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1 Exercise 1

1.1 Problem

Let G = (V,E) be a simple graph such that |E| ≥ |V |. Then there exists an injective
map f : V → E such that each v ∈ V satisfies v /∈ f(v).

1.2 Solution

Proof. Let n = |V |. Note first that since |E| ≥ |V |, n can be neither 1 nor 2. Define a
bipartite graph (H;V,E), where H is the simple graph with vertex set V (H) = E ∪ V
and edge set E (H) = {{v, e} | e ∈ E, v ∈ V \e}. (We WLOG assume that E ∩ V = ∅.)
Thus, the edges in H connect each vertex v of G to the edges of G that do not contain
v.

A V -complete matchingM inH would consist of a subset of the edges {v ∈ V, e ∈ E}
of H connecting each v ∈ V to a distinct e ∈ E. Because of the definition of E (H),
each {v, e} ∈ M satisfies v /∈ e. Hence, if such a V -complete matching M exists, then
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the map f : V → E defined by

f(v) = e ∀ {v, e} ∈M (1)

would satisfy v /∈ f(v) for all v ∈ V . It would also be injective, by the definition of a
matching. It suffices then to show that a V -complete matching exists for (H;V,E).

Hall’s marriage theorem tells us that a V -complete matching exists in (H;V,E) if
and only if each P ⊆ V satisfies |NH(P )| ≥ |P |, where NH(P ) is the set of all vertices
that have a neighbor in P in the graph H. In other words, a V -complete matching exists
in (H;V,E) if and only if for each subset of k vertices of G (0 ≤ k ≤ n), there are at
least k edges of G that do not contain any of those vertices. Pick an arbitrary P ⊆ V ,
and consider four cases:

(1) |P | = 0: In this case it is trivially true that |NH(P )| ≥ |P |.

(2) |P | = 1: In this case, let v be the single element of P . Since G is a simple graph,
we know deg v ≤ n− 1. But |E| ≥ n, so there must be at least one e ∈ E such that
v /∈ e. Hence, |NH(P )| ≥ 1 = |P |.

(3) |P | = 2: In this case, let u and v be the two elements of P . There is only one
possible e ∈ E such that e /∈ NH(P ), namely {u, v}. Hence |NH(P )| ≥ |E| − 1. As
noted above, n cannot be 2, so n ≥ 3 (since V contains at least u and v). Then we
have the following:

|E| ≥n ≥ 3

=⇒ |NH(P )| ≥ |E| − 1 ≥ 2

=⇒ |NH(P )| ≥ |P | .

(4) |P | ≥ 3: In this case, for every e ∈ E, e contains at most two of the elements of
P . Hence there is at least one element in P that is not in e, so e ∈ NH(P ). Thus
NH(P ) = E, so that |NH(P )| = |E|. Since |E| ≥ |V | ≥ |P | (because P ⊆ V ), it
follows that |NH(P )| ≥ |P |.

In each case, |NH(P )| ≥ |P |, so Hall’s marriage theorem says there is a V -complete
matching M . Thus the map as defined in (1) using this matching M satisfies the
proposition.

2 Exercise 2

2.1 Problem

Let G = (V,E) be a connected simple graph such that |E| ≥ |V |. Then there exists an
injective map f : V → E such that each v ∈ V satisfies v ∈ f(v).
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2.2 Solution

Proof. This proof follows an argument similar to Exercise 1, with a minor modification
to the definition of the bipartite graph (H;V,E).

Let n = |V |. Note first that since |E| ≥ |V |, n can be neither 1 nor 2. Define a
bipartite graph (H;V,E), where H is the simple graph with vertex set V (H) = E ∪ V
and edge set E (H) = {{v, e} | e ∈ E, v ∈ e}. (Again, we assume E ∩ V = ∅.) Thus,
the edges in H connect each vertex v of G to the edges of G that contain v.

A V -complete matchingM inH would consist of a subset of the edges {v ∈ V, e ∈ E}
of H connecting each v ∈ V to a distinct e ∈ E. Because of the definition of E (H),
each {v, e} ∈M satisfies v ∈ e. Hence, if such a V -complete matching M exists, a map
f : V → E defined by

f(v) = e ∀ {v, e} ∈M (2)

would satisfy v ∈ f(v) for all v ∈ V . It would also be injective, by the definition of a
matching. It suffices then to show that a V -complete matching exists in (H;V,E).

