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Math 5707 Spring 2017 (Darij Grinberg): midterm 3
due: Wed, 3 May 2017, in class or by email (dgrinber@umn.edu) before class

See the website for relevant material.

Results proven in the notes, or in the handwritten notes, or in class, or in previous home-
work sets can be used without proof; but they should be referenced clearly (e.g., not “by a
theorem done in class” but “by the theorem that states that a strongly connected digraph
has a Eulerian circuit if and only if each vertex has indegree equal to its outdegree”). If you
reference results from the lecture notes, please mention the date and time of the version
of the notes you are using (as the numbering changes during updates).

As always, proofs need to be provided, and they have to be clear and rigorous. Obvious
details can be omitted, but they actually have to be obvious.

This is a midterm, so you are not allowed to collaborate or contact others (apart from
me) for help with the problems. (Feel free to ask me for clarifications, but I will not give
hints towards solving the problems.) Reading up (in books or on the internet) is allowed,
but asking for help is not. If you get your solution from a book (or paper, or website), do
cite the sourceﬂ and do explain the solution in your own words.

0.1. Exercise [I} the distances between four points in a graph

Exercise 1. Let G be a connected multigraph. Let x, y, z and w be four vertices
of G.

Assume that the two largest ones among the three numbers d (x,y) +d (z, w),
d(x,z)+d(y,w) and d (x,w) +d (y,z) are not equal.

Prove that G has a cycle of length < d (x,z) +d (y,w) +4d (x,w) +d (y,z).

[Hint: This is a strengthening of Exercise 6 on midterm #2. Try deriving it by
applying the latter exercise to a strategically chosen submultigraph of G.]

0.2. Exercise 2} more examples of chromatic polynomials

See Exercise 4 on midterm #2 for the definition and the properties of the chromatic
polynomial.

You won't be penalized for this.



http://www.cip.ifi.lmu.de/~grinberg/t/17s
http://www.cip.ifi.lmu.de/~grinberg/t/17s/mt2s.pdf
http://www.cip.ifi.lmu.de/~grinberg/t/17s/mt2s.pdf

Math 5707 Spring 2017 (Darij Grinberg): midterm 3 page 2

Exercise 2. (a) Let n > 1 be an integer. Prove that the chromatic polynomial of
the cycle graph C, is
Xe, = (x=1)"+(=1)"(x-1).

[Hint: Induct over n.]
(b) Let ¢ € IN. Let G be the simple graph whose vertices are the 2¢ + 1 integers

-g,—9+1,...,9—1,g, and whose edges are
{0,i} forallie {1,2,...,8};
{0, —i} forallie {1,2,...,¢};
{i,—i} forallie {1,2,...,¢}
(these are 3¢ edges in total).

Compute the chromatic polynomial x¢ of G.
[Here is how G looks like in the case when g = 4:

/A
AN

0.3. Exercise [3;} unhappy marriages in a lopsided bipartite graph
Exercise 3. Let (G;X,Y) be a bipartite graph such that |Y| > 2|X| — 1. Prove

that there exists an injective map f : X — Y such that each x € X satisfies one of
the following two statements:

o Statement 1: The vertices x and f (x) of G are adjacent.

e Statement 2: There exists no x’ € X such that the vertices x and f (x’) of G
are adjacent.
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(The intuition behind Exercise (3|is something along the lines of: If there are signif-
icantly more ladies than there are gentlemen, then we can marry all gentlemen off
in such a way that each gentleman is either married to a lady he likes, or none of
the ladies he likes is married.)

0.4.

Exercise [4; crossing numbers of n-matchings

The purpose of the next exercise is to fill in some details (namely, the verification
that the signs match) in our proof of one of the basic properties of the Pfaffian (the
fact that the square of the Pfaffian is the determinant).

For this section, fix an n € IN. We shall use the following notations:

We use the Iverson bracket notation (i.e., the truth value of a statement A will
be called [A]).

We set [k] = {1,2,...,k} for each k € IN. (This does not conflict with the
Iverson bracket notation, since k is not a statement.)

We let S, denote the set of all the n! permutations of the set [n]. (These
permutations are the bijective maps [n] — [n].)

