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Math 5707 Spring 2017 (Darij Grinberg): midterm 2
Solution sketches.

See the website for relevant material.
If u and v are two vertices of a simple graph (or multigraph) G, then dG (u, v)

(often abbreviated as d (u, v) when G is clear from the context) means the distance
from u to v in G (that is, the minimum length of a path from u to v if such a path
exists; otherwise, the symbol ∞).

Results proven in the notes, or in the handwritten notes, or in class, or in previous home-
work sets can be used without proof; but they should be referenced clearly (e.g., not “by a
theorem done in class” but “by the theorem that states that a strongly connected digraph
has a Eulerian circuit if and only if each vertex has indegree equal to its outdegree”). If you
reference results from the lecture notes, please mention the date and time of the version
of the notes you are using (as the numbering changes during updates).

As always, proofs need to be provided, and they have to be clear and rigorous. Obvious
details can be omitted, but they actually have to be obvious.
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0.1. Reminder: Hall’s Marriage Theorem

Recall Hall’s Marriage Theorem (or, rather, its “hard” direction):

Theorem 0.1. Let (G; X, Y) be a bipartite graph. (Recall that this means that G is
a graph and X and Y are two subsets of V (G) such that

• each vertex of G lies in exactly one of the two sets X and Y;

• each edge of G has exactly one endpoint in X and exactly one endpoint in
Y.

http://www.cip.ifi.lmu.de/~grinberg/t/17s


Math 5707 Spring 2017 (Darij Grinberg): midterm 2 page 2

)
Assume that every subset S of X satisfies |NG (S)| ≥ |S|. (Here, as usual,

NG (S) denotes the set {v ∈ V (G) | at least one neighbor of v belongs to S}.)
Then, G has an X-complete matching.

0.2. Exercise 1: assigning to each vertex an edge avoiding it

Exercise 1. Let G = (V, E) be a simple graph such that |E| ≥ |V|. Show that
there exists an injective map f : V → E such that each v ∈ V satisfies v /∈ f (v).

(In other words, show that we can assign to each vertex v of G an edge that
does not contain v, in such a way that edges assigned to distinct vertices are
distinct.)

Solution to Exercise 1 (sketched). Define a simple graph H as follows:

• The vertices of the simple graph H are the elements of V ∪ E. (We assume
WLOG that the sets V and E are disjoint; if they aren’t, then rename the
elements of V as 1, 2, . . . , n, which ensures that they are.)

• The edges of H are the 2-element sets {v, e} with v ∈ V and e ∈ E satisfying
v /∈ e.

Then, (H; V, E) is a bipartite graph.
It is sufficient to show that the graph H has a V-complete matching1. In order to

do so, we apply Theorem 0.1 to H, V and E instead of G, X and Y. We thus need
to check that every subset S of V satisfies |NH (S)| ≥ |S|.

So let us fix a subset S of V. We must prove that |NH (S)| ≥ |S|.

• If |S| = 0, then this is obvious.

• If |S| = 1, then this is easy to see:

Indeed, assume that |S| = 1. Thus, S = {v} for a single vertex v of G.
Consider this v. Thus, the set NH (S) consists of all edges of G that do not
pass through v. If each edge of G would pass through v, then G would have
at most |V| − 1 edges, so that we would have |E| ≤ |V| − 1 < |V|, which
would contradict |E| ≥ |V|. Thus, there is at least one edge of G that does
not pass through v. In other words, the set NH (S) is nonempty (since the
set NH (S) consists of all edges of G that do not pass through v). Hence,
|NH (S)| ≥ 1 = |S|. Thus, |NH (S)| ≥ |S| holds in this case as well.

• If |S| = 2, then this is also easy to check:

Indeed, assume that |S| = 2. Thus, S = {v, w} for two distinct vertices v and
w of G. Consider these v and w. Thus, the set NH (S) consists of all edges

1Indeed, this will solve the exercise, because if we have found such a matching M, then we can
define an injective map f : V → E by sending each v ∈ V to the M-partner of v.
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of G that do not pass through both v and w. Hence, this set NH (S) contains
either all edges of G or all but one edges of G (since at most one edge can
pass through both v and w). Therefore, |NH (S)| ≥ |E| − 1 ≥ |V| − 1 (since
|E| ≥ |V|).
Recall that we must prove that |NH (S)| ≥ |S|. Indeed, assume the contrary.
Thus, |NH (S)| < |S|. Hence, 2 = |S| > |NH (S)| ≥ |V| − 1, so that |V| <
2 + 1 = 3, thus |V| ≤ 2. Hence, the graph G has at most 2 vertices, and
therefore at most 1 edge. In other words, |E| ≤ 1. But S ⊆ V and thus
|S| ≤ |V| ≤ |E| ≤ 1. This contradicts the fact that |S| = 2. This contradiction
proves that our assumption was wrong. Hence, |NH (S)| ≥ |S| holds in this
case as well.

• If |S| > 2, then this holds for simple reasons:

Indeed, assume that |S| > 2. Thus, there is no edge of G passing through each
vertex in S. Hence, each edge of G belongs to NH (S) (since the set NH (S)
consists of all edges of G that do not pass through each vertex in S). In other
words, NH (S) = E. Hence, |NH (S)| = |E| ≥ |V| ≥ |S| (since V ⊇ S). Hence,
|NH (S)| ≥ |S| holds in this case as well.

Hence, |NH (S)| ≥ |S| is always proven, and so the exercise is solved.

0.3. Exercise 2: assigning to each vertex an edge containing it

Exercise 2. Let G = (V, E) be a connected simple graph such that |E| ≥ |V|.
Show that there exists an injective map f : V → E such that each v ∈ V satisfies
v ∈ f (v).

(In other words, show that we can assign to each vertex v of G an edge that
contains v, in such a way that edges assigned to distinct vertices are distinct.)

Solution to Exercise 2 (sketched). Unlike Exercise 1, this exercise is not about apply-
ing Hall’s marriage theorem (although maybe it can be solved in this way as well).
Instead, I solve it using spanning trees:

Corollary 20 from lecture 9 (handwritten notes) shows that if G is a forest, then
|E| = |V| − b0 (G) (where b0 (G) is the number of connected components of G).
Hence, if G was a forest, then we would have

|E| = |V| − b0 (G)︸ ︷︷ ︸
=1

(since G is connected)

= |V| − 1 < |V| ,

which would contradict |E| ≥ |V|. Hence, G cannot be a forest. Consequently, G
must have a cycle. Fix such a cycle, and fix any edge e on this cycle.

Let G′ be the simple graph obtained from G by removing the edge e. Then, G′

is still connected (since the edge we removed belonged to a cycle, and thus could

http://www.cip.ifi.lmu.de/~grinberg/t/17s/5707lec9.pdf
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be avoided by going around the cycle). Hence, G′ has a spanning tree (since any
connected graph has a spanning tree). Fix such a spanning tree, and denote it by
T.

Pick any endpoint u of the edge e. Now, define a map f : V → E as follows:

• Set f (u) = e.

• For any v ∈ V distinct from u, we define f (v) as follows: There is a unique
path from v to u in the tree T. This path has length > 0 (since v 6= u), and
thus has a well-defined first edge. Let f (v) be this first edge.

It is clear that this map f is well-defined and has the property that each v ∈ V
satisfies v ∈ f (v). It thus remains to check that this map f is injective. This is
easy2.

0.4. Exercise 3: a “transitivity” property for arc-disjoint paths

0.4.1. Statement

Exercise 3. Let D = (V, A) be a digraph. Let k ∈ N. Let u, v and w be three
vertices of D. Assume that there exist k arc-disjoint paths from u to v. Assume
furthermore that there exist k arc-disjoint paths from v to w.

Prove that there exist k arc-disjoint paths from u to w.
[Note: If u = w, then the trivial path (u) counts as being arc-disjoint from

itself (so in this case, there exist arbitrarily many arc-disjoint paths from u to w).]

0.4.2. First solution

To prepare for the solution of this exercise, let us recall Menger’s theorem in its
directed arc-disjoint version (see Exercise 1 on Homework set 4):

2Proof. Assume the contrary. Thus, there exist two distinct vertices v1 and v2 in V such that
f (v1) = f (v2). Consider these v1 and v2. Notice that v1 ∈ f (v1) (since each v ∈ V satisfies
v ∈ f (v)) and v2 ∈ f (v2) (similarly).

At least one of v1 and v2 is distinct from u (since v1 and v2 are distinct). Thus, we can WLOG
assume that v1 6= u. Assume this. From v1 6= u, we conclude that f (v1) is the first edge of the
path from v1 to u in the tree T (by the definition of f ). In particular, f (v1) is an edge of the
tree T, and thus is distinct from e (since e is not an edge of the tree T). Thus, f (v1) 6= e, so that
f (v2) = f (v1) 6= e = f (u). Hence, v2 6= u. Therefore, f (v2) is the first edge of the path from v2
to u in the tree T (by the definition of f ). Hence, the unique path from v2 to u in the tree T uses
the edge f (v2). As a consequence, this path uses the vertex v1 (because v1 ∈ f (v1) = f (v2)).
Since v1 6= v2, we thus have dT (v2, u) > dT (v1, u).

But recall that f (v1) is the first edge of the path from v1 to u in the tree T. Hence, the unique
path from v1 to u in the tree T uses the edge f (v1). As a consequence, this path uses the vertex
v2 (because v2 ∈ f (v2) = f (v1)). Since v2 6= v1, we thus have dT (v1, u) > dT (v2, u). This
contradicts dT (v2, u) > dT (v1, u).

http://www.cip.ifi.lmu.de/~grinberg/t/17s/hw4.pdf
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Theorem 0.2 (Menger’s theorem, DA (directed arc-disjoint version)). Let D =
(V, A, φ) be a multidigraph. Let s and t be two distinct vertices of D.

An s-t-path in D means a path from s to t in D.
Several paths in D are said to be arc-disjoint if no two have an arc in common.
A subset C of A is said to be an s-t-cut if it has the form

C = {a ∈ A | the source of a belongs to U, but the target of a does not}

for some subset U of V satisfying s ∈ U and t /∈ U.
The maximum number of arc-disjoint s-t-paths equals the minimum size of an

s-t-cut.

A corollary of Theorem 0.2 is the following fact:

Corollary 0.3. Let D = (V, A, φ) be a multidigraph. Let s and t be two vertices
of D. Let k ∈ N. Then, there exist k arc-disjoint paths from s to t if and only if
there exists no s-t-cut of size < k.

Proof of Corollary 0.3 (sketched). If s = t, then it is clear that Corollary 0.3 holds3.
Thus, we WLOG assume that s 6= t. Hence, Theorem 0.2 shows that the maximum
number of arc-disjoint s-t-paths equals the minimum size of an s-t-cut. Denote
these two equal numbers by m. Thus:

• The number m is the maximum number of arc-disjoint s-t-paths. Hence, there
exist m arc-disjoint s-t-paths. Therefore, there exist k arc-disjoint s-t-paths
whenever k ≤ m (indeed, just throw away m − k of the m arc-disjoint s-t-
paths whose existence we have observed in the previous sentence), but not
when k > m (since m is the maximum number of arc-disjoint s-t-paths). Thus,
we have the following logical equivalence:

(there exist k arc-disjoint s-t-paths) ⇐⇒ (k ≤ m) . (1)

• The number m is the minimum size of an s-t-cut. Hence, there exists no s-t-
cut of any size < m, but there exists an s-t-cut of size m. Thus, there exists no
s-t-cut of size < k if and only if k ≤ m. In other words, we have the following
logical equivalence:

(there exists no s-t-cut of size < k) ⇐⇒ (k ≤ m) . (2)

Comparing the logical equivalences (1) and (2), we obtain the equivalence

(there exist k arc-disjoint s-t-paths) ⇐⇒ (there exists no s-t-cut of size < k) .

This proves Corollary 0.3.
3Proof. Assume that s = t. Then, there exist k arc-disjoint paths from s to t (indeed, the path (s) of

length 0 is arc-disjoint from itself, and so we can pick it k times), and there exists no s-t-cut of
size k (indeed, there exists no s-t-cut of any size, because there exists no subset U of V satisfying
s ∈ U and t /∈ U). Hence, Corollary 0.3 holds in this case.
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First solution to Exercise 3 (sketched). Corollary 0.3 (applied to s = u and t = v)
shows that there exist k arc-disjoint paths from u to v if and only if there exists
no u-v-cut of size < k. Hence, there exists no u-v-cut of size < k (since there exist
k arc-disjoint paths from u to v). Similarly, there exists no v-w-cut of size < k.

Now, we claim that there exists no u-w-cut of size < k.
Indeed, assume the contrary. Thus, there exists an u-w-cut of size < k. Fix such

a u-w-cut, and write it in the form

C = {a ∈ A | the source of a belongs to U, but the target of a does not} (3)

for some subset U of V satisfying u ∈ U and w /∈ U. Then, |C| < k (since the
u-w-cut C has size < k).

Now, we have either v ∈ U or v /∈ U. But each of these two cases leads to a
contradiction:

• If v /∈ U, then C is an u-v-cut (since it has the form (3) for the subset U of V,
which satisfies u ∈ U and v /∈ U), and thus there exists a u-v-cut of size < k;
but this contradicts the fact that there exists no u-v-cut of size < k.

• If v ∈ U, then C is a v-w-cut (since it has the form (3) for the subset U of V,
which satisfies v ∈ U and w /∈ U), and thus there exists a v-w-cut of size < k;
but this contradicts the fact that there exists no v-w-cut of size < k.

Thus, we always get a contradiction. Hence, our assumption was wrong.
We thus have shown that there exists no u-w-cut of size < k.
But Corollary 0.3 (applied to s = u and t = w) shows that there exist k arc-

disjoint paths from u to w if and only if there exists no u-w-cut of size < k. Hence,
there exist k arc-disjoint paths from u to w (since there exists no u-w-cut of size
< k). This solves Exercise 3.

0.4.3. An extension of the stable marriage problem

I am going to outline a second solution to Exercise 3 as well. That solution will rely
on a slight generalization of the stable marriage problem.

I assume that you are familiar with the basic theory of the stable marriage prob-
lem (see [LeLeMe16, Section 6.4]), specifically with the algorithm that is called the
“Mating Ritual” in [LeLeMe16, Section 6.4]4.

Now, let me formulate a more general version of the stable marriage problem,
which I shall call the contracted stable marriage problem:

Contracted stable marriage problem.

4This algorithm is also called the “deferred-acceptance algorithm” in http://www.math.jhu.edu/
~eriehl/pechakucha.pdf. That said, this name is also used for some variations of this algo-
rithm.

http://www.math.jhu.edu/~eriehl/pechakucha.pdf
http://www.math.jhu.edu/~eriehl/pechakucha.pdf
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Suppose that we have a population of k men and k women (for some k ∈
N). Assume furthermore that a finite set C of “contracts” is given. Each
contract involves exactly one man and exactly one woman.5 Assume
that, for each pair (m, w) consisting of a man m and a woman w, there
is at least one contract that involves m and w. (Hence, there are at least
k2 contracts, but there can be more.)

Suppose that each person has a preference list of all the contracts that
involve him/her; i.e., he/she ranks all contracts that involve him/her in
the order of preferability. (No ties are allowed.)

A matching shall mean a subset K of C such that each man is involved
in exactly one contract in K, and such that each woman is involved
in exactly one contract in K. Thus, visually speaking, a matching is
a way to marry off all k men and all k women to each other (in the
classical meaning of the word – i.e., heterosexual and monogamous) by
having them sign some of the contracts in C (of course, each person
signs exactly one contract).

If p is a person and K is a matching, then the unique contract c ∈ K that
involves p will be called the K-marriage contract of p.

If K is a matching and c ∈ C is a contract, then the contract c is said to
be rogue (for K) if

• this contract c is not in K,

• the man involved in c prefers c to his K-marriage contract, and

• the woman involved in c prefers c to her K-marriage contract.

Thus, roughly speaking, a rogue contract is a contract c that has not been
signed in the matching K, but that would make both persons involved
in c happier than whatever contracts they did sign in K.

A matching K is called stable if there exist no rogue contracts for K.

The contracted stable marriage problem asks us to find a stable matching.

Notice that this problem generalizes the stable marriage problem discussed in
[LeLeMe16, Section 6.4]; indeed, the latter problem is the particular case when
each pair (m, w) consisting of a man m and a woman w is involved in precisely one
contract. Roughly speaking, the contracted stable marriage problem extends the
latter by allowing some couples to marry in several distinct ways, some of which
may be more or less preferable to one of the partners. 6

The contracted stable marriage problem can be solved by a modification of the
“Mating Ritual” analyzed in [LeLeMe16, Section 6.4]. Namely:

5Think of the contracts as marriage contracts prepared “just in case”. The names of the spouses-to-
be have already been written in, but the contracts have not been signed, and in particular there
can be mutually exclusive contracts for the same man or woman.

6Generally, passing from the classical stable marriage problem to the contracted stable marriage
problem is akin to generalizing theorems from simple graphs to multigraphs.
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• each man should keep a preference list of contracts that involve him (instead
of a list of women), and he should serenade with a contract in hand (i.e., each
day he picks up his most preferable contract, and then he proposes to the
woman involved with this specific contract);

• every afternoon, each woman should dismiss all contracts that her suitors are
currently proposing her, except for the best (from her perspective) of these
contracts (as opposed to dismissing the suitors themselves);

• a man whose contract gets dismissed crosses off this contract (rather than the
woman who dismissed him) from his list, so he may possibly return to her
later with another contract;

• when the ritual terminates, the women marry their current suitors using the
contracts that these suitors are currently proposing.

The analysis of this algorithm is similar to the one made in [LeLeMe16, Section
6.4.2 and Section 6.4.3]; some modifications need to be made (e.g., Invariant P
should be replaced by “For every contract c involving a woman w and a man m, if
c is crossed off m’s list, then w has a suitor offering her a contract d that she prefers
over c.”). Thus, we obtain the following result (generalizing [LeLeMe16, Theorem
6.4.4]):

Theorem 0.4. The modified “Mating Ritual” produces a stable matching for the
contracted stable marriage problem.

0.4.4. Second solution

I shall now sketch a second solution to Exercise 3, suggested by Alexander Post-
nikov. But first, let me give the motivation behind this solution:

• The following appears to be a reasonable approach to solving Exercise 3:

Fix k arc-disjoint paths p1, p2, . . . , pk from u to v. (These exist by assumption.)

Fix k arc-disjoint paths q1, q2, . . . , qk from v to w. (These exist by assumption.)

Now, we are looking for k arc-disjoint paths from u to w. The most obvious
thing one could try is to take the k walks t1, t2, . . . , tk, where each ti is the
concatenation of pi with qi.

• However, this does not always work. The ti are walks, but not necessarily
paths. Fortunately, we know how to deal with this: Just keep removing cycles
from the ti until no cycles remain.

• Sadly, we are still not done. The ti are paths now, but are not necessarily arc-
disjoint. Indeed, it could happen that (for example) p2 and q5 have a common
arc; but then t2 and t5 would not be arc-disjoint. The common arc might
disappear when we remove cycles, but it does not have to; it might also stay.

https://math.mit.edu/~apost/
https://math.mit.edu/~apost/
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• We could now try being more strategical: Let us look for a bijection σ :
{1, 2, . . . , k} → {1, 2, . . . , k} such that if we define ti as the concatenation of
pi with qσ(i) (rather than with qi), then the resulting paths ti (after removing
cycles) will be arc-disjoint. However, how do we find such a bijection? Does
it always exist?

• Let a common arc mean an arc which belongs to one of the paths p1, p2, . . . , pk
and also belongs to one of the paths q1, q2, . . . , qk. As we have seen, common
arcs are the source of our headache, and we should try to make sure that each
common arc survives at most once in the resulting paths t1, t2, . . . , tk (after the
cycles are removed). How do we achieve this?

• Here is one approach that sounds hopeful: If a path pi has an arc in common
with the path qσ(i), then the concatenation ti of these two paths will contain
this common arc twice, and therefore, after removing cycles, it will only con-
tain it once; thus, this particular common arc will no longer make troubles.
Hence, it appears reasonable to want pi to have an arc in common with qσ(i)
for as many i as possible.

• It also appears reasonable to ensure that if pi has an arc in common with qσ(i),
then this arc appears as early as possible in pi, and as late as possible in qσ(i).
Indeed, this makes sure that the path produced by removing cycles in the
concatenation ti will be as small as possible, and therefore (if we are lucky)
we will get rid of other common arcs as well.

• Now we are trying to solve several optimization problems at once – we want
to have our common arcs appear as early as possible in pi and as late as
possible in qσ(i). Such problems are not always solvable. Usually, there is a
tradeoff, and we have to settle for a compromise.

• The stable marriage problem is a prototypical example of the search for such
a compromise. We can thus try to apply it here. The first approximation is
the following:

Model the k paths p1, p2, . . . , pk by k men labelled 1, 2, . . . , k.

Model the k paths q1, q2, . . . , qk by k women labelled 1, 2, . . . , k.

Man i would be happy to marry woman j if and only if the paths pi and
qj have an arc in common; the earlier this arc appears in pi, the happier he
would be marrying j. As a last resort, he is also willing to marry woman j if
the paths pi and qj have no arcs in common, but he would be less happy this
way.

Likewise, woman j would be happy to marry man i if and only if the paths
pi and qj have an arc in common; the later this arc appears in qj, the happier
she would be marrying i. As a last resort, she is also willing to marry man i
if the paths pi and qj have no arcs in common, but she would be less happy
this way.
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Everyone ranks their potential spouses by these preferences, and we seek a
stable matching. When man i and woman j marry, we set σ (i) = j, and thus
a bijection σ : {1, 2, . . . , k} → {1, 2, . . . , k} is defined.

• However, this still is not completely correct! The problem is that a path pi
can have more than one arc in common with a path qj. This may mess up
the preferences of both man i and woman j, since they would have to decide
whether to take the first or the last intersections into account. In a sense, there
seem to be several ways in which man i can marry woman j – one for each
arc that the two paths have in common. So we are looking at an instance of
the contracted stable marriage problem.

The following solution is what comes out if you follow this strategy. It is fairly
long and technical, neat as the idea may be.

Second solution of Exercise 3 (sketched). We have assumed that there exist k arc-disjoint
paths from u to v. Fix such k paths, and denote them by p1, p2, . . . , pk.

We have assumed that there exist k arc-disjoint paths from v to w. Fix such k
paths, and denote them by q1, q2, . . . , qk.

If p is any path in D, and if a is any arc of p, then we shall let [a] p denote the
positive integer h such that a is the h-th arc of p. (Of course, this h is uniquely
determined, since a path never uses an arc more than once.)

Now, we fabricate a population of

• k men labelled 1, 2, . . . , k, and

• k women labelled 1, 2, . . . , k,

as well as a set C of contracts (in the sense of the contracted stable marriage prob-
lem) defined as follows:

• For each arc a that appears in one of the paths p1, p2, . . . , pk and also appears
in one of the paths q1, q2, . . . , qk, we define a contract ca as follows: Let i be
such that a appears in pi. (This i is unique, because a cannot appear in more
than one of the paths p1, p2, . . . , pk; this is because these paths are arc-disjoint.)
Let j be such that a appears in qj. (This j is unique for a similar reason.) The
contract ca shall involve man i and woman j.

• For each i ∈ {1, 2, . . . , k} and j ∈ {1, 2, . . . , k}, we define a contract di,j involv-
ing man i and woman j. This contract will be called a “dummy contract”.

The set C shall consist of all contracts ca and all contracts di,j. The dummy contracts
guarantee that for each pair (m, w) consisting of a man m and a woman w, there is
at least one contract that involves m and w.

Each of the k men and each of the k women shall have a preference list of all the
contracts that involve him/her; namely, we define these preference lists as follows:
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• For each i ∈ {1, 2, . . . , k}, the preference list of man i shall consist of all the
contracts ca that involve him, as well as all the dummy contracts of the form
di,j. The contracts ca shall appear in the order of increasing [a] pi (that is,
man i prefers those contracts ca whose number [a] pi is smaller), whereas the
dummy contracts shall appear in arbitrary order; the dummy contracts must
appear below all the contracts ca (that is, man i prefers any of the ca to any of
the dummy contracts).

• For each j ∈ {1, 2, . . . , k}, the preference list of woman j shall consist of all
the contracts ca that involve her, as well as all the dummy contracts of the
form di,j. The contracts ca shall appear in the order of decreasing [a] qj (that
is, woman j prefers those contracts ca whose number [a] qj is larger), whereas
the dummy contracts shall appear in arbitrary order; the dummy contracts
must appear below all the contracts ca (that is, woman j prefers any of the ca
to any of the dummy contracts).

Consider the contracted stable marriage problem corresponding to this data.
Theorem 0.4 shows that the modified “Mating Ritual” produces a stable match-
ing. Hence, a stable matching exists. Fix such a stable matching, and denote it by
K. For each i ∈ {1, 2, . . . , k}, we let mi denote the K-marriage contract of man i.

For each i ∈ {1, 2, . . . , k}, we define a path si from u to w as follows:

• Let the woman involved in the contract mi (that is, the woman married off to
man i in the stable matching K) be woman j.

• If the contract mi is not a dummy contract, then mi = ca for some arc a. In
this case:

– Consider this arc a.

– Let ri be the walk consisting of the first [a] pi arcs of the path pi (that is,
all the arcs up to the point where it uses the arc a, including that arc a)
and of the last7 `

(
qj
)
− [a] qj arcs of the path qj (that is, all the arcs that

come after the point where it uses the arc a). This is a walk from u to w.

Otherwise:

– Let ri be the walk consisting of all arcs of the path pi and of all arcs of
the path qj. (In other words, let ri be the concatenation of the paths pi
and qj.) This is a walk from u to w.

In either case, we have defined a walk ri from u to w.

• We obtain a path si from u to w by successively removing cycles from ri until
no cycles remain. (The result of this process may depend on the choices made,
but this does not matter to us, as any result is good.)

7Here, ` (x) denotes the length of any walk x.
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We have thus defined k paths s1, s2, . . . , sk from u to w.
Let us make some observations:

Observation 1: Fix i ∈ {1, 2, . . . , k}. Let j ∈ {1, 2, . . . , k} be such that
woman j is the K-partner of man i (that is, the contract mi involves man
i and woman j).

Assume that the contract mi has the form mi = ca for some arc a.

Let b be an arc of the path si.

Then, either b is an arc of pi satisfying [b] pi ≤ [a] pi, or b is an arc of qj
satisfying [b] qj > [a] qj.

Proof of Observation 1. The path si was obtained by removing cycles from ri. Thus,
each arc of si is an arc of ri. Hence, b is an arc of ri (since b is an arc of si).

But ri was defined as the walk consisting of the first [a] pi arcs of the path pi (that
is, all the arcs up to the point where it uses the arc a, including that arc a) and of
the last `

(
qj
)
− [a] qj arcs of the path qj (that is, all the arcs that come after the point

where it uses the arc a). Therefore, each arc of ri is either one of the first [a] pi arcs
of the path pi, or one of the last `

(
qj
)
− [a] qj arcs of the path qj. In particular, this

must hold for the arc b (since b is an arc of ri). In other words, either b is an arc of
pi satisfying [b] pi ≤ [a] pi, or b is an arc of qj satisfying [b] qj > [a] qj. This finishes
the proof of Observation 1.

Observation 2: Fix i ∈ {1, 2, . . . , k}. Let j ∈ {1, 2, . . . , k} be such that
woman j is the K-partner of man i (that is, the contract mi involves man
i and woman j).

Assume that the contract mi is a dummy contract.

Let b be an arc of the path si.

Then, either b is an arc of pi, or b is an arc of qj.

Proof of Observation 2. Analogous to the proof of Observation 1.

Observation 3: Fix i ∈ {1, 2, . . . , k}. Let j ∈ {1, 2, . . . , k} be such that
woman j is the K-partner of man i (that is, the contract mi involves man
i and woman j).

Let b be an arc of the path si. Assume that the contract cb exists.

Then, one of the following two statements holds:

• Statement O3.1: The arc b belongs to the path pi, and man i weakly
prefers8 the contract cb over his K-marriage contract.

8We say that a person p “weakly prefers” a contract κ1 to a contract κ2 if we have either κ1 = κ2 or
the person p prefers κ1 to κ2.
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• Statement O3.2: The arc b belongs to the path qj, and woman j
prefers the contract cb over her K-marriage contract.

Proof of Observation 3. The contract mi is either of the form mi = ca for some arc a,
or a dummy contract.

In the former case, Observation 3 follows from Observation 1.
In the latter case, Observation 3 follows from Observation 2 (using the fact that

everyone prefers any contract of the form ca over any dummy contract).

Observation 4: Let i and x be two distinct elements of {1, 2, . . . , k} such
that the paths si and sx have an arc in common. Let b be an arc common
to these two paths si and sx.

Choose j ∈ {1, 2, . . . , k} such that woman j is the K-partner of man i
(that is, the contract mi involves man i and woman j).

Choose y ∈ {1, 2, . . . , k} such that woman y is the K-partner of man x
(that is, the contract mx involves man x and woman y).

Then, one of the following two statements holds:

• Statement O4.1: The arc b belongs to the path pi and to the path qy.

• Statement O4.2: The arc b belongs to the path px and to the path qj.

Proof of Observation 4. The women j and y are married (in K) to the two distinct
men i and x. Therefore, these two women must too be distinct. In other words, j
and y are distinct.

Either b is an arc of pi, or b is an arc of qj
9. Similarly, either b is an arc of px,

or b is an arc of qy. Thus, we are in one of the following four cases:

• Case 1: The arc b is an arc of pi and is an arc of px.

• Case 2: The arc b is an arc of pi and is an arc of qy.

• Case 3: The arc b is an arc of qj and is an arc of px.

• Case 4: The arc b is an arc of qj and is an arc of qy.

However, the paths p1, p2, . . . , pk are arc-disjoint. Hence, the paths pi and px have
no arcs in common (since i and x are distinct). Hence, b cannot be an arc of pi and
an arc of px at the same time. Therefore, Case 1 is impossible. Similarly, Case 4
is impossible (here, we use the fact that j and y are distinct). Thus, only Case 2
and Case 3 remain to be discussed. But clearly, Statement O4.1 holds in Case 2,
whereas Statement O4.2 holds in Case 3. Thus, one of the two Statements always
holds. This proves Observation 4.

9In fact, the contract mi either is a contract of the form mi = ca for some arc a, or is a dummy
contract. In the former case, the claim follows from Observation 1; in the latter case, the claim
follows from Observation 2.
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We are now going to show that the k paths s1, s2, . . . , sk are arc-disjoint.
Indeed, assume the contrary. Thus, there exist two distinct elements i and x of
{1, 2, . . . , k} such that the paths si and sx have an arc in common. Consider these i
and x.

The paths si and sx have an arc in common. Fix such an arc, and denote it by b.
Choose j ∈ {1, 2, . . . , k} such that woman j is the K-partner of man i (that is, the

contract mi involves man i and woman j).
Choose y ∈ {1, 2, . . . , k} such that woman y is the K-partner of man x (that is, the

contract mx involves man x and woman y).
Observation 4 shows that one of the following two statements holds:

• Statement O4.1: The arc b belongs to the path pi and to the path qy.

• Statement O4.2: The arc b belongs to the path px and to the path qj.

We WLOG assume that Statement O4.1 holds (because otherwise, we can simply
switch i and j with x and y).

However, the paths p1, p2, . . . , pk are arc-disjoint. Hence, the paths pi and px have
no arcs in common (since i and x are distinct). Hence, the arc b cannot belong to pi
and to px at the same time. Thus, b does not belong to px (since p belongs to pi).
Similarly, b does not belong to qj.

The arc b belongs to both paths pi and qy. Hence, the contract cb exists (and
involves man i and woman y). Thus, Observation 3 (applied to x and y instead of i
and j) shows that one of the following two statements holds:

• Statement X3.1: The arc b belongs to the path px, and man x weakly prefers
the contract cb over his K-marriage contract.

• Statement X3.2: The arc b belongs to the path qy, and woman y prefers the
contract cb over her K-marriage contract.

But Statement X3.1 cannot hold, since b does not belong to px. Hence, Statement
X3.2 must hold. In particular, woman y prefers the contract cb over her K-marriage
contract. This shows that cb is not her K-marriage contract. Therefore, the contract
cb is not in K.

Observation 3 shows that one of the following two statements holds:

• Statement I3.1: The arc b belongs to the path pi, and man i weakly prefers the
contract cb over his K-marriage contract.

• Statement I3.2: The arc b belongs to the path qj, and woman j prefers the
contract cb over her K-marriage contract.

But the arc b does not belong to qj. Therefore, Statement I3.2 cannot hold. Thus,
Statement I3.1 must hold (since one of Statement I3.1 and Statement I3.2 holds).
Hence, man i weakly prefers the contract cb over his K-marriage contract. Since cb
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is not his K-marriage contract (because the contract cb is not in K), we can remove
the word “weakly” from this sentence. Thus, man i prefers the contract cb over
his K-marriage contract. Recall that the same can be said about woman y. Hence,
the contract cb is rogue (for K). This contradicts the fact that there exist no rogue
contract for K (since K is a stable matching). This contradiction proves that our
assumption was false.

Hence, we have shown that the k paths s1, s2, . . . , sk are arc-disjoint. Thus, there
exist k arc-disjoint paths from u to w (namely, s1, s2, . . . , sk).

0.5. Exercise 4: the chromatic polynomial

Exercise 4. Let G = (V, E) be a simple graph. Define a polynomial χG in a single
indeterminate x (with integer coefficients) by

χG = ∑
F⊆E

(−1)|F| xconn(V,F).

(Here, as usual, conn H denotes the number of connected components of any
graph H.) This polynomial χG is called the chromatic polynomial of G.

Fix k ∈ N. Recall that a k-coloring of G means a map f : V → {1, 2, . . . , k}.
(The image f (v) of a vertex v ∈ V under this map is called the color of v under
this k-coloring f .) A k-coloring f of G is said to be proper if each edge {u, v} of G
satisfies f (u) 6= f (v). (In other words, a k-coloring f of G is proper if and only
if no two adjacent vertices share the same color.)

Prove that the number of proper k-colorings of G is χG (k).
[Hint: Show that kconn(V,F) also counts certain k-colorings (I like to call them

“F-improper colorings” – what could that mean?). Then, analyze how often (and
with what signs) a given k-coloring of G appears in the sum ∑

F⊆E
(−1)|F| kconn(V,F).

]

Note that most graph-theoretical literature defines the chromatic polynomial dif-
ferently than I do in Exercise 4. Use the literature at your own peril! Most authors
define χG as the polynomial whose value at each k ∈N is the number of proper k-colorings.
This may be more intuitive, but it leaves a question unanswered: Why is there such a poly-
nomial in the first place? Exercise 4 answers this question.

Exercise 4 is [Grinbe16, Theorem 3.4]. However, the proof given in [Grinbe16] is
a long detour, seeing that the purpose of [Grinbe16] is to generalize the result in
several directions. We shall give a more direct proof that uses the same idea. (The
idea goes back to Hassler Whitney in 1930 [Whitne32, §6], although he worded the
argument differently and in far less modern language.)

We are going to use the Iverson bracket notation (as in [Grinbe17, §3.3]). We first
recall an important result ([Grinbe17, Lemma 3.3.5]):
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Lemma 0.5. Let P be a finite set. Then,

∑
A⊆P

(−1)|A| = [P = ∅] .

(The symbol “ ∑
A⊆P

” means “sum over all subsets A of P”. In other words, it

means “ ∑
A∈P(P)

”.)

Next, we introduce a specific notation related to colorings:

Definition 0.6. Let G = (V, E) be a simple graph. Let k ∈ N. Let f : V →
{1, 2, . . . , k} be a k-coloring. We let E f denote the set of all edges {u, v} of G
satisfying f (u) = f (v). (In other words, E f is the set of all edges {u, v} of G
whose two endpoints u and v have the same color.) This set E f is a subset of E.

Notice the following simple fact:

Proposition 0.7. Let G = (V, E) be a simple graph. Let k ∈ N. Let f : V →
{1, 2, . . . , k} be a k-coloring. Then, the k-coloring f is proper if and only if E f =
∅.

Proof of Proposition 0.7. We have the following chain of equivalences:

(the k-coloring f is proper)
⇐⇒ (each edge {u, v} of G satisfies f (u) 6= f (v))

(by the definition of “proper”)
⇐⇒ (no edge {u, v} of G satisfies f (u) = f (v))

⇐⇒

the set of all edges {u, v} of G satisfying f (u) = f (v)︸ ︷︷ ︸
=E f

(by the definition of E f )

is empty


⇐⇒

(
E f is empty

)
⇐⇒

(
E f = ∅

)
.

This proves Proposition 0.7.

Lemma 0.8. Let G = (V, E) be a simple graph. Let B be a subset of E. Then, the
number of all k-colorings f : V → {1, 2, . . . , k} satisfying B ⊆ E f is kconn(V,B).

Proof of Lemma 0.8 (sketched). We shall say that two vertices u and v of a graph H are
connected in H if these vertices u and v belong to the same connected component
of H. (In other words, two vertices u and v of a graph H are connected in H if and
only if there exists a walk from u to v in H.)
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Fix any k-coloring f : V → {1, 2, . . . , k}. We are first going to restate the con-
dition B ⊆ E f in more familiar terms. Indeed, we have the following chain of
equivalences:10(

B ⊆ E f
)

⇐⇒
(
each {u, v} ∈ B satisfies {u, v} ∈ E f

)
⇐⇒ (each {u, v} ∈ B satisfies f (u) = f (v))
⇐⇒ (every two vertices p and q that are connected in (V, B) satisfy f (p) = f (q))

⇐⇒
(

whenever C is a connected component of the graph (V, B) ,
all the vertices in C have the same color (in f )

)
. (4)

Here, the second and third equivalence signs hold for the following reasons:

• The second equivalence sign holds because for each given {u, v} ∈ B, we have
the equivalence(

{u, v} ∈ E f
)
⇐⇒ ({u, v} is an edge of G satisfying f (u) = f (v))(

by the definition of E f
)

⇐⇒ ( f (u) = f (v))

(because {u, v} is always an edge of G (since {u, v} ∈ B ⊆ E)).

• The third equivalence sign holds for the following reasons:

– If each {u, v} ∈ B satisfies f (u) = f (v), then every two vertices p and q
that are connected in (V, B) satisfy f (p) = f (q) 11.

– If every two vertices p and q that are connected in (V, B) satisfy f (p) =
f (q), then each {u, v} ∈ B satisfies f (u) = f (v) 12.

Now, forget that we fixed f . We thus have shown that for each k-coloring f : V →
{1, 2, . . . , k}, the equivalence (4) holds. Therefore, a k-coloring f : V → {1, 2, . . . , k}
10See below for justifications for the equivalence signs.
11Proof. Assume that each {u, v} ∈ B satisfies f (u) = f (v). We must then show that every two

vertices p and q that are connected in (V, B) satisfy f (p) = f (q).
Fix any two vertices p and q that are connected in (V, B). Thus, there exists a walk from p to

q in (V, B). Fix such a walk, and denote it by (w0, w1, . . . , wk). Thus, w0 = p and wk = q. For
every i ∈ {1, 2, . . . , k}, we have {wi−1, wi} ∈ B (since the vertices wi−1 and wi are consecutive
vertices on the walk (w0, w1, . . . , wk), and thus are adjacent in the graph (V, B)) and therefore
f (wi−1) = f (wi) (since each {u, v} ∈ B satisfies f (u) = f (v)). In other words, f (w0) =
f (w1) = · · · = f (wk). Hence, f (w0) = f (wk). Since w0 = p and wk = q, this rewrites as
f (p) = f (q). Qed.

12Proof. Assume that every two vertices p and q that are connected in (V, B) satisfy f (p) = f (q).
We must then prove that each {u, v} ∈ B satisfies f (u) = f (v).

Fix any {u, v} ∈ B. Then, the vertices u and v are adjacent in the graph (V, B), and thus are
connected in (V, B). Hence, f (u) = f (v) (since every two vertices p and q that are connected in
(V, B) satisfy f (p) = f (q)). Qed.



Math 5707 Spring 2017 (Darij Grinberg): midterm 2 page 18

satisfies B ⊆ E f if and only if it has the property that whenever C is a connected
component of the graph (V, B), all the vertices in C have the same color (in f ).
Therefore, all k-colorings f : V → {1, 2, . . . , k} satisfying B ⊆ E f can be obtained
by the following procedure:

• For each connected component C of the graph (V, B), pick a color cC (i.e., an
element cC of {1, 2, . . . , k}) and then color each vertex in C with this color cC
(i.e., set f (v) = cC for each v ∈ C).

13 This procedure involves choices (because for each connected component C of
(V, B), we get to pick a color), and there is a total of kconn(V,B) possible choices that
can be made (because we get to choose a color from {1, 2, . . . , k} for each of the
conn (V, B) connected components of (V, B)). Each of these choices gives rise to a
different k-coloring f : V → {1, 2, . . . , k}. Therefore, the number of all k-colorings
f : V → {1, 2, . . . , k} satisfying B ⊆ E f is kconn(V,B) (because all of these k-colorings
can be obtained by this procedure). This proves Lemma 0.8.

Corollary 0.9. Let (V, E) be a simple graph. Let F be a subset of E. Then,

kconn(V,F) = ∑
f :V→{1,2,...,k};

F⊆E f

1.

Proof of Corollary 0.9 (sketched). We have

∑
f :V→{1,2,...,k};

F⊆E f

1 =
(
the number of all f : V → {1, 2, . . . , k} satisfying F ⊆ E f

)
· 1

=
(
the number of all f : V → {1, 2, . . . , k} satisfying F ⊆ E f

)
= kconn(V,F)

(because Lemma 0.8 (applied to B = F) shows that the number of all k-colorings
f : V → {1, 2, . . . , k} satisfying F ⊆ E f is kconn(V,F)). This proves Corollary 0.9.

Solution to Exercise 4 (sketched). Substituting k for x in the equality

χG = ∑
F⊆E

(−1)|F| xconn(V,F),

13Let us restate this more rigorously: All k-colorings f : V → {1, 2, . . . , k} satisfying B ⊆ E f can be
obtained by the following procedure:

• For each connected component C of the graph (V, B),

– pick any number cC ∈ {1, 2, . . . , k};
– set f (v) = cC for each v ∈ C.
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we obtain

χG (k) = ∑
F⊆E

(−1)|F| kconn(V,F)︸ ︷︷ ︸
= ∑

f :V→{1,2,...,k};
F⊆E f

1

(by Corollary 0.9)

= ∑
F⊆E

(−1)|F| ∑
f :V→{1,2,...,k};

F⊆E f

1

= ∑
F⊆E

∑
f :V→{1,2,...,k};

F⊆E f︸ ︷︷ ︸
= ∑

f :V→{1,2,...,k}
∑

F⊆E;
F⊆E f

(−1)|F| 1︸ ︷︷ ︸
=(−1)|F|

= ∑
f :V→{1,2,...,k}

∑
F⊆E;
F⊆E f︸︷︷︸
= ∑

F⊆E f
(since E f⊆E)

(−1)|F|

= ∑
f :V→{1,2,...,k}

∑
F⊆E f

(−1)|F| = ∑
f :V→{1,2,...,k}

∑
A⊆E f

(−1)|A|︸ ︷︷ ︸
=[E f =∅]

(by Lemma 0.5,
applied to P=E f )(

here, we have renamed the summation index F
in the second sum as A

)
= ∑

f :V→{1,2,...,k}

[
E f = ∅

]
= ∑

f :V→{1,2,...,k};
E f =∅

[
E f = ∅

]︸ ︷︷ ︸
=1

(since E f =∅ is true)

+ ∑
f :V→{1,2,...,k};

not E f =∅

[
E f = ∅

]︸ ︷︷ ︸
=0

(since E f =∅ is false)(
since each f : V → {1, 2, . . . , k} satisfies either E f = ∅

or E f 6= ∅ (but not both)

)
= ∑

f :V→{1,2,...,k};
E f =∅

1 + ∑
f :V→{1,2,...,k};

not E f =∅

0

︸ ︷︷ ︸
=0

= ∑
f :V→{1,2,...,k};

E f =∅

1

=
(
the number of all f : V → {1, 2, . . . , k} such that E f = ∅

)
· 1

=

the number of all f : V → {1, 2, . . . , k} such that E f = ∅︸ ︷︷ ︸
⇐⇒ (the k-coloring f is proper)

(by Proposition 0.7)


= (the number of all f : V → {1, 2, . . . , k} such that the k-coloring f is proper)
= (the number of all proper k-colorings) .

In other words, the number of proper k-colorings of G is χG (k). This solves Exer-
cise 4.
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0.6. Exercise 5: some concrete chromatic polynomials

Exercise 5. In Exercise 4, we have defined the chromatic polynomial χG of a
simple graph G. In this exercise, we shall compute it on some examples.

(a) For each n ∈ N, prove that the complete graph Kn has chromatic polyno-
mial χKn = x (x− 1) · · · (x− n + 1).

(b) Let T be a tree (regarded as a simple graph). Let n = |V (T)|. Prove that
χT = x (x− 1)n−1.

(c) Find the chromatic polynomial χP3 of the path graph P3.

Before we start solving Exercise 5, let us make a general remark about it. In order
to prove a formula for the chromatic polynomial χG of a graph G, at least two
approaches are available: One is to use the definition of χG; another is to use the
claim of Exercise 4. In order to use the second approach, one needs to know that
a polynomial p is uniquely determined by its values at infinitely many points. In
other words, one needs to know the following fact:

Lemma 0.10. Let p and q be two polynomials in one variable x with rational
coefficients. If p (k) = q (k) holds for infinitely many rational numbers k, then
we have p = q.

Lemma 0.10 is easy to derive from the following well-known fact:

Lemma 0.11. Let p be a polynomial in one variable x with rational coefficients.
If p (k) = 0 holds for infinitely many rational numbers k, then we have p = 0.

Proof of Lemma 0.11. Assume that p (k) = 0 holds for infinitely many rational num-
bers k. In other words, the polynomial p has infinitely many rational roots.

It is known14 that any nonzero polynomial (in one variable x) over a field15 has
finitely many roots. Hence, if the polynomial p were nonzero, then p would have
finitely many roots, which would contradict the fact that p has infinitely many
roots. Hence, p cannot be nonzero. In other words, we have p = 0. This proves
Lemma 0.11.

Proof of Lemma 0.10. Assume that p (k) = q (k) holds for infinitely many rational
numbers k. Thus, for infinitely many rational numbers k, we have (p− q) (k) =
p (k)︸︷︷︸
=q(k)

−q (k) = q (k)− q (k) = 0. Hence, Lemma 0.11 (applied to p− q instead of p)

shows that p− q = 0. In other words, p = q. This proves Lemma 0.10.

Now, we can attack Exercise 5 (a):

14see, e.g., https://proofwiki.org/wiki/Polynomial_over_Field_has_Finitely_Many_Roots
15This includes polynomials with rational coefficients, but also polynomials with real or complex

coefficients.

https://proofwiki.org/wiki/Polynomial_over_Field_has_Finitely_Many_Roots
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Lemma 0.12. Let n ∈N. Then, the complete graph Kn has chromatic polynomial
χKn = x (x− 1) · · · (x− n + 1).

Proof of Lemma 0.12. Fix an integer k ≥ n. Recall the concept of k-colorings defined
in Exercise 4 (applied to G = Kn).

Exercise 4 (applied to G = Kn) shows that the number of proper k-colorings of
Kn is χKn (k). In other words:

(the number of proper k-colorings of Kn) = χKn (k) . (5)

Now, let us compute this number in a different way. Namely, recall that the
complete graph Kn has n vertices 1, 2, . . . , n, and that any two distinct vertices of
Kn are adjacent. Thus, a k-coloring of Kn is proper if and only if no two distinct
vertices of Kn have the same color. Hence, we obtain the following procedure for
constructing a proper k-coloring of Kn:

• First, choose a color for the vertex 1. This color must belong to the set
{1, 2, . . . , k}.

• Next, choose a color for the vertex 2. This color must belong to the set
{1, 2, . . . , k}, and must be distinct from the color chosen for the vertex 1 (since
no two distinct vertices of Kn may have the same color).

• Next, choose a color for the vertex 3. This color must belong to the set
{1, 2, . . . , k}, and must be distinct from the two colors chosen for the vertices
1 and 2 (since no two distinct vertices of Kn may have the same color).

• Next, choose a color for the vertex 4. This color must belong to the set
{1, 2, . . . , k}, and must be distinct from the three colors chosen for the ver-
tices 1, 2 and 3 (since no two distinct vertices of Kn may have the same color).

• And so on. Keep going until all n vertices 1, 2, . . . , n have been assigned
colors.

This procedure clearly produces each proper k-coloring of Kn. Furthermore, this
procedure involves choices, and there is a total of k (k− 1) (k− 2) · · · (k− n + 1)
possible choices that can be made16. Each of these choices produces a different
proper k-coloring of Kn. Thus, the number of proper k-colorings of Kn is exactly

16Proof. In our procedure, we first choose a color for the vertex 1, then choose a color for the vertex
2, then choose a color for the vertex 3, and so on. In other words, for each i ∈ {1, 2, . . . , n}, we
choose a color for the vertex i after having chosen colors for the vertices 1, 2, . . . , i− 1. The color
we choose for a given vertex i must belong to the k-element set {1, 2, . . . , k}, but must be distinct
from the i− 1 colors already chosen for the vertices 1, 2, . . . , i− 1; thus, the number of ways in
which we can choose this color is k − (i− 1) (because the i − 1 colors already chosen for the
vertices 1, 2, . . . , i− 1 are distinct (because we have chosen the color for each vertex to be distinct
from all the colors chosen before)).

Thus, altogether, for each i ∈ {1, 2, . . . , n}, we have to choose a color for the vertex i, and there
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k (k− 1) (k− 2) · · · (k− n + 1) (because all proper k-colorings of Kn can be obtained
by this procedure). In other words,

(the number of proper k-colorings of Kn) = k (k− 1) (k− 2) · · · (k− n + 1) .

Comparing this with (5), we obtain

χKn (k) = k (k− 1) (k− 2) · · · (k− n + 1) . (6)

Now, forget that we fixed k. We thus have shown that (6) holds for every integer
k ≥ n. Thus, (6) holds for infinitely many rational numbers k. Hence, Lemma 0.10
(applied to p = χKn and q = x (x− 1) (x− 2) · · · (x− n + 1)) shows that χKn =
x (x− 1) (x− 2) · · · (x− n + 1). This proves Lemma 0.12.

Next, we recall a classical fact:

Proposition 0.13. Let T be a tree such that |V (T)| ≥ 2. Let v be a leaf of T. Let T′

denote the multigraph obtained from T by removing this leaf v and the unique
edge that contains v.

Then, the multigraph T′ is a tree again.

Next, let us deal with Exercise 5 (b).

Lemma 0.14. Let T be a tree (regarded as a simple graph). Let n = |V (T)|. Then,
χT = x (x− 1)n−1.

Proof of Lemma 0.14. We shall prove Lemma 0.14 by induction on n.
The induction base (the case when n = 1) is simple and is left to the reader.
Induction step: Fix a positive integer N > 1. Assume that Lemma 0.14 has been

proven in the case when n = N − 1. We must now prove Lemma 0.14 in the case
when n = N.

We have assumed that Lemma 0.14 has been proven in the case when n = N− 1.
Thus, the following fact holds:

Fact 1: Let T be a tree (regarded as a simple graph) such that N − 1 =

|V (T)|. Then, χT = x (x− 1)(N−1)−1.

Now, let T be a tree (regarded as a simple graph) such that N = |V (T)|. We shall
show that χT = x (x− 1)N−1.

Indeed, |V (T)| = N > 1, so that |V (T)| ≥ 2. Hence, the tree T has at least 2
vertices. Thus, the tree T has a leaf (since each tree that has at least 2 vertices must
have a leaf). Fix such a leaf, and denote it by v. Let u be the unique neighbor of

are k− (i− 1) ways to choose this color. Therefore, the total number of possible choices is

(k− (1− 1)) (k− (2− 1)) · · · (k− (n− 1)) = k (k− 1) (k− 2) · · · (k− n + 1) .

Qed.



Math 5707 Spring 2017 (Darij Grinberg): midterm 2 page 23

v. Hence, the vertices u and v are adjacent, and u is the only vertex of T that is
adjacent to v.

Consider the multigraph T′ defined as in Proposition 0.13. Then, Proposition 0.13
shows that T′ is a tree again. Regard T′ as a simple graph.

The multigraph T′ is obtained from T by removing a single vertex and a single
edge. Hence, |V (T′)| = |V (T)|︸ ︷︷ ︸

=N

−1 = N − 1, so that N − 1 = |V (T′)|. Hence, Fact

1 (applied to T′ instead of T) shows that χT′ = x (x− 1)(N−1)−1.
Fix an integer k ≥ 1. Recall the concept of k-colorings defined in Exercise 4

(applied to G = T, and to G = T′).
Exercise 4 (applied to G = T′) shows that the number of proper k-colorings of T′

is χT′ (k).
Exercise 4 (applied to G = T) shows that the number of proper k-colorings of T

is χT (k). In other words:

(the number of proper k-colorings of T) = χT (k) . (7)

Now, let us compute this number in a different way. Namely, observe that a k-
coloring of T differs from a k-coloring of T′ only in that the former assigns a color
to the vertex v whereas the latter does not. Furthermore, a k-coloring of T is proper
if and only if no two adjacent vertices of T have the same color. This condition
implies that the color assigned to v must be distinct from the color assigned to u
(since v and u are adjacent). No other restrictions apply to the color assigned to v
(since u is the only vertex of T that is adjacent to v).

Hence, we obtain the following procedure for constructing a proper k-coloring
of T:

• First, choose colors for the vertices of T distinct from v. These colors must
belong to the set {1, 2, . . . , k}, and must have the property that no two adjacent
vertices have the same color. In other words, these colors must form a proper
k-coloring of the tree T′ (because two vertices of T distinct from v are adjacent
in T if and only if they are adjacent in T′).

• Next, choose a color for the vertex v. This color must belong to the set
{1, 2, . . . , k}, and must be distinct from the color chosen for the vertex u.

This procedure clearly produces each proper k-coloring of T. Furthermore, this
procedure involves two choices, and there is a total of χT′ (k) · (k− 1) possible
choices that can be made17. Each of these choices produces a different proper k-
coloring of T. Thus, the number of proper k-colorings of T is exactly χT′ (k) · (k− 1)

17Proof. In our procedure, we first choose colors for the vertices distinct from v, and then choose a
color for the vertex v.

The colors that we choose for the vertices distinct from v must form a proper k-coloring of the
tree T′. Hence, the number of ways in which we can choose these colors is the number of proper
k-colorings of T′; but as we know, the latter number is χT′ (k). Hence, the number of ways in
which we can choose the colors for the vertices distinct from v is χT′ (k).
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(because all proper k-colorings of T can be obtained by this procedure). In other
words,

(the number of proper k-colorings of T) = χT′ (k) · (k− 1) .

Comparing this with (7), we obtain

χT (k) = χT′ (k) · (k− 1) (8)

Now, forget that we fixed k. We thus have shown that (8) holds for every integer
k ≥ 1. Thus, (8) holds for infinitely many rational numbers k. Hence, Lemma 0.10
(applied to p = χT and q = χT′ · (x− 1)) shows that χT = χT′ · (x− 1). Hence,

χT = χT′︸︷︷︸
=x(x−1)(N−1)−1

· (x− 1) = x (x− 1)(N−1)−1 · (x− 1)︸ ︷︷ ︸
=(x−1)N−1

= x (x− 1)N−1 .

Now, forget that we fixed T. We thus have shown that if T is a tree (regarded as
a simple graph) satisfying N = |V (T)|, then χT = x (x− 1)N−1. In other words,
Lemma 0.14 holds for n = N. This completes the induction step. Thus, Lemma 0.14
is proven by induction.

Now, we have essentially solved Exercise 5:

Solution to Exercise 5. (a) Exercise 5 (a) follows from Lemma 0.12.
(b) Exercise 5 (b) follows from Lemma 0.14.
(c) The graph P3 is a tree with |V (P3)| = 3. Thus, Lemma 0.14 (applied to T = P3

and n = 3) shows that χT = x (x− 1)3−1 = x (x− 1)2 = x3 − 2x2 + x.

0.7. Exercise 6: the distances between four points on a tree

Exercise 6. Let G be a tree. Let x, y, z and w be four vertices of G.
Show that the two largest ones among the three numbers d (x, y) + d (z, w),

d (x, z) + d (y, w) and d (x, w) + d (y, z) are equal.

Before solving this exercise, let us state some facts about distances in multigraphs:

Lemma 0.15. Let u and v be two vertices of a connected multigraph G =
(V, E, φ). Then, d (u, v) ≤ |V| − 1.

The color that we choose for the vertex v must belong to the k-element set {1, 2, . . . , k}, and
must be distinct from the color chosen for the vertex u. Thus, the number of ways in which we
can choose this color is k− 1.

Hence, the first of our two choices can be done in χT′ (k) different ways, whereas the second
choice can be done in k − 1 different ways. Therefore, the total number of possible choices is
χT′ (k) · (k− 1). Qed.
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Lemma 0.16. Let u and v be two vertices of a multigraph G. Let k ∈ N. If there
exists a walk from u to v in G having length k, then d (u, v) ≤ k.

Lemma 0.17. Let G = (V, E, φ) be a multigraph.
(a) Each u ∈ V satisfies d (u, u) = 0.
(b) Each u ∈ V and v ∈ V satisfy d (u, v) = d (v, u).
(c) Each u ∈ V, v ∈ V and w ∈ V satisfy d (u, v) + d (v, w) ≥ d (u, w). (This

inequality has to be interpreted appropriately when one of the distances is in-
finite: For example, we understand ∞ to be greater than any integer, and we
understand ∞ + m to be ∞ whenever m ∈ Z.)

(d) If u ∈ V and v ∈ V satisfy d (u, v) = 0, then u = v.

Lemma 0.15, Lemma 0.16 and Lemma 0.17 are analogues of three lemmas en-
countered in the solutions to midterm #1 (namely, Lemma 0.1, Lemma 0.2 and
Lemma 0.3 in the latter solutions). More precisely, the former three lemmas differ
from the latter three lemmas only in that the simple graph has been replaced by a
multigraph. Proofs of the former three lemmas can be obtained from proofs of the
latter three lemmas by making straightforward minor modifications18. We leave
the details of these modifications to the reader.

Let us further state a basic property of trees:

Lemma 0.18. Let u and v be two vertices of a tree G. Let k ∈ N. If there exists a
path from u to v in G having length k, then d (u, v) = k.

Proof of Lemma 0.18. It is known that the multigraph G is a tree if and only if for
every two vertices x and y of G, there is a unique path from x to y in G 19. Hence,
for every two vertices x and y of G, there is a unique path from x to y in G (since
the multigraph G is a tree). Applying this to x = u and y = v, we conclude that
there is a unique path from u to v in G. Hence, any two paths from u to v must be
equal.

We have assumed that there exists a path from u to v in G having length k. Fix
such a path, and denote it by p. Thus, (the length of p) = k.

We know that there exists a path from u to v. Hence, d (u, v) is the minimum
length of a path from u to v (by the definition of d (u, v)). Thus, there exists a path
from u to v having length d (u, v). Fix such a path, and denote it by q. Hence,
(the length of q) = d (u, v).

Now, both p and q are paths from u to v. Hence, p and q are equal (since
any two paths from u to v must be equal). In other words, p = q. Hence,
(the length of p) = (the length of q) = d (u, v). Comparing this with (the length of p) =
k, we obtain d (u, v) = k. This proves Lemma 0.18.

Next, let us show a further useful lemma:

18The most important modification is to include the edges in the paths.
19This is the equivalence T1 ⇐⇒ T2 in Theorem 13 in Lecture 9.

http://www.cip.ifi.lmu.de/~grinberg/t/17s/mt1s.pdf
http://www.cip.ifi.lmu.de/~grinberg/t/17s/5707lec9.pdf
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Lemma 0.19. Let G be a connected multigraph. Let x, y and z be three vertices
of G.

Let
(

p0, e1, p1, e2, p2, . . . , eg, pg
)

be a path from x to y.
Let i be an element of {0, 1, . . . , g} minimizing the distance d (z, pi).
Let h = d (z, pi).
Then:
(a) There exists a path from x to z having length i + h.
(b) There exists a path from z to y having length g− i + h.
(c) If j ∈ {0, 1, . . . , g} is such that i ≤ j, then there exists a path from z to pj

having length j− i + h.

Proof of Lemma 0.19 (sketched). We have h = d (z, pi). In other words, h is the mini-
mum length of a path from z to pi (since d (z, pi) is defined as the minimum length
of a path from z to pi). Thus, there exists a path from z to pi having length h. Fix
such a path, and denote it by (a0, f1, a1, f2, a2, . . . , fh, ah). Thus, a0 = z and ah = pi.

Recall that
(

p0, e1, p1, e2, p2, . . . , eg, pg
)

is a path from x to y. Thus, p0 = x and
pg = y.

The element i ∈ {0, 1, . . . , g} minimizes the distance d (z, pi). Hence,

d
(
z, pj

)
≥ d (z, pi) for each j ∈ {0, 1, . . . , g} . (9)

The g + 1 vertices p0, p1, . . . , pg are distinct (since
(

p0, e1, p1, e2, p2, . . . , eg, pg
)

is a
path).

The h + 1 vertices a0, a1, . . . , ah are distinct (since (a0, f1, a1, f2, a2, . . . , fh, ah) is a
path). Thus, in particular, the h vertices a0, a1, . . . , ah−1 are distinct. In other words,
the vertices ah−1, ah−2, . . . , a0 are distinct.

We have
{a0, a1, . . . , ah−1} ∩

{
p0, p1, . . . , pg

}
= ∅ (10)

20.
Recall that (a0, f1, a1, f2, a2, . . . , fh, ah) is a path, and thus is a walk. Hence,

(ah, fh, ah−1, fh−1, ah−2, . . . , f1, a0) is a walk as well (being the reversal of the walk

20Proof of (10): Let v ∈ {a0, a1, . . . , ah−1} ∩
{

p0, p1, . . . , pg
}

. We shall derive a contradiction.
We have v ∈ {a0, a1, . . . , ah−1} ∩

{
p0, p1, . . . , pg

}
⊆ {a0, a1, . . . , ah−1}. Hence, v = ak for some

k ∈ {0, 1, . . . , h− 1}. Consider this k.
We have v ∈ {a0, a1, . . . , ah−1} ∩

{
p0, p1, . . . , pg

}
⊆
{

p0, p1, . . . , pg
}

. Hence, v = pj for some
j ∈ {0, 1, . . . , g}. Consider this j.

Recall that (a0, f1, a1, f2, a2, . . . , fh, ah) is a path, and thus is a walk. Hence,
(a0, f1, a1, f2, a2, . . . , fk, ak) is a walk as well. This walk (a0, f1, a1, f2, a2, . . . , fk, ak) is a walk from
z to v (since a0 = z and ak = v) and has length p. Hence, there is a walk from z to v in G having
length k (namely, the walk (a0, f1, a1, f2, a2, . . . , fk, ak)). Consequently, Lemma 0.16 (applied to
u = z) shows that d (z, v) ≤ k ≤ h− 1 (since k ∈ {0, 1, . . . , h− 1}).

But (9) yields d (z, pi) ≤ d
(
z, pj

)
= d (z, v) (since pj = v). Thus, d (z, v) ≥ d (z, pi) = h > h− 1.

This contradicts d (z, v) ≤ h− 1.
Now, forget that we fixed v. Thus, we have obtained a contradiction for each

v ∈ {a0, a1, . . . , ah−1} ∩
{

p0, p1, . . . , pg
}

. Hence, there exists no v ∈ {a0, a1, . . . , ah−1} ∩{
p0, p1, . . . , pg

}
. Thus, {a0, a1, . . . , ah−1} ∩

{
p0, p1, . . . , pg

}
= ∅.
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(a0, f1, a1, f2, a2, . . . , fh, ah)). This walk is a walk from pi to z (since ah = pi and
a0 = z).

(a) Recall that
(

p0, e1, p1, e2, p2, . . . , eg, pg
)

is a path, and thus is a walk. Hence,
(p0, e1, p1, e2, p2, . . . , ei, pi) is a walk as well. This walk is a walk from x to pi (since
p0 = x and pi = pi).

We have
{p0, p1, . . . , pi} ∩ {ah−1, ah−2, . . . , a0} = ∅ (11)

21. The vertices p0, p1, . . . , pi, ah−1, ah−2, . . . , a0 are distinct22.
Now, we know that (p0, e1, p1, e2, p2, . . . , ei, pi) is a walk from x to pi, whereas

(ah, fh, ah−1, fh−1, ah−2, . . . , f1, a0) is a walk from pi to z. Since the ending point of
the former walk is the starting point of the latter walk23, we can combine these two
walks. We thus obtain a new walk (p0, e1, p1, e2, p2, . . . , ei, pi, fh, ah−1, fh−1, ah−2, . . . , f1, a0),
which is a walk from x to z and has length i + h. Furthermore, this new walk is
actually a path (since the vertices p0, p1, . . . , pi, ah−1, ah−2, . . . , a0 are distinct), and
therefore is a path from x to z having length i + h. Hence, there exists a path from
x to z having length i + h (namely, the path that we have just constructed). This
proves Lemma 0.19 (a).

(c) Let j ∈ {0, 1, . . . , g} be such that i ≤ j. Thus, j ∈ {i, i + 1, . . . , g} (since
j ∈ {0, 1, . . . , g} and j ≥ i).

Recall that
(

p0, e1, p1, e2, p2, . . . , eg, pg
)

is a path, and thus is a walk. Hence,(
pi, ei+1, pi+1, ei+2, pi+2, . . . , eg, pg

)
is a walk as well. Thus,

(
pi, ei+1, pi+1, ei+2, pi+2, . . . , ej, pj

)
is a walk as well (since j ∈ {i, i + 1, . . . , g}). This walk is a walk from pi to pj (since
pi = pi and pj = pj).

We have
{a0, a1, . . . , ah−1} ∩

{
pi, pi+1, . . . , pj

}
= ∅ (12)

21Proof of (11): We have

{p0, p1, . . . , pi}︸ ︷︷ ︸
⊆{p0,p1,...,pg}

∩ {ah−1, ah−2, . . . , a0}︸ ︷︷ ︸
={a0,a1,...,ah−1}

⊆
{

p0, p1, . . . , pg
}
∩ {a0, a1, . . . , ah−1}

= {a0, a1, . . . , ah−1} ∩
{

p0, p1, . . . , pg
}
= ∅

(by (10)). Thus, {p0, p1, . . . , pi} ∩ {ah−1, ah−2, . . . , a0} = ∅.
22Proof. This follows from the following three observations:

• The vertices p0, p1, . . . , pi are distinct (since the vertices p0, p1, . . . , pg are distinct).

• The vertices ah−1, ah−2, . . . , a0 are distinct.

• The vertices p0, p1, . . . , pi are distinct from the vertices ah−1, ah−2, . . . , a0 (because of (11)).

23Indeed, the ending point is the former walk is pi, while the starting point of the latter walk is pi
as well.
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24. The vertices a0, a1, . . . , ah−1, pi, pi+1, . . . , pj are distinct25.
Now, the path (a0, f1, a1, f2, a2, . . . , fh, ah) is a walk from z to pi (since it is a path

from z to pi), whereas
(

pi, ei+1, pi+1, ei+2, pi+2, . . . , ej, pj
)

is a walk from pi to pj.
Since the ending point of the former walk is the starting point of the latter walk26,
we can combine these two walks. We thus obtain a new walk(

a0, f1, a1, f2, a2, . . . , fh−1, ah−1, fh, pi, ei+1, pi+1, ei+2, pi+2, . . . , ej, pj
)
, which is a walk

from z to pj and has length h+(j− i). Furthermore, this new walk is actually a path
(since the vertices a0, a1, . . . , ah−1, pi, pi+1, . . . , pj are distinct), and therefore is a path
from z to pj having length h+ (j− i). Hence, there exists a path from z to pj having
length h + (j− i) (namely, the path that we have just constructed). In other words,
there exists a path from z to pj having length j− i + h (since h + (j− i) = j− i + h).
This proves Lemma 0.19 (c).

(b) We have g ∈ {0, 1, . . . , g} (since g ∈ N) and i ≤ g (since i ∈ {0, 1, . . . , g}).
Thus, Lemma 0.19 (c) (applied to j = g) shows that there exists a path from z to pg
having length g− i + h. Since pg = y, this rewrites as follows: There exists a path
from z to y having length g− i + h. This proves Lemma 0.19 (b).

Corollary 0.20. Let G be a tree. Let x, y and z be three vertices of G.
Let

(
p0, e1, p1, e2, p2, . . . , eg, pg

)
be a path from x to y.

Let i be an element of {0, 1, . . . , g} minimizing the distance d (z, pi).
Let h = d (z, pi).
Then:
(a) We have d (x, z) = i + h.
(b) We have d (y, z) = g− i + h.
(c) If j ∈ {0, 1, . . . , g} is such that i ≤ j, then d

(
z, pj

)
= j− i + h.

Proof of Corollary 0.20. (a) Lemma 0.19 (a) shows that there exists a path from x to
z having length i + h. Hence, Lemma 0.18 (applied to u = x, v = z and k = i + h)
shows that d (x, z) = i + h. This proves Corollary 0.20 (a).

(b) Lemma 0.19 (b) shows that there exists a path from z to y having length
g− i + h. Hence, Lemma 0.18 (applied to u = z, v = y and k = g− i + h) shows

24Proof of (12): We have

{a0, a1, . . . , ah−1} ∩
{

pi, pi+1, . . . , pj
}︸ ︷︷ ︸

⊆{p0,p1,...,pg}

⊆ {a0, a1, . . . , ah−1} ∩
{

p0, p1, . . . , pg
}
= ∅

(by (10)). Thus, {a0, a1, . . . , ah−1} ∩
{

pi, pi+1, . . . , pj
}
= ∅.

25Proof. This follows from the following three observations:

• The vertices a0, a1, . . . , ah−1 are distinct.

• The vertices pi, pi+1, . . . , pj are distinct (since the vertices p0, p1, . . . , pg are distinct).

• The vertices a0, a1, . . . , ah−1 are distinct from the vertices pi, pi+1, . . . , pj (because of (12)).

26Indeed, the ending point is the former walk is pi, while the starting point of the latter walk is pi
as well.
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that d (z, y) = g− i + h.
Write the tree G in the form G = (V, E, φ). Then, y and z are elements of V (since

y and z are vertices of G). Thus, Lemma 0.17 (b) (applied to u = y and v = z)
yields d (y, z) = d (z, y) = g− i + h. This proves Corollary 0.20 (b).

(c) Let j ∈ {0, 1, . . . , g} be such that i ≤ j. Lemma 0.19 (c) shows that there exists
a path from z to pj having length j− i + h. Hence, Lemma 0.18 (applied to u = z,
v = pj and k = j− i + h) shows that d

(
z, pj

)
= j− i + h. This proves Corollary 0.20

(c).

Proposition 0.21. Let G be a tree. Let x, y, z and w be four vertices of G.
Let

(
p0, e1, p1, e2, p2, . . . , eg, pg

)
be a path from x to y.

Let i be an element of {0, 1, . . . , g} minimizing the distance d (z, pi).
Let j be an element of {0, 1, . . . , g} minimizing the distance d

(
w, pj

)
.

(a) If i ≤ j, then d (x, w) + d (y, z) ≥ d (x, y) + d (z, w).
(b) If i ≥ j, then d (x, z) + d (y, w) ≥ d (x, y) + d (z, w).

Proof of Proposition 0.21. (a) Assume that i ≤ j.
Let h = d (z, pi). Let k = d

(
w, pj

)
.

The path
(

p0, e1, p1, e2, p2, . . . , eg, pg
)

is a path from x to y, and has length g.
Hence, there exists a path from u to v in G having length g (namely, the path(

p0, e1, p1, e2, p2, . . . , eg, pg
)
). Thus, Lemma 0.18 (applied to x, y and g instead of u,

v and k) yields d (x, y) = g.
Corollary 0.20 (a) (applied to w, j and k instead of z, i and h) yields d (x, w) =

j + k.
Corollary 0.20 (b) yields d (y, z) = g− i + h.
Corollary 0.20 (c) yields d

(
z, pj

)
= j− i + h.

Also, d (z, w) ≤ d
(
z, pj

)
+ d

(
w, pj

) 27. Thus, d (z, w) ≤ d
(
z, pj

)︸ ︷︷ ︸
=j−i+h

+ d
(
w, pj

)︸ ︷︷ ︸
=k

=

j− i + h + k.
Now,

d (x, y)︸ ︷︷ ︸
=g

+ d (z, w)︸ ︷︷ ︸
=j−i+h−k

≤ g + j− i + h− k = j + k︸︷︷︸
=d(x,w)

+ g− i + h︸ ︷︷ ︸
=d(y,z)

= d (x, w) + d (y, z) .

This proves Proposition 0.21 (a).
(b) Assume that i ≥ j. Thus, j ≤ i. Hence, Proposition 0.21 (a) (applied to w,

z, j and i instead of z, w, i and j) yields d (x, z) + d (y, w) ≥ d (x, y) + d (w, z). But

27Proof. Write the tree G in the form G = (V, E, φ). Then, z, w and pj are elements of V (since z, w
and pj are vertices of G). Thus, Lemma 0.17 (b) (applied to u = w and v = pj) yields d

(
w, pj

)
=

d
(

pj, w
)
. But Lemma 0.17 (c) (applied to u = z and v = pj) yields d

(
z, pj

)
+ d

(
pj, w

)
≥ d (z, w).

Hence, d (z, w) ≤ d
(
z, pj

)
+ d

(
pj, w

)︸ ︷︷ ︸
=d(w,pj)

= d
(
z, pj

)
+ d

(
w, pj

)
.
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d (w, z) = d (z, w) 28. Hence,

d (x, z) + d (y, w) ≥ d (x, y) + d (w, z)︸ ︷︷ ︸
=d(z,w)

= d (x, y) + d (z, w) .

This proves Proposition 0.21 (b).

Corollary 0.22. Let G be a tree. Let x, y, z and w be four vertices of G.
(a) We have

d (x, y) + d (z, w) ≤ max {d (x, z) + d (y, w) , d (x, w) + d (y, z)} . (13)

(b) We have

d (x, z) + d (y, w) ≤ max {d (x, y) + d (z, w) , d (x, w) + d (y, z)} . (14)

(c) We have

d (x, w) + d (y, z) ≤ max {d (x, y) + d (z, w) , d (x, z) + d (y, w)} . (15)

Proof of Corollary 0.22. We have d (w, z) = d (z, w) 29. Similarly, d (y, w) = d (w, y)
and d (y, z) = d (z, y).

(a) Assume the contrary. Thus,

d (x, y) + d (z, w) > max {d (x, z) + d (y, w) , d (x, w) + d (y, z)} .

Hence,

d (x, y) + d (z, w) > max {d (x, z) + d (y, w) , d (x, w) + d (y, z)} ≥ d (x, z) + d (y, w)
(16)

and

d (x, y) + d (z, w) > max {d (x, z) + d (y, w) , d (x, w) + d (y, z)} ≥ d (x, w) + d (y, z) .
(17)

The multigraph G is a tree, and thus is connected. Hence, there exists a walk
from x to y. Thus, there exists a path from x to y. Fix such a path, and denote it by(

p0, e1, p1, e2, p2, . . . , eg, pg
)
.

Fix an element i of {0, 1, . . . , g} minimizing the distance d (z, pi). Fix an element
j of {0, 1, . . . , g} minimizing the distance d

(
w, pj

)
.

We are now in one of the following two cases:

• Case 1: We have i ≤ j.

28Proof. Write the tree G in the form G = (V, E, φ). Then, w and z are elements of V (since w and z
are vertices of G). Thus, Lemma 0.17 (b) (applied to u = w and v = z) yields d (w, z) = d (z, w).

29Proof. Write the tree G in the form G = (V, E, φ). Then, w and z are elements of V (since w and z
are vertices of G). Thus, Lemma 0.17 (b) (applied to u = w and v = z) yields d (w, z) = d (z, w).
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• Case 2: We have i ≥ j.

We shall derive a contradiction in each of these two cases.
Indeed, let us first consider Case 1. In this case, we have i ≤ j. Hence, Proposi-

tion 0.21 (a) shows that d (x, w) + d (y, z) ≥ d (x, y) + d (z, w). This contradicts (17).
Hence, we have found a contradiction in Case 1.

Let us now consider Case 2. In this case, we have i ≥ j. Hence, Proposition 0.21
(b) shows that d (x, z) + d (y, w) ≥ d (x, y) + d (z, w). This contradicts (16). Hence,
we have found a contradiction in Case 2.

We thus have found a contradiction in each of the two Cases 1 and 2. Thus, we
always get a contradiction. This shows that our assumption was false. Hence, the
proof of Corollary 0.22 (a) is complete.

(b) Corollary 0.22 (a) (applied to z and y instead of y and z) yields

d (x, z) + d (y, w) ≤ max

d (x, y) + d (z, w) , d (x, w) + d (z, y)︸ ︷︷ ︸
=d(y,z)


= max {d (x, y) + d (z, w) , d (x, w) + d (y, z)} .

This proves Corollary 0.22 (b).
(c) Corollary 0.22 (a) (applied to w and y instead of y and w) yields

d (x, w) + d (z, y) ≤ max

d (x, z) + d (w, y)︸ ︷︷ ︸
=d(y,w)

, d (x, y) + d (w, z)︸ ︷︷ ︸
=d(z,w)


= max {d (x, z) + d (y, w) , d (x, y) + d (z, w)}
= max {d (x, y) + d (z, w) , d (x, z) + d (y, w)} .

This proves Corollary 0.22 (c).

Solution to Exercise 6 (sketched). Let a, b and c be the three numbers d (x, y)+ d (z, w),
d (x, z) + d (y, w) and d (x, w) + d (y, z), sorted in increasing order (so that a ≤
b ≤ c). Then, the two largest ones among the three numbers d (x, y) + d (z, w),
d (x, z) + d (y, w) and d (x, w) + d (y, z) are b and c.

The three equalities (13), (14) and (15) (combined) show that each of the three
numbers d (x, y) + d (z, w), d (x, z) + d (y, w) and d (x, w) + d (y, z) is less than or
equal to the maximum of the two others. Since the three numbers a, b and c
are precisely the three numbers d (x, y) + d (z, w), d (x, z) + d (y, w) and d (x, w) +
d (y, z) (except possibly in a different order), we can rewrite this as follows: Each of
the three numbers a, b and c is less than or equal to the maximum of the two others.
In other words, we have a ≤ max {b, c} and b ≤ max {c, a} and c ≤ max {a, b}. But
a ≤ b ≤ c (since the three numbers a, b and c are sorted in increasing order). Now,
c ≤ max {a, b} = b (since a ≤ b). Combined with b ≤ c, this yields b = c. In
other words, b and c are equal. In other words, two largest ones among the three
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numbers d (x, y) + d (z, w), d (x, z) + d (y, w) and d (x, w) + d (y, z) are equal (since
the two largest ones among the three numbers d (x, y) + d (z, w), d (x, z) + d (y, w)
and d (x, w) + d (y, z) are b and c). This solves the exercise.

0.8. Exercise 7: on triple intersections

Definition 0.23. Let G = (V, E, φ) be a multigraph.
For any subset U of V, we let G [U] denote the sub-multigraph

(
U, EU, φ |EU

)
of G, where EU is the subset {e ∈ E | φ (e) ⊆ U} of E. (Thus, G [U] is the sub-
multigraph obtained from G by removing all vertices that don’t belong to U, and
subsequently removing all edges that don’t have both their endpoints in U.) This
sub-multigraph G [U] is called the induced sub-multigraph of G on the subset U.

Exercise 7. Let G = (V, E, φ) be a multigraph.
Let A, B and C be three subsets of V such that the sub-multigraphs G [A],

G [B] and G [C] are connected.
A cycle of G will be called eclectic if it contains at least one edge of G [A], at

least one edge of G [B] and at least one edge of G [C] (although these three edges
are not required to be distinct).

(a) If the sets B ∩ C, C ∩ A and A ∩ B are nonempty, but A ∩ B ∩ C is empty,
then prove that G has an eclectic cycle.

(b) If the sub-multigraphs G [B ∩ C], G [C ∩ A] and G [A ∩ B] are connected,
but the sub-multigraph G [A ∩ B ∩ C] is not connected, then prove that G has an
eclectic cycle.

[Note: Keep in mind that the multigraph with 0 vertices does not count as
connected.]

Solution to Exercise 7 (sketched). (a) Assume that the sets B ∩ C, C ∩ A and A ∩ B
are nonempty, but A ∩ B ∩ C is empty. There exists at least one triple (u, v, w) ∈
(B ∩ C)× (C ∩ A)× (A ∩ B) (since the sets B ∩ C, C ∩ A and A ∩ B are nonempty),
and for each such triple, the integers dG[A] (v, w), dG[B] (w, u) and dG[C] (u, v) are
well-defined (i.e., not equal to ∞) 30. Hence, we can pick a triple (u, v, w) ∈
(B ∩ C)× (C ∩ A)× (A ∩ B) minimizing the sum dG[A] (v, w)+ dG[B] (w, u)+ dG[C] (u, v).
Pick such a triple.

The vertices u, v and w are distinct (because if any two of them were equal, then
these two equal vertices would lie in the set A∩ B∩C, which however was assumed
to be empty). Pick any path p from v to w in G [A] having length dG[A] (v, w). Pick
any path q from w to u in G [B] having length dG[B] (w, u). Pick any path r from u
to v in G [C] having length dG[C] (u, v). Each of the paths p, q and r has length ≥ 1
(since the vertices u, v and w are distinct).

30This is because the multigraphs G [A], G [B] and G [C] are connected.
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The paths p and q have no vertices in common apart from the vertex w (at which
the path p ends and the path q starts)31. Similarly, the paths q and r have no vertices
in common apart from the vertex u (at which the path q ends and the path r starts).
Similarly, the paths r and p have no vertices in common apart from the vertex v (at
which the path r ends and the path p starts). Thus, we can combine the three paths
p, q and r to form a cycle. This cycle contains an edge of G [A] (since the path p is
nonempty, and thus contributes an edge), an edge of G [B] (similarly) and an edge
of G [C] (similarly). Hence, this cycle is eclectic. Thus, G has an eclectic cycle. This
solves Exercise 7 (a).

(b) Assume that the sub-multigraphs G [B ∩ C], G [C ∩ A] and G [A ∩ B] are con-
nected, but the sub-multigraph G [A ∩ B ∩ C] is not connected. We must prove that
G has an eclectic cycle.

The sets B ∩ C, C ∩ A and A ∩ B are nonempty (since the multigraphs G [B ∩ C],
G [C ∩ A] and G [A ∩ B] are connected). If the set A∩ B∩C is empty, then Exercise 7
(a) proves that G has an eclectic cycle. Hence, for the rest of this proof, we WLOG
assume that the set A ∩ B ∩ C is nonempty.

The graph G [A ∩ B ∩ C] is not connected, but it has at least one vertex (since the
set A∩ B∩C is nonempty). Thus, there exists at least one pair (u, v) ∈ (A ∩ B ∩ C)2

such that there exists no path from u to v in G [A ∩ B ∩ C]. Fix such a pair (u, v)
minimizing the sum dG[C∩A] (u, v) + dG[A∩B] (v, u). (This sum is an integer, since
both sub-multigraphs G [C ∩ A] and G [A ∩ B] are connected.)

The vertices u and v are distinct (since there exists no path from u to v in
G [A ∩ B ∩ C]). Pick any path p from u to v in G [C ∩ A] having length dG[C∩A] (u, v).
Pick any path q from v to u in G [A ∩ B] having length dG[A∩B] (v, u). Each of the
paths p and q has length ≥ 1 (since the vertices u and v are distinct).

The paths p and q have no vertices in common apart from the vertices u and
v 32. Thus, we can combine these two paths p and q to form a cycle. This cycle

31Proof. Assume the contrary. Thus, the paths p and q have a vertex w′ 6= w in common. Consider
this w′. Each vertex on the path p belongs to A (since p is a path in G [A]). Thus, w′ ∈ A. Simi-
larly, w′ ∈ B. Hence, w′ ∈ A∩ B. Furthermore, dG[A] (v, w′) < dG[A] (v, w) (because w′ lies on the
path p, which has length dG[A] (v, w), but is distinct from w) and dG[B] (w′, u) < dG[B] (w, u) (sim-
ilarly). Hence, dG[A] (v, w′) + dG[B] (w′, u) + dG[C] (u, v) < dG[A] (v, w) + dG[B] (w, u) + dG[C] (u, v).
This contradicts the fact that our triple (u, v, w) was chosen to minimize the sum dG[A] (v, w) +

dG[B] (w, u) + dG[C] (u, v).
32Proof. Assume the contrary. Thus, the paths p and q have a vertex w′ /∈ {u, v} in common.

Consider this w′. Each vertex on the path p belongs to C ∩ A (since p is a path in G [C ∩ A]).
Thus, w′ ∈ C ∩ A. Similarly, w′ ∈ A ∩ B. Hence, w′ ∈ (C ∩ A) ∩ (A ∩ B) = A ∩ B ∩ C.

Furthermore, dG[C∩A] (u, w′) < dG[C∩A] (u, v) (because w′ lies on the path p, which has length
dG[C∩A] (u, v), but is distinct from v) and dG[A∩B] (w′, u) < dG[A∩B] (v, u) (similarly). Hence,
dG[C∩A] (u, w′) + dG[A∩B] (w′, u) < dG[C∩A] (u, v) + dG[A∩B] (v, u). This contradicts the fact that
our pair (u, v) was chosen to minimize the sum dG[C∩A] (u, v) + dG[A∩B] (v, u), unless there exists
a path from u to w′ in G [A ∩ B ∩ C]. Hence, we conclude that there exists a path from u to w′ in
G [A ∩ B ∩ C].

Moreover, dG[C∩A] (w′, v) < dG[C∩A] (u, v) (because w′ lies on the path p, which has length
dG[C∩A] (u, v), but is distinct from u) and dG[A∩B] (v, w′) < dG[A∩B] (v, u) (similarly). Hence,
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contains an edge of G [C ∩ A] (since the path p is nonempty, and thus contributes
an edge) and an edge of G [A ∩ B] (similarly). Therefore, this cycle contains an
edge of G [A] (since any edge of G [C ∩ A] is an edge of G [A]), an edge of G [B]
(since any edge of G [A ∩ B] is an edge of G [B]), and an edge of G [C] (since any
edge of G [C ∩ A] is an edge of G [C]). Hence, this cycle is eclectic. Thus, G has an
eclectic cycle. This solves Exercise 7 (b).

Let us make some comments about the origin of Exercise 7. Namely, I came up
with it when generalizing the following classical fact:

Theorem 0.24. Let G = (V, E, φ) be a tree.
Let A, B and C be three subsets of V such that the sub-multigraphs G [A], G [B]

and G [C] are connected (and thus are trees as well). Assume further that the sets
B ∩ C, C ∩ A and A ∩ B are nonempty. Then, the sub-multigraph G [A ∩ B ∩ C]
of G is a tree.

Proof of Theorem 0.24 (sketched). The multigraph G has no cycles (since it is a tree).
Let us first show that the sub-multigraph G [B ∩ C] is connected.
Indeed, assume the contrary. Thus, there exist two vertices u and v of G [B ∩ C]

such that there exists no path from u to v in G [B ∩ C] (since B ∩ C is nonempty).
Fix two such vertices u and v.

The multigraph G is a tree. Hence, there exists a unique path from u to v in G.
Denote this path by p.

But u ∈ B ∩ C ⊆ B and v ∈ B ∩ C ⊆ B. Thus, u and v are two vertices of the
multigraph G [B]. Since this multigraph G [B] is connected, we thus conclude that
there exists a path from u to v in G [B]. This path must clearly be a path from u to
v in G (because G [B] is a sub-multigraph of G), and therefore must be the path p
(since p is the unique path from u to v in G). Therefore, the path p is a path from
u to v in G [B]. In particular, the path p is a path in G [B]. Thus, all vertices of p
belong to B.

Similarly, all vertices of p belong to C.
Now, we have shown that all vertices of p belong to B, and that all vertices of

p belong to C. Hence, all vertices of p belong to B ∩ C (since they belong to B
and to C at the same time). Consequently, p is a path from u to v in G [B ∩ C].
This contradicts the fact that there exists no path from u to v in G [B ∩ C]. This
contradiction proves that our assumption was false.

Hence, we have proven that the sub-multigraph G [B ∩ C] is connected.

dG[C∩A] (w′, v) + dG[A∩B] (v, w′) < dG[C∩A] (u, v) + dG[A∩B] (v, u). This contradicts the fact that
our pair (u, v) was chosen to minimize the sum dG[C∩A] (u, v) + dG[A∩B] (v, u), unless there exists
a path from w′ to v in G [A ∩ B ∩ C]. Hence, we conclude that there exists a path from w′ to v in
G [A ∩ B ∩ C].

We now know that there exists a path from u to w′ in G [A ∩ B ∩ C], and that there exists a
path from w′ to v in G [A ∩ B ∩ C]. Concatenating these paths, we obtain a walk from u to v in
G [A ∩ B ∩ C]. Hence, there exists a path from u to v in G [A ∩ B ∩ C] as well. This contradicts
the fact that there exists no path from u to v in G [A ∩ B ∩ C]. This contradiction shows that our
assumption was wrong, qed.
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Similarly, the sub-multigraphs G [C ∩ A] and G [A ∩ B] are connected.
Now, we claim that the sub-multigraph G [A ∩ B ∩ C] is connected.
Indeed, assume the contrary. Thus, the sub-multigraph G [A ∩ B ∩ C] is not con-

nected. Hence, Exercise 7 (b) shows that G has an eclectic cycle. Thus, G has a
cycle. This contradicts the fact that G has no cycles. This contradiction proves that
our assumption was wrong.

Hence, we have proven that the sub-multigraph G [A ∩ B ∩ C] is connected. Fur-
thermore, this sub-multigraph G [A ∩ B ∩ C] has no cycles (since it is a sub-multigraph
of the tree G, which has no cycles). Hence, this sub-multigraph G [A ∩ B ∩ C] is a
forest. Thus, G [A ∩ B ∩ C] is a connected forest, i.e., a tree. This proves Theo-
rem 0.24.

A generalization of Theorem 0.24 is known as “Helly’s theorem for trees” (see,
e.g., [Horn71, Theorem 4.1]):

Theorem 0.25. Let G = (V, E, φ) be a tree.
Let A1, A2, . . . , Ak be k subsets of V such that for each i ∈ {1, 2, . . . , k}, the

sub-multigraph G [Ai] is connected. Assume further that for each 1 ≤ i < j ≤ k,
the set Ai ∩ Aj is nonempty. Then, the sub-multigraph G [A1 ∩ A2 ∩ · · · ∩ Ak] of
G is a tree.

It is not hard to derive Theorem 0.25 from Theorem 0.24 by induction over k. But
I am wondering:

Question 0.26. Is there a generalization of Exercise 7 that extends it to k subsets
of V, similarly to how Theorem 0.25 extends Theorem 0.24 ?

Let me observe one more curiosity. Namely, Exercise 7 has an analogue for
multidigraphs. To state this analogue, let us define induced sub-multidigraphs33:

Definition 0.27. Let G = (V, E, φ) be a multidigraph.
For any subset U of V, we let G [U] denote the sub-multidigraph

(
U, EU, φ |EU

)
of G, where EU is the subset {e ∈ E | φ (e) ∈ U ×U} of E. (Thus, G [U] is the sub-
multidigraph obtained from G by removing all vertices that don’t belong to U,
and subsequently removing all arcs that don’t have both their source and their
target in U.) This sub-multidigraph G [U] is called the induced sub-multidigraph of
G on the subset U.

Now, the analogue of Exercise 7 states the following:

Proposition 0.28. Let G = (V, E, φ) be a multidigraph.
Let A, B and C be three subsets of V such that the sub-multidigraphs G [A],

G [B] and G [C] are strongly connected.

33We shall use the notation G = (V, E, φ) instead of the more common notation D = (V, A, φ) for
our multidigraph in order to make the analogy to Exercise 7 more obvious.
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A cycle of G will be called eclectic if it contains at least one arc of G [A], at least
one arc of G [B] and at least one arc of G [C] (although these three arcs are not
required to be distinct).

(a) If the sets B ∩ C, C ∩ A and A ∩ B are nonempty, but A ∩ B ∩ C is empty,
then prove that G has an eclectic cycle.

(b) If the sub-multidigraphs G [B ∩ C], G [C ∩ A] and G [A ∩ B] are strongly
connected, but the sub-multidigraph G [A ∩ B ∩ C] is not strongly connected,
then prove that G has an eclectic cycle.

[Note: Keep in mind that the multidigraph with 0 vertices does not count as
strongly connected.]

Proof of Proposition 0.28 (sketched). The proof of Proposition 0.28 is completely anal-
ogous to the solution to Exercise 7. (Of course, the obvious changes need to be
made – e.g., replacing “multigraph” by “multidigraph”, and replacing “connected”
by “strongly connected”.)
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