≡
∑

1≤i<j≤n

[ci > cj] mod 2. (3)

Nicholas Rancourt, 7
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Similarly, q, xing(σM), and σ(ci) here correspond to k, xing(Mσ), and σ(i) in part (a),
so we get

xing(σM) + q ≡
∑

1≤i<j≤n

[σ(ci) > σ(cj)] mod 2. (4)

Adding (3) and (4), we get

xingM + p+ xing(σM) + q ≡
∑

1≤i<j≤n

([ci > cj] + [σ(ci) > σ(cj)]) mod 2. (5)

Now, we can express ℓ(σ) directly from the definition as below:

ℓ(σ) =
∑

1≤i,j≤n

[ci < cj] · [σ(ci) > σ(cj)]. (6)

Now consider the addends in the sum in (5) that are nonzero modulo 2. These addends
correspond to pairs of indices 1 ≤ i < j ≤ n for which exactly one of the following two
statements is true:

(a) i < j and ci < cj and σ(ci) > σ(cj)

(b) i < j and ci > cj and σ(ci) < σ(cj)

Similarly consider the addends in the sum in (6) that are nonzero modulo 2. These
addends correspond to pairs of indices 1 ≤ i, j ≤ n for which exactly of the following
two statements is true:

(c) i < j and ci < cj and σ(ci) > σ(cj)

(d) i > j and ci < cj and σ(ci) > σ(cj)

Note that condition (a) is the same as condition (c), and if we reverse the names of
i and j in condition (d), it becomes the same as condition (b). Therefore, ℓ(σ) ≡
xingM + p+ xing(σM) + q mod 2.

5 Exercise 5

5.1 Problem

Let G = (V,E, ψ) be a connected multigraph. Set n = |V | and h = |E|.
Let (ϕ0, ϕ1, . . . , ϕk) be a sequence of orientations of G, and let (v1, v2, . . . , vk) be

a sequence of vertices of G such that for each i ∈ {1, 2, . . . , k}, the orientation ϕi is
obtained from ϕi−1 by pushing the source vi (in particular, this is saying that vi is a
source of ϕi−1).

Nicholas Rancourt, 8
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Assume that k ≥
(
n+ h− 1

n− 1

)
.

(a) Prove that each vertex of G appears at least once in the sequence (v1, v2, . . . , vk).
(b) Prove that the orientations ϕ0, ϕ1, . . . , ϕk are acyclic.

Proof of part (a): Form the multidigraph Gdir. (This is the multidigraph obtained from
the multigraph G by replacing each edge by two arcs going in opposite directions.)

For each orientation ϕi of G, define a configuration fi on Gdir by setting

fi(v) = deg+(V,E,ϕi)
v = #(arcs with source v in orientation ϕi of G)

for each v ∈ V . Then, a vertex is active in configuration fi on Gdir if and only if it
is a source in orientation ϕi of G. (If v ∈ V is a source, then deg+(V,E,ϕi)

v = degG v =

deg+
Gdir v, thus fi(v) = deg+(V,E,ϕi)

v = deg+
Gdir v, so it is active. If it is not a source, then

deg+(V,E,ϕi)
v < degG v = deg+

Gdir v, so that fi(v) = deg+(V,E,ϕi)
v < deg+

Gdir v, and it is not
active.)

Also, the operation of pushing a source v on orientation ϕi results in the legal firing
of vertex v in configuration fi: In fact, if ϕi+1 is the orientation obtained from ϕi by
pushing the source v, and if fi+1 is the configuration corresponding to this ϕi+1, then
each vertex w ∈ V satisfies

fi+1(w) =

{
fi(w)− deg+

Gdir w, for w = v
fi(w) + #(arcs v → w), for w ̸= v

}
= (fi −∆v)(w),

and therefore fi+1 = fi−∆v. Thus, pushing a sequence of sources in G results in a legal
sequence of chip-firings on the same sequence of vertices in Gdir. Since Gdir is strongly
connected, we can apply the result of HW5 Exercise 1 (b), which states that any legal

sequence of length ≥
(
n+ h− 1

n− 1

)
must contain each vertex of V . Therefore, every

vertex appears in the sequence (v1, v2, . . . , vk).

Proof of part (b): Suppose an orientation ϕi is not acyclic. Then there is a cycle c =
(u0, e1, u1, . . . , ej, uj = u0). For each i ∈ {0, 1, . . . , j − 1}, the vertex ui is not a source
in ϕi since the arc ei has target ui (where e0 := ej). Hence vi+1 /∈ {u0, u1, . . . , uj−1}.
Then each edge on the cycle c maintains the same orientation in ϕi+1 that it had in ϕi,
so ϕi+1 also contains the same cycle. By induction, any vertex on a cycle will remain on
a cycle after any sequence of source-pushing operations.

