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1 EXERCISE 1

1.1 PROBLEM

Let G = (V, E) be a simple graph such that |E| > |V|. Then there exists an injective
map f :V — E such that each v € V satisfies v ¢ f(v).

1.2 SOLUTION

Proof. Let n = |V|. Note first that since |E| > |V|, n can be neither 1 nor 2. Define a
bipartite graph (H;V, E), where H is the simple graph with vertex set V(H) = EUV
and edge set E (H) = {{v,e} |e € E,v € V\e}. (We WLOG assume that ENV = 2.)
Thus, the edges in H connect each vertex v of G to the edges of G that do not contain
v.

A V-complete matching M in H would consist of a subset of the edges {v € V,e € E}
of H connecting each v € V to a distinct e € E. Because of the definition of E (H),
each {v,e} € M satisfies v ¢ e. Hence, if such a V-complete matching M exists, then
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the map f: V — FE defined by
f(v) =eV{v,e} e M (1)

would satisfy v ¢ f(v) for all v € V. It would also be injective, by the definition of a
matching. It suffices then to show that a V-complete matching exists for (H;V, E).

Hall’s marriage theorem tells us that a V-complete matching exists in (H;V, E) if
and only if each P C V satisfies [Ny(P)| > |P|, where Ny (P) is the set of all vertices
that have a neighbor in P in the graph H. In other words, a V-complete matching exists
in (H;V, E) if and only if for each subset of k vertices of G (0 < k < n), there are at
least k edges of G that do not contain any of those vertices. Pick an arbitrary P C V,
and consider four cases:

(1) |P| = 0: In this case it is trivially true that [Ny (P)| > |P].

(2) |P| = 1: In this case, let v be the single element of P. Since G is a simple graph,
we know degv < n — 1. But |E| > n, so there must be at least one e € F such that
v ¢ e. Hence, [Ng(P)| >1=|P|.

(3) |P| = 2: In this case, let v and v be the two elements of P. There is only one
possible e € E such that e ¢ Ny (P), namely {u,v}. Hence [Ny(P)| > |E| — 1. As
noted above, n cannot be 2, so n > 3 (since V' contains at least u and v). Then we
have the following:

|E| >n >3
= |Ng(P)| 2 |E|-12>2
= |Nu(P)| >|P|.

(4) |P| > 3: In this case, for every e € F, e contains at most two of the elements of
P. Hence there is at least one element in P that is not in e, so e € Ny(P). Thus
Ny (P) = E, so that [Ng(P)| = |E|. Since |E| > |V| > |P| (because P C V), it
follows that [Ny (P)| > |P].

In each case, |Ngy(P)| > |P|, so Hall’s marriage theorem says there is a V-complete
matching M. Thus the map as defined in using this matching M satisfies the
proposition. ]

2 EXERCISE 2

2.1 PROBLEM

Let G = (V, F) be a connected simple graph such that |E| > |V|. Then there exists an
injective map f : V — E such that each v € V satisfies v € f(v).

Nicholas Rancourt, * 2 *
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2.2 SOLUTION

Proof. This proof follows an argument similar to Exercise 1, with a minor modification
to the definition of the bipartite graph (H;V, F).

Let n = |V|. Note first that since |E| > |V, n can be neither 1 nor 2. Define a
bipartite graph (H;V, E), where H is the simple graph with vertex set V(H) = FUV
and edge set E(H) = {{v,e} | e € E,v € e}. (Again, we assume ENV = @&.) Thus,
the edges in H connect each vertex v of G to the edges of GG that contain v.

A V-complete matching M in H would consist of a subset of the edges {v € V,e € E}
of H connecting each v € V to a distinct e € E. Because of the definition of E (H),
each {v,e} € M satisfies v € e. Hence, if such a V-complete matching M exists, a map
f:V — E defined by

f(v)=eV{v,e} e M (2)

would satisfy v € f(v) for all v € V. It would also be injective, by the definition of a
matching. It suffices then to show that a V-complete matching exists in (H;V, E).

As in Exercise 1, Hall’s marriage theorem tells us that a V-complete matching in
(H;V, F) exists if and only if each P C V satisfies [Ny (P)| > |P|. In this case, this
means that for each subset of k vertices of G (0 < k < n), there are at least k edges
of G that contain one of these k vertices. Pick an arbitrary P C V', and consider three
cases:

(1) |P| = 0: In this case it is trivially true that [Ny (P)| > |P].

(2) 0 < |P|] < n: In this case, consider the connected components of the graph G |p,
i.e. the graph with vertex set P and edge set {¢ € E' | e C P}. Let @ be one of
the connected components. Since GG is connected, there must be an e € £ with one
endpoint in @) and the other in V'\ P (otherwise, () would be a connected component
of G as well, so that @ = V, but that would contradict |Q| < |P| < n = |V]).
This edge is in Ny (P). Furthermore, there must be at least |Q| — 1 edges with
both endpoints in @, or @) would not be connected. These |Q| — 1 edges are also in
Ny (P). Hence each connected component @ of G | p contributes at least || elements
to Ny (P). Furthermore, none of the above-mentioned |@Q| edges contributed by a
connected component () can contain a vertex in any other connected component
of G |p, so the edges contributed by each connected component are distinct. Thus
INu(P)| = [P].

(3) |P| = n: In this case, P =V, so Ny (P) contains all the edges in E, i.e., Ny(P) = E.
Since |E| > |V, it follows that [Ng(P)| > |P|.

In each case, |[Ngy(P)| > |P|, so Hall’s marriage theorem says there is a V-complete
matching M. Therefore the map as defined in using this matching M satisfies the
proposition. O

Nicholas Rancourt, * 3 *
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3 EXERCISE 3

3.1 PROBLEM

Let D = (V, A) be a digraph. Let k € N. Let u, v, and w be three vertices of D. Assume
that there exist k arc-disjoint paths from u to v. Assume furthermore that there exist k
arc-disjoint paths from v to w. Then there exist k arc-disjoint paths from v to w.

3.2 SOLUTION

Proof. WLOG assume that v # v and v # w (otherwise, the exercise is quite trivial).
Also, WLOG assume that u # w (since otherwise, the k trivial paths (u), (u),..., (u)
are arc-disjoint and thus the exercise is trivial).

Theorem 0.3 from HW4 (Menger’s theorem, directed arc-disjoint version) states that
for two distinct vertices s and t of D, the minimum size of an s-t-cut equals the maximum
number of arc-disjoint paths from s to ¢, where an s-t-cut is a subset C' of A with the
form

C = {a € A the source of a belongs to U, but the target of a does not}

for a subset U of V satisfying s € U and t ¢ U. The maximum number of arc-disjoint
paths from u to v is at least k, as is the maximum number of arc-disjoint paths from v
to w. Hence, the minimum size of a u-v-cut is at least k, as is the minimum size of a
v-w-cut.

Suppose there is a u-w-cut C' of size < k. Then C' has an arc from at most k£ — 1
of the k arc-disjoint paths from u to v, and has an arc from at most k — 1 of the £
arc-disjoint paths from v to w. Thus there is at least one path p from u to v and at
least one path ¢ from v to w such that none of the arcs contained in p and ¢ belong to
C. By the definition of a u-w-cut then, either u is not in the set U that defines C' (an
immediate contradiction), or each vertex contained in p and ¢ is in U. But then w € U,
also a contradiction. Hence the minimum size of a u-w-cut must be at least k. Then
the directed arc-disjoint version of Menger’s theorem says that the maximum number of
arc-disjoint paths from u to w is at least k. O]

4 BEXERCISE 4

4.1 PROBLEM

Let G = (V, E) be a simple graph. Define a polynomial x¢ in a single indeterminate x
(with integer coefficients) by

g = Z (_1>|F|$conn(V,F).
FCFE

Nicholas Rancourt, * 4 *
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This polynomial is called the chromatic polynomial of G.
Fix k € N. A k-coloring of G means a map f:V — {1,2,...,k}. A k-coloring f
of G is said to be proper if each edge {u,v} of G satisfies f(u) # f(v). The number of

proper k-colorings of G is xg(k).

4.2 SOLUTION

Proof. This proof uses a general approach presented (though apparently not originally)
in H. Whitney, A Logical Expansion in Mathematics, Bulletin of the American Mathe-
matical Society, 1932, Vol.38.

Let |V] = n and let |E| = m. An edge {u,v} € E shall be called monochromatic
under a coloring f of G if f(u) = f(v), and dichromatic if f(u) # f(v). Furthermore,
a k-coloring f of G shall be called improper if it is not a proper k-coloring, i.e., if
there is any monochromatic edge. To count the number of proper k-colorings of G,
we can subtract the number of improper k-colorings from the total number of possible
k-colorings, k.

Enumerate the edges of G as ey, es,...,e,,. For each edge ¢;, let

T; = {k-coloring f | e; is monochromatic under coloring f of G}.

The total number of improper k-colorings is then given by

By the inclusion-exclusion principleﬂ can be expanded as

m

DTy T NT, 0. 0T (4)

i=1 1<1<g2<...<ji<m

The inner sum of this expression totals the number of k-colorings under which each
possible subset of i edges is monochromatic. Hence can be rewritten as

2:(—1)’”r1 Z |{k-coloring f of G | e is monochromatic Ve € F'}|. (5)
i=1 FCE,

|F|=i

Notice now that we can express the double sum as a single sum over all nonempty subsets
of E by rewriting the exponent i + 1 as |F| + 1:

Z (= D)FH | {k-coloring f of G| e is monochromatic Ve € F}|. (6)

FCE,
F£0

! This is explained in Section 15.9.4 of: Eric Lehman, F. Thomson Leighton, Albert R. Meyer, Mathe-
matics for Computer Science, revised 6th June 2018,
https://courses.csail.mit.edu/6.042/springl8/mcs.pdf|.
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Now, given a subset F' of E, consider the number of k-colorings for which each edge in F’
is monochromatic. I claim that there are precisely k°"*V-¥) such k-colorings. Suppose
two vertices v and v within a connected component of (V, F') have different colors under
a k-coloring f of G. Then for any path from u to v in (V| F'), there must be a last vertex z
along that path with f(z) = f(u). This last vertex x is not v (since f(v) # f(u)), and so
there must be a vertex y that follows = on this path. The edge {z,y} is then dichromatic,
and clearly {z,y} € F'; this contradicts the fact that each edge in F' is monochromatic.
Hence for any k-coloring f of G in which each edge in F' is monochromatic, all vertices
within a connected component of (V,F) must have the same color. Therefore, if a
k-coloring f of G has the property that each edge in F' is monochromatic, then each
connected component of (V) F') must be assigned exactly one color by this coloring (i.e.,
all vertices in this component must have the same color). Conversely, if we arbitrarily
assign a color to each connected component of (V) F), then we always obtain a k-coloring
f of G in which each edge in F' is monochromatic (since each edge in F' has both
endpoints within the same connected component of (V, F)). Hence, if we want to choose
a k-coloring f of G in which each edge in F' is monochromatic, we merely have to assign
a color to each connected component of (V, F'). Therefore, the number of k-colorings f
of G in which each edge in F is monochromatic is precisely k°™("¥) (since there are
k choices of color for each of the conn (V, F') connected components). Substituting this
expression in @, we now see that the total number of improper k-colorings is

Z (_1>|F|+1 kconn(V,F) ) (7)

FCE,
F£0
The number of proper k-colorings is then given by
k" — Z (_1)|F|+1kconn(V,F) = k" 4+ Z (_1)|F|kconn(V,F)' (8)
FCE, FCE,
F#0 F#0)

But when F' = (), each v € V becomes its own connected component in (V, F), so
conn (V, F') = n. We can thus incorporate the £ term into the sum in as below:

Z(_l)\F\kconn(V,F)7 (9)
FCE

giving xg(k) as the number of proper k-colorings of G. [

5 EXERCISE 5

5.1 PROBLEM

(a) For each n € N, prove that the complete graph K, has chromatic polynomial xg, =
z(z—1)...(x —n+1).

Nicholas Rancourt, * 6 *
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(b) Let T be a tree (regarded as a simple graph). Let n = |V (T')|. Prove that xr =
z(x —1)"!

(¢) Find the chromatic polynomial xp, of the path graph P;.

5.2 SOLUTION

Proof of part (a). Fix k € N. By the result of Exercise 4, the number g, (k) is equal
to the number of proper k-colorings of K,,. In the graph K, every vertex is adjacent
to every other, so each vertex must be a different color in a proper k-coloring. Hence
Xk, (k) = 0 for k < n (since there are not enough colors in this case). For k > n, this
becomes the familiar counting problem of sampling without replacement: there are k
possible colors that may be assigned to the first vertex, £ —1 colors that may be assigned
to the second vertex, ..., and £k —n+ 1 colors that may be assigned to the nth and final
vertex. Hence the total number of proper k-colorings of K, is k(k —1)...(k —n+1).
(Notice that this holds also for k& < n, since in this case there is a term (k — k) = 0 in
the product.)
Thus, we have shown that

xx, (k) =k(k—=1)---(k—n+1) for each k € N. (10)

But we want to prove that yx, = z(x—1)...(x—n+1). Obviously, this follows from (10])
using the following known factf] If P and Q are two polynomials in one indeterminate
x (with rational coefficients), and if we have P(k) = Q(k) for each k € N, then we have
P=0Q. 0

Proof of part (b). Proposition 19 from Lecture 9 tells us that |E (T)| = n — 1. Theorem
13, Statement T7 from Lecture 9 states that removing any edge from 7" will make it
disconnected. Note that the connected components resulting from the removal of an
edge will still be trees: we can create no cycles by removing edges from a cycle-free
graph, and the connected components are by definition connected. Hence, a sequence of
edge removals will create one new connected component for each edge removed.

Consider the graph (V (7)), F), where F' C E(T"). This can also be thought of as
the graph formed by removing the n — 1 — |F'| edges in E (T') \F. Thus this graph has
14 (n—1—|F|) = n — |F| connected components’] The expression for x7(x) can be
evaluated as

xr(e) = 37 (~1)Flam 0D — § (p)iFgn

FCE(T) FCE(T)
n—1 n—1 n—1
D ICIID SIS W] (i P
i=0 FCE(T), i=0
| F|=i

2This fact is a consequence of the basic fact that a polynomial with infinitely many roots must be 0.
3This also follows from Corollary 20 in Lecture 9, because this graph is a forest with |F| edges.

Nicholas Rancourt, * 7 *
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where the last equality follows because there are (", ') subsets F' C E(T) with |F| = i.
By factoring out an x, the sum becomes a binomial expansion, and the result follows
easily:

(o 8 (0 s e

i=0 i=0
O
Solution to part (c). Pj is a tree with n = 3. Applying the result of part (b), we get
xp,(2) = 2(z — 1) = z(z — 1)2
[

6 EXERCISE 6

6.1 PROBLEM

Let G be a tree. Let x, y, z, and w be four vertices of G. Then the two largest sums
among d(z,y) + d(z,w), d(x, z) + d(y,w), and d(z,w) + d(y, z) are equal.

6.2 SOLUTION

Proof. Since G is a tree, there is exactly one path connecting each pair of vertices. I
claim that the paths connecting x, y, z, and w must take the form in Figure 1, where
the line segments represent paths, and the set of vertices {1,2,3,4} = {z,y, z, w}.

Figure 1:

Note that the vertices need not all be distinct: if we regard this figure as a simple
graph, the vertices along any path may be equal, e.g. we could have 1 =a =0 =4, in
which case the situation becomes that shown on Figure 2.

To show that the paths must take the form of Figure 1, consider first any pair (call
them 1 and 2) of the vertices x, y, z, and w. We know there is a single path between
them:

Nicholas Rancourt, * 8
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Figure 2:

2 1=4 3
oo o
1 2
e o

Now consider a third vertex 3. Consider the shortest path from 3 to a point on the
path 1 — 2. Let a be the last vertex of this shortest path; thus, a is a vertex on the
path 1 — 2. The path from 3 to a has no vertex in common with the path 1 — 2 apart
from a (otherwise, it would not be the shortest path). We thus obtain the figure below
(note that a could be equal to any of 1, 2, or 3).

3

L

a

The paths 1 — a, 2 — a and 3 — a are disjoint except for the vertex a. (This follows
from the arguments above, including that the path from 3 to a has no vertex in common
with the path 1 — 2 apart from a.)

Next, consider a fourth vertex 4. Consider the shortest path from 4 to a point on
any of the paths 1 — a, 2 — a, and 3 — a. Let b be the last vertex of this shortest path;
thus, b is a vertex on one of these paths 1 — a, 2 — a, and 3 — a. Renumbering these
vertices so that b lies on the path 3 — a yields Figure 1. Note that b could be equal to
any of 1, 2, 3, 4, or a. The path from 4 to b has no vertex in common with any of the
paths 1 — a, 2 — a, and 3 — a apart from b (otherwise, it would not be the shortest
path). The paths 1 — a, 2 — a, a — b, 3 — b and 4 — b are disjoint except for the
vertices a and b. (Again, this follows from the arguments above — why?)

Now, the three sums of distances in the proposition represent all of the (;1) . % =3
distinct pairs of distances involving the vertices z, y, z, and w. Thus any renaming of
the vertices will not change the proposition. Take x =1, y = 2, 2 = 3, and w = 4.
Referencing Figure 1, we now have

d(z,y) + d(z,w) =d(1,2) +d(3,4) = d(1,a) + d(2,a) + d(3, d(4,b)

d(z, z) + d(y, w) =d(1,3) + d(2,4) = d(1,a) + d(a,b) + d(3,b) + d(2,a) + d(a,b) + d(4, D)

d(z,w) 4+ d(y, z) =d(1,4) +d(2,3) = d(1,a) + d(a,b) + d(4, (2,a) + d(a, (3,0)
=d(x,z) + d(y,w).

Since d(z, z) + d(y,w) > d(x,y) + d(z,w) and d(x,w) + d(y, z) > d(z,y) + d(z,w), the
proposition holds.
]

Nicholas Rancourt, * 9 *
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7 EXERCISE 7

7.1 PROBLEM

Let G = (V, E, ¢) be a multigraph.

For any subset U of V', we let G[U] denote the sub-multigraph (U, Ey, ¢ |g,) of G,
where Ey is the subset {e € E | ¢(e) C U} of E. (Thus G[U] is the sub-multigraph
obtained from G by removing all the vertices that don’t belong to U, and subsequently
removing all edges that don’t have both their endpoints in U). This sub-multigraph is
called the induced sub-multigraph of G on the subset U.

Let A, B, and C be three subsets of V' such that the sub-multigraphs G[4], G[B],
and G[C] are connected.

A cycle of G will be called eclectic if it contains at least one edge of G[A], at least
one edge of G[B], and at least one edge of G[C] (although these three edges are not
required to be distinct).

(a) If the sets BNC, CN A, and AN B are nonempty but AN BN C is empty, then G
has an eclectic cycle.

(b) If the subgraphs G[BNC|], G|C' N A], and G[AN B] are connected but the subgraph
G]AN BN C] is not connected, then G has an eclectic cycle.

7.2 SOLUTION TO PART (A)

Proof of part (a). Assume that BNC, C'N A, and AN B are nonempty but AN BNC
is empty. The condition that BN C, CN A, and AN B are nonempty means

JreVst.oreAando e B (11)
JyeVst.ye Bandy € C (12)
JdzeV st zeCand z € A (13)

Furthermore, since AN BN C is empty, x, y, and z must be distinct and we have

z ¢ C,

y ¢ A
z ¢ B.

Now, since each of the sub-multigraphs G[A], G|B], and G[C] are connected, we have a
path z — z in G[A], a path z — y in G[C], and a path y — z in G[B]. Joining these
paths in GG, we get a circuit. Unfortunately, this circuit need not be a cycle. There may
be non-distinct vertices along the circuit, but we can eliminate them (in rather tedious
fashion) while retaining the eclectic property.

Nicholas Rancourt, * 10 *
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If we ignore the edges for the moment and represent the circuit only by its vertices,
we may write it as

(ZIZ' = Qg = bk,al,...,ai,l,z =a; = C,C1y---,Cj—1,Yy = C4 :bo,bl,...,bk,hﬂf = bk :(lo).

(14)
E|All vertices in {x,aq,...,a; 1,2} are in A, and are distinct, since these vertices are
contained in a path in G[A]. Similarly, all vertices in {z,¢1,...,¢j_1,y} are in C' and

distinct, and all vertices in {y, b1, ...,bx_1, 2} are in B and distinct. But it could happen
that a,, = ¢, for some 1 <m < i and 1 <n < j. In this case, set m to be the smallest
number such that a,, = ¢, for some 1 < n < j. Otherwise, set m = i and n = 0. Now
form the new circuit with vertices

(T, a1, ..., Qm = Cny Cpt1, - - Cj—1, Y, b1, o, b1, @) (15)

and retaining the same edges between each consecutive pair of vertices as the original
circuit.

Now all vertices in {x,as,...,an = ¢y, Cpt1,-..,¢j—1,y} are distinct. However, it
could still happen that ¢, = b, for some n < p < j and 1 < ¢ < k. In this case, set p to
be the smallest number such that ¢, = b, for some 1 < ¢ < k. Otherwise set p = 7 and
g = 0. Now form the circuit with vertices

(T, a1, ..., Qm = Cny Cng1, - - - Cp = by, by, ..., b1, @) (16)

and again retaining the same edges between each consecutive pair of vertices as the
original circuit.

All vertices in {c¢p, ¢pt1, ..., = by, bgt1, ..., bg—1, 2} are now distinct. However, it
could still happen that b, = as for some ¢ <r <k —1and 1 < s < m. In this case, set
r to be the smallest number such that b, = a, for some 1 < s < m. Otherwise set r = &
and s = 0. Now form the circuit with vertices

(by = A5, 51, - -y Qi = Cny Cp1, - - - Cp = by, bgy1, .., by = @) (17)

and yet again retaining the same edges between each consecutive pair of vertices as
the original circuit. All vertices in this circuit are distinct, so it is a cycle. We have
within this cycle the edges e,, ey, and e, with ¢(e,) = {as, as11}, d(ep) = {bg, bg+1}, and
¢lec) = {cn,cas1} [ which are in the graphs G[A], G[B], and G[C] respectively. Thus
it is an eclectic cycle. O

4Note that any of 7, j, and k may be 1, i.e., the path from 2 to z could consist of just = and z, and
similarly for the paths z — y and y — .

®Indeed, if one of these edges were missing — say, e, —, then we would have s = m, thus b, = a, =
G = Cp; but this would imply that the vertex b, = as = a,, = ¢, lies in each of the sets A, B and
C, contradicting ANBNC = @.

Nicholas Rancourt, * 11 *
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