The 2-element subsets of [n] will be called edges. (This makes sense, since
they are the edges of the complete graph K;,. We shall not consider any other
graphs in this section.)

The length £ (o) of a permutation o € S, is the number of all pairs (i, j) € [n]?
satisfying i < j and o (i) > o (j). For example, the permutation in S4 that
sends 1,2,3,4 to 3,1,4,2 (respectively) has length 3.

The sign of a permutation o € S, is the integer (=1)“9. It is denoted by
(—1)7 (or by signo).

A matching shall mean a set M C P, ([n]) (that is, a set M of edges) with
the property that each element of 1] belongs to at most one element of M
(equivalently, with the property that the edges in M are disjoint). In other
words, a matching is a matching of the complete graph K;,. For instance, if
n > 7, then {{1,4},{2,7}} is a matching (but {{1,4},{4,7}} is not).

A perfect matching shall mean a matching M such that each element of [#]
belongs to exactly one element of M. In other words, a perfect matching is a
perfect matching of the complete graph Kj,. Note that such a perfect matching
exists only if # is even; in this case, there are (n — 1) (n —3) (n —5) - - - 1 many
such perfect matchings, and each of them has size n/2.
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e If ¢ and f are two disjoint edges, then we say that e crosses f if and only if
exactly one element of e lies betweerﬂ the two elements of f. (For example,
{2,6} crosses {3,7}, but does not cross {3,4} or {1,7} or {7,8}.)

It is easy to check that the relation “crosses” is symmetric: i.e., if e and f are
two disjoint edges, then e crosses f if and only if f crosses e.

The geometrical meaning of “crossing” is simple: If we draw a regular poly-
gon with n vertices v1,vy,...,v, in the plane, then an edge {i7,j} crosses an
edge {k, (} if and only if the diagonal v;v; crosses the diagonal v;v,.

Also easy to verify is the following simple fact: If {7,j} and {k, ¢} are two
disjoint edges, then

[{i,j} crosses {k{}|=[i>kl+[i>{+[j>kl+[>¢ mod2 (1)
(You can use these facts without proof.)

e If M is a matching, then the crossing number xing M of M is defined to be the
number of all unordered pairs {¢, f} of two disjoint edges e € M and f € M
such that e crosses f. (Notice that we are counting unordered pairs; hence,
we do not count {e, f} and {f, e} twice.)

For example, the crossing number of the matching {{1,5},{2,6},{3,4}} is
1, since the only two edges crossing in this matching are {1,5} and {2,6}.

Exercise 4. Let n € IN be even. Let ¢ € S;, be a permutation.
(a) Show that the perfect matching

My = {{c(1),0(2)},{c(3),0(4)},{c(5),0(6)},....{c(n—=1),0(n)}}
satisties
(_1)xing(M‘7) (_1)k _ (_1)(7,
where k is the number of i € {1,2,...,n/2} satisfying o (2i — 1) > o (2i).

(b) Let
M = {{{/ll,bl},{az,bz},. . .,{ﬂn/z, bn/Z}}

be any perfect matching. Define a new perfect matching cM by

oM = {{o(a1),0(b1)}, {0 (a2),0(b2)} - {0 (@ns2) 0 (bus2) )} -

Let p be the number of i € {1,2,...,n/2} satisfying a; > b;.
Let g be the number of i € {1,2,...,n/2} satisfying o (a;) > o (b;).
Prove that

(_1)Xing(0’M) (_1)p _ (_1)0' (_1)XingM (_1)q

2The word “between” is to be understood in the sense of inequalities: An integer p is said to lie
between two integers 1 and v if min {u,v} < p < max{u,v}.
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0.5. Exercise 5} pushing sources in orientations 1

See homework set #5| for the concepts of orientations and of acyclic orientations.

Definition 0.1. Let G = (V, E, ¢) be a multigraph.

Let ¢ be an orientation of G.

A vertex v € V is said to be a source of ¢ if no arc of the multidigraph (V, E, ¢)
has target v. Exercise 6 (a) on homework set #5 shows that if ¢ is acyclic and if
V # @, then there exists a source of ¢.

If v is a source of ¢, then we can define a new orientation ¢’ of G as follows:

e For each e € E satisfying v € ¥ (e), we set ¢’ (e) = (u,v), where u is chosen
such that ¢ (e) = (v, u).

e For all other e € E, we set ¢’ (e) = ¢ (e).

(Roughly speaking, this simply means that ¢’ is obtained by ¢ by reversing the
directions of all edges that contain v.) We say that this new orientation ¢’ is
obtained from ¢ by pushing the source v.



http://www.cip.ifi.lmu.de/~grinberg/t/17s/hw5s.pdf
http://www.cip.ifi.lmu.de/~grinberg/t/17s/hw5s.pdf
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Example 0.2. Let G = (V, E, i) be the following multigraph:

2 .
N
1 3
\d
5

c

4

Consider the orientation ¢ of G for which the multidigraph (V,E, ¢) looks as
follows:

O}

(Formally speaking, this is the orientation ¢ that sends the edges a,b,c,4d, ¢, f to
the pairs (1,2),(3,2),(1,4),(3,5),(4,5), (5,4), respectively.)

This orientation ¢ has two sources 1 and 3. We can transform this orientation
by pushing the source 1; this results in the following orientation ¢’ (shown here
by drawing the multidigraph (V, E, ¢')):

7N
|a

This new orientation ¢’ has a single source, 3. If we push this source, we obtain
a new orientation ¢/, which looks as follows (again, represented by the multidi-

graph (V, E, ¢")): ,
7N

[a

5

This orientation ¢”, in turn, has a single source, 2. If we push this source, we

N SQELLEENN

N LI
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obtain a new orientation ¢"’

multidigraph (V, E, ¢"")):

, which looks as follows (again, represented by the

2
N
e
@

c

N QLI

3
[a
5

""" has no sources, and thus cannot be transformed any further

This orientation ¢
by pushing sources.

The preceding example might have suggested some questions: For example,
given an orientation of a multigraph, can we keep pushing sources indefinitely,
or will we eventually end up at an orientation that has no more sources? The
following is easy to see:

Proposition 0.3. Let ¢ be an acyclic orientation of a multigraph G = (V,E, ¢).
Let v be a source of ¢. Then, the orientation obtained from ¢ by pushing the
source v is again acyclic.

This proposition shows that if we start with an acyclic orientation of a multi-
graph (with at least one vertex), then we can keep pushing sources indefinitely
(since the orientation always remains acyclic, and thus there always will be sources
to push). The next exercise (specifically, Exercise |5 (b)) yields a converse (for con-
nected multigraphs): If we can keep pushing sources indefinitely, then our orienta-
tion must have been acyclic.

Exercise 5. Let G = (V,E, ) be a connected multigraph. Set n = |V| and
h = |E|.

Let (¢o, 91, - - ., ¢x) be a sequence of orientations of G, and let (v1, vy, ..., vx) be
a sequence of vertices of G such that for each i € {1,2,...,k}, the orientation ¢;
is obtained from ¢;_1 by pushing the source v; (in particular, this is saying that
v; is a source of ¢;_1).

n+h—1

n—1 ) '

(@) Prove that each vertex of G appears at least once in the sequence
(Ul,vz, ce ,Z)k).

(b) Prove that the orientations ¢y, ¢1, . . ., ¢ are acyclic.

Assume that k >

(At this point, let me remind you that you can freely use the exercises on the
previous homework sets.)
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0.6. Exercise [6} pushing sources in orientations 2

Exercise 6. Let G = (V, E, ¢) be a tree. Let « and j be two orientations of G.
Prove that 8 can be obtained from « by repeatedly pushing sources.
(More rigorously: Prove that there exists a sequence (¢o, ¢1, . . ., ¢x) of orienta-
tions of G, and a sequence (v1,vy,...,vx) of vertices of G such that

e we have ¢g = a and ¢ = B, and

e foreachi € {1,2,...,k}, the orientation ¢; is obtained from ¢;_; by pushing
the source v; (in particular, this is saying that v; is a source of ¢;_1).

Notice that k is allowed to be 0.)
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