But as justified in part (a), we can apply the result of HW5 Exercise 1 (a), which
says we can perform an arbitrarily long sequence of source-pushing operations starting

at orientation ϕi. In particular, we can perform a sequence of ≥
(
n+ h− 1

n− 1

)
opera-

tions. Then each vertex (including the vertices on c) must appear in this sequence, a
contradiction. Therefore, each orientation ϕi must be acyclic.

Nicholas Rancourt, 9
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6 Exercise 6

6.1 Problem

Let G = (V,E, ψ) be a tree. Let α and β be two orientations of G.
Prove that β can be obtained from α by repeatedly pushing sources.

Proof. First, let us prepare with some general facts:

Definition. Let G = (V,E, ψ) be a multigraph. Let ϕ be an orientation of G.
A vertex v ∈ V is said to be a sink of ϕ if no arc of the multidigraph (V,E, ϕ)
has source v. If v is a sink of ϕ, then we can define a new orientation ϕ′ of
G as follows:

• For each e ∈ E satisfying v ∈ ψ (e), we set ϕ′ (e) = (v, u), where u is
chosen such that ϕ (e) = (u, v).

• For all other e ∈ E, we set ϕ′ (e) = ϕ (e).

(Roughly speaking, this simply means that ϕ′ is obtained by ϕ by reversing
the directions of all edges that contain v.) We say that this new orientation
ϕ′ is obtained from ϕ by pulling the sink v.

Lemma. Let G = (V,E, ψ) be a multigraph. Let ϕ be an acyclic orientation
of G. Let v be a sink of ϕ. Then, the orientation obtained from ϕ by pulling
the sink v can also be obtained from ϕ by repeatedly pushing sources.

For a proof of this Lemma, see Exercise 0.1 (b) in Darij Grinberg, An exercise on
source and sink mutations of acyclic quivers . (This exercise differs from the Lemma in
that sources and sinks have their roles swapped; but this is easily achieved by reversing
all arcs.)

We shall now solve the exercise by induction on |V |.
Base: |V | = 1. In this case, the tree G has no edges, so that the orientations α and

β must be equal already. Hence, we are done in this case.
Step: |V | > 1. Suppose any orientation can be obtained from an arbitrary orienta-

tion by repeatedly pushing sources on a tree with fewer than |V | − 1 vertices.
Pick any leaf ℓ of G. Since it is a leaf, ℓ has exactly one neighbor u, and there is a

unique edge between ℓ and u. The graph G\ {ℓ} is again a tree.
Define orientations β′ and α′ for the tree G\ {ℓ} as restrictions of the orientations β

and α. (In other words, we set β′(e) = β(e) and α′(e) = α(e) for each edge e of G\ {ℓ}.)
By the induction hypothesis, β′ can be obtained from α′ on the graph G\ {ℓ} by pushing
some sequence of sources. Let s be this sequence.

Our goal is to obtain β from α by pushing some sequence of sources on the graph
G. In order to achieve this, we proceed as follows:

1. We start with the orientation α.

Nicholas Rancourt, 10

http://www.cip.ifi.lmu.de/~grinberg/t/17s/quiv.pdf
http://www.cip.ifi.lmu.de/~grinberg/t/17s/quiv.pdf


Solutions to Midterm #3 page 11 of 11

2. We push the sequence s, with one little change: Every time we need to push u,
we potentially have to push ℓ first (because if ℓ is a source, then the unique edge
between ℓ and u is oriented towards u, thus preventing us from pushing u).

3. Now, we have obtained an orientation γ of G whose restriction to G\ {ℓ} is β′.
Thus, this orientation differs from β at most in the edge between ℓ and u.

If this edge is oriented equally in β and in γ, then we have arrived at β, and thus
we are done in this case.

4. It remains to deal with the case when the edge between ℓ and u is oriented differ-
ently in β and in γ. If ℓ is a source of γ, then we can simply push ℓ in γ and thus
obtain β; so we are done again.

It remains to handle the case when ℓ is a sink of γ. In this case, we want to pull
the sink ℓ. In order to do this, we use the Lemma: The orientation γ is acyclic
(since the multigraph G is a tree, thus has no cycles), and therefore the Lemma
can be applied to ϕ = γ and v = ℓ. We thus conclude that we can pull the sink ℓ
by repeatedly pushing sources; this allows us to reach β.

Nicholas Rancourt, 11
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