As in Exercise 1, Hall’s marriage theorem tells us that a V -complete matching in
(H;V,E) exists if and only if each P ⊆ V satisfies |NH(P )| ≥ |P |. In this case, this
means that for each subset of k vertices of G (0 ≤ k ≤ n), there are at least k edges
of G that contain one of these k vertices. Pick an arbitrary P ⊆ V , and consider three
cases:

(1) |P | = 0: In this case it is trivially true that |NH(P )| ≥ |P |.

(2) 0 < |P | < n: In this case, consider the connected components of the graph G |P ,
i.e. the graph with vertex set P and edge set {e ∈ E | e ⊆ P}. Let Q be one of
the connected components. Since G is connected, there must be an e ∈ E with one
endpoint in Q and the other in V \P (otherwise, Q would be a connected component
of G as well, so that Q = V , but that would contradict |Q| ≤ |P | < n = |V |).
This edge is in NH(P ). Furthermore, there must be at least |Q| − 1 edges with
both endpoints in Q, or Q would not be connected. These |Q| − 1 edges are also in
NH(P ). Hence each connected componentQ ofG |P contributes at least |Q| elements
to NH(P ). Furthermore, none of the above-mentioned |Q| edges contributed by a
connected component Q can contain a vertex in any other connected component
of G |P , so the edges contributed by each connected component are distinct. Thus
|NH(P )| ≥ |P |.

(3) |P | = n: In this case, P = V , so NH(P ) contains all the edges in E, i.e., NH(P ) = E.
Since |E| ≥ |V |, it follows that |NH(P )| ≥ |P |.

In each case, |NH(P )| ≥ |P |, so Hall’s marriage theorem says there is a V -complete
matching M . Therefore the map as defined in (2) using this matching M satisfies the
proposition.
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3 Exercise 3

3.1 Problem

Let D = (V,A) be a digraph. Let k ∈ N. Let u, v, and w be three vertices of D. Assume
that there exist k arc-disjoint paths from u to v. Assume furthermore that there exist k
arc-disjoint paths from v to w. Then there exist k arc-disjoint paths from u to w.

3.2 Solution

Proof. WLOG assume that u 6= v and v 6= w (otherwise, the exercise is quite trivial).
Also, WLOG assume that u 6= w (since otherwise, the k trivial paths (u), (u), . . . , (u)
are arc-disjoint and thus the exercise is trivial).

Theorem 0.3 from HW4 (Menger’s theorem, directed arc-disjoint version) states that
for two distinct vertices s and t ofD, the minimum size of an s-t-cut equals the maximum
number of arc-disjoint paths from s to t, where an s-t-cut is a subset C of A with the
form

C = {a ∈ A | the source of a belongs to U , but the target of a does not}
for a subset U of V satisfying s ∈ U and t /∈ U . The maximum number of arc-disjoint
paths from u to v is at least k, as is the maximum number of arc-disjoint paths from v
to w. Hence, the minimum size of a u-v-cut is at least k, as is the minimum size of a
v-w-cut.

Suppose there is a u-w-cut C of size < k. Then C has an arc from at most k − 1
of the k arc-disjoint paths from u to v, and has an arc from at most k − 1 of the k
arc-disjoint paths from v to w. Thus there is at least one path ρ from u to v and at
least one path σ from v to w such that none of the arcs contained in ρ and σ belong to
C. By the definition of a u-w-cut then, either u is not in the set U that defines C (an
immediate contradiction), or each vertex contained in ρ and σ is in U . But then w ∈ U ,
also a contradiction. Hence the minimum size of a u-w-cut must be at least k. Then
the directed arc-disjoint version of Menger’s theorem says that the maximum number of
arc-disjoint paths from u to w is at least k.

4 Exercise 4

4.1 Problem

Let G = (V,E) be a simple graph. Define a polynomial χG in a single indeterminate x
(with integer coefficients) by

χG =
∑
F⊆E

(−1)|F |xconn(V,F ).
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This polynomial is called the chromatic polynomial of G.
Fix k ∈ N. A k-coloring of G means a map f : V → {1, 2, . . . , k}. A k-coloring f

of G is said to be proper if each edge {u, v} of G satisfies f(u) 6= f(v). The number of
proper k-colorings of G is χG(k).

4.2 Solution

Proof. This proof uses a general approach presented (though apparently not originally)
in H. Whitney, A Logical Expansion in Mathematics, Bulletin of the American Mathe-
matical Society, 1932, Vol.38.

Let |V | = n and let |E| = m. An edge {u, v} ∈ E shall be called monochromatic
under a coloring f of G if f(u) = f(v), and dichromatic if f(u) 6= f(v). Furthermore,
a k-coloring f of G shall be called improper if it is not a proper k-coloring, i.e., if
there is any monochromatic edge. To count the number of proper k-colorings of G,
we can subtract the number of improper k-colorings from the total number of possible
k-colorings, kn.

Enumerate the edges of G as e1, e2, . . . , em. For each edge ei, let

Ti = {k-coloring f | ei is monochromatic under coloring f of G}.

The total number of improper k-colorings is then given by∣∣∣∣∣
m⋃
i=1

Ti

∣∣∣∣∣ . (3)

By the inclusion-exclusion principle1, (3) can be expanded as
m∑
i=1

(−1)i+1
∑

1≤j1<j2<...<ji≤m

|Tj1 ∩ Tj2 ∩ . . . ∩ Tji | . (4)

The inner sum of this expression totals the number of k-colorings under which each
possible subset of i edges is monochromatic. Hence (4) can be rewritten as

m∑
i=1

(−1)i+1
∑
F⊆E,
|F |=i

|{k-coloring f of G | e is monochromatic ∀e ∈ F}| . (5)

Notice now that we can express the double sum as a single sum over all nonempty subsets
of E by rewriting the exponent i+ 1 as |F |+ 1:∑

F⊆E,
F 6=∅

(−1)|F |+1 |{k-coloring f of G | e is monochromatic ∀e ∈ F}| . (6)

1This is explained in Section 15.9.4 of: Eric Lehman, F. Thomson Leighton, Albert R. Meyer, Mathe-
matics for Computer Science, revised 6th June 2018,
https://courses.csail.mit.edu/6.042/spring18/mcs.pdf .
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Now, given a subset F of E, consider the number of k-colorings for which each edge in F
is monochromatic. I claim that there are precisely kconn(V,F ) such k-colorings. Suppose
two vertices u and v within a connected component of (V, F ) have different colors under
a k-coloring f of G. Then for any path from u to v in (V, F ), there must be a last vertex x
along that path with f(x) = f(u). This last vertex x is not v (since f(v) 6= f(u)), and so
there must be a vertex y that follows x on this path. The edge {x, y} is then dichromatic,
and clearly {x, y} ∈ F ; this contradicts the fact that each edge in F is monochromatic.
Hence for any k-coloring f of G in which each edge in F is monochromatic, all vertices
within a connected component of (V, F ) must have the same color. Therefore, if a
k-coloring f of G has the property that each edge in F is monochromatic, then each
connected component of (V, F ) must be assigned exactly one color by this coloring (i.e.,
all vertices in this component must have the same color). Conversely, if we arbitrarily
assign a color to each connected component of (V, F ), then we always obtain a k-coloring
f of G in which each edge in F is monochromatic (since each edge in F has both
endpoints within the same connected component of (V, F )). Hence, if we want to choose
a k-coloring f of G in which each edge in F is monochromatic, we merely have to assign
a color to each connected component of (V, F ). Therefore, the number of k-colorings f
of G in which each edge in F is monochromatic is precisely kconn(V,F ) (since there are
k choices of color for each of the conn (V, F ) connected components). Substituting this
expression in (6), we now see that the total number of improper k-colorings is∑

F⊆E,
F 6=∅

(−1)|F |+1kconn(V,F ). (7)

The number of proper k-colorings is then given by

kn −
∑
F⊆E,
F 6=∅

(−1)|F |+1kconn(V,F ) = kn +
∑
F⊆E,
F 6=∅

(−1)|F |kconn(V,F ). (8)

But when F = ∅, each v ∈ V becomes its own connected component in (V, F ), so
conn (V, F ) = n. We can thus incorporate the kn term into the sum in (8) as below:∑

F⊆E

(−1)|F |kconn(V,F ), (9)

giving χG(k) as the number of proper k-colorings of G.

5 Exercise 5

5.1 Problem

(a) For each n ∈ N, prove that the complete graph Kn has chromatic polynomial χKn =
x(x− 1) . . . (x− n+ 1).

Nicholas Rancourt, * 6 *
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(b) Let T be a tree (regarded as a simple graph). Let n = |V (T )|. Prove that χT =
x(x− 1)n−1.

(c) Find the chromatic polynomial χP3 of the path graph P3.

5.2 Solution

Proof of part (a). Fix k ∈ N. By the result of Exercise 4, the number χKn(k) is equal
to the number of proper k-colorings of Kn. In the graph Kn, every vertex is adjacent
to every other, so each vertex must be a different color in a proper k-coloring. Hence
χKn(k) = 0 for k < n (since there are not enough colors in this case). For k ≥ n, this
becomes the familiar counting problem of sampling without replacement: there are k
possible colors that may be assigned to the first vertex, k−1 colors that may be assigned
to the second vertex, . . . , and k−n+1 colors that may be assigned to the nth and final
vertex. Hence the total number of proper k-colorings of Kn is k(k − 1) . . . (k − n + 1).
(Notice that this holds also for k < n, since in this case there is a term (k − k) = 0 in
the product.)

Thus, we have shown that

χKn(k) = k(k − 1) · · · (k − n+ 1) for each k ∈ N. (10)

But we want to prove that χKn = x(x−1) . . . (x−n+1). Obviously, this follows from (10)
using the following known fact:2 If P and Q are two polynomials in one indeterminate
x (with rational coefficients), and if we have P (k) = Q(k) for each k ∈ N, then we have
P = Q.

Proof of part (b). Proposition 19 from Lecture 9 tells us that |E (T )| = n− 1. Theorem
13, Statement T7 from Lecture 9 states that removing any edge from T will make it
disconnected. Note that the connected components resulting from the removal of an
edge will still be trees: we can create no cycles by removing edges from a cycle-free
graph, and the connected components are by definition connected. Hence, a sequence of
edge removals will create one new connected component for each edge removed.

Consider the graph (V (T ) , F ), where F ⊆ E (T ). This can also be thought of as
the graph formed by removing the n − 1 − |F | edges in E (T ) \F . Thus this graph has
1 + (n − 1 − |F |) = n − |F | connected components3. The expression for χT (x) can be
evaluated as

χT (x) =
∑

F⊆E(T )

(−1)|F |xconn(V(T ),F ) =
∑

F⊆E(T )

(−1)|F |xn−|F |

=
n−1∑
i=0

(−1)i
∑

F⊆E(T ),
|F |=i

xn−i =
n−1∑
i=0

(−1)i
(
n− 1

i

)
xn−i,

2This fact is a consequence of the basic fact that a polynomial with infinitely many roots must be 0.
3This also follows from Corollary 20 in Lecture 9, because this graph is a forest with |F | edges.
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where the last equality follows because there are
(
n−1
i

)
subsets F ⊆ E (T ) with |F | = i.

By factoring out an x, the sum becomes a binomial expansion, and the result follows
easily:

n−1∑
i=0

(−1)i
(
n− 1

i

)
xn−i = x

n−1∑
i=0

(
n− 1

i

)
(−1)ix(n−1)−i = x(x− 1)n−1.

Solution to part (c). P3 is a tree with n = 3. Applying the result of part (b), we get

χP3(x) = x(x− 1)3−1 = x(x− 1)2.

6 Exercise 6

6.1 Problem

Let G be a tree. Let x, y, z, and w be four vertices of G. Then the two largest sums
among d(x, y) + d(z, w), d(x, z) + d(y, w), and d(x,w) + d(y, z) are equal.

6.2 Solution

Proof. Since G is a tree, there is exactly one path connecting each pair of vertices. I
claim that the paths connecting x, y, z, and w must take the form in Figure 1, where
the line segments represent paths, and the set of vertices {1, 2, 3, 4} = {x, y, z, w}.

Figure 1:

Note that the vertices need not all be distinct: if we regard this figure as a simple
graph, the vertices along any path may be equal, e.g. we could have 1 = a = b = 4, in
which case the situation becomes that shown on Figure 2.

To show that the paths must take the form of Figure 1, consider first any pair (call
them 1 and 2) of the vertices x, y, z, and w. We know there is a single path between
them:

Nicholas Rancourt, * 8 *
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Figure 2:

Now consider a third vertex 3. Consider the shortest path from 3 to a point on the
path 1 → 2. Let a be the last vertex of this shortest path; thus, a is a vertex on the
path 1→ 2. The path from 3 to a has no vertex in common with the path 1→ 2 apart
from a (otherwise, it would not be the shortest path). We thus obtain the figure below
(note that a could be equal to any of 1, 2, or 3).

The paths 1 → a, 2 → a and 3 → a are disjoint except for the vertex a. (This follows
from the arguments above, including that the path from 3 to a has no vertex in common
with the path 1→ 2 apart from a.)

Next, consider a fourth vertex 4. Consider the shortest path from 4 to a point on
any of the paths 1→ a, 2→ a, and 3→ a. Let b be the last vertex of this shortest path;
thus, b is a vertex on one of these paths 1→ a, 2→ a, and 3→ a. Renumbering these
vertices so that b lies on the path 3→ a yields Figure 1. Note that b could be equal to
any of 1, 2, 3, 4, or a. The path from 4 to b has no vertex in common with any of the
paths 1 → a, 2 → a, and 3 → a apart from b (otherwise, it would not be the shortest
path). The paths 1 → a, 2 → a, a → b, 3 → b and 4 → b are disjoint except for the
vertices a and b. (Again, this follows from the arguments above – why?)

Now, the three sums of distances in the proposition represent all of the
(
4
2

)
· 1
2
= 3

distinct pairs of distances involving the vertices x, y, z, and w. Thus any renaming of
the vertices will not change the proposition. Take x = 1, y = 2, z = 3, and w = 4.
Referencing Figure 1, we now have

d(x, y) + d(z, w) =d(1, 2) + d(3, 4) = d(1, a) + d(2, a) + d(3, b) + d(4, b)

d(x, z) + d(y, w) =d(1, 3) + d(2, 4) = d(1, a) + d(a, b) + d(3, b) + d(2, a) + d(a, b) + d(4, b)

d(x,w) + d(y, z) =d(1, 4) + d(2, 3) = d(1, a) + d(a, b) + d(4, b) + d(2, a) + d(a, b) + d(3, b)

=d(x, z) + d(y, w).

Since d(x, z) + d(y, w) ≥ d(x, y) + d(z, w) and d(x,w) + d(y, z) ≥ d(x, y) + d(z, w), the
proposition holds.
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7 Exercise 7

7.1 Problem

Let G = (V,E, φ) be a multigraph.
For any subset U of V , we let G[U ] denote the sub-multigraph (U,EU , φ |EU

) of G,
where EU is the subset {e ∈ E | φ(e) ⊆ U} of E. (Thus G[U ] is the sub-multigraph
obtained from G by removing all the vertices that don’t belong to U , and subsequently
removing all edges that don’t have both their endpoints in U). This sub-multigraph is
called the induced sub-multigraph of G on the subset U.

Let A, B, and C be three subsets of V such that the sub-multigraphs G[A], G[B],
and G[C] are connected.

A cycle of G will be called eclectic if it contains at least one edge of G[A], at least
one edge of G[B], and at least one edge of G[C] (although these three edges are not
required to be distinct).

(a) If the sets B ∩C, C ∩A, and A ∩B are nonempty but A ∩B ∩C is empty, then G
has an eclectic cycle.

(b) If the subgraphs G[B ∩C], G[C ∩A], and G[A∩B] are connected but the subgraph
G[A ∩B ∩ C] is not connected, then G has an eclectic cycle.

7.2 Solution to part (a)

Proof of part (a). Assume that B ∩C, C ∩A, and A ∩B are nonempty but A ∩B ∩C
is empty. The condition that B ∩ C, C ∩ A, and A ∩B are nonempty means

∃x ∈ V s.t. x ∈ A and x ∈ B (11)
∃y ∈ V s.t. y ∈ B and y ∈ C (12)
∃z ∈ V s.t. z ∈ C and z ∈ A. (13)

Furthermore, since A ∩B ∩ C is empty, x, y, and z must be distinct and we have

x /∈ C,
y /∈ A,
z /∈ B.

Now, since each of the sub-multigraphs G[A], G[B], and G[C] are connected, we have a
path x → z in G[A], a path z → y in G[C], and a path y → x in G[B]. Joining these
paths in G, we get a circuit. Unfortunately, this circuit need not be a cycle. There may
be non-distinct vertices along the circuit, but we can eliminate them (in rather tedious
fashion) while retaining the eclectic property.

Nicholas Rancourt, * 10 *
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If we ignore the edges for the moment and represent the circuit only by its vertices,
we may write it as

(x = a0 = bk, a1, . . . , ai−1, z = ai = c0, c1, . . . , cj−1, y = cj = b0, b1, . . . , bk−1, x = bk = a0) .
(14)

4 All vertices in {x, a1, . . . , ai−1, z} are in A, and are distinct, since these vertices are
contained in a path in G[A]. Similarly, all vertices in {z, c1, . . . , cj−1, y} are in C and
distinct, and all vertices in {y, b1, . . . , bk−1, x} are in B and distinct. But it could happen
that am = cn for some 1 ≤ m < i and 1 ≤ n < j. In this case, set m to be the smallest
number such that am = cn for some 1 ≤ n < j. Otherwise, set m = i and n = 0. Now
form the new circuit with vertices

(x, a1, . . . , am = cn, cn+1, . . . , cj−1, y, b1, . . . , bk−1, x) (15)

and retaining the same edges between each consecutive pair of vertices as the original
circuit.

Now all vertices in {x, a1, . . . , am = cn, cn+1, . . . , cj−1, y} are distinct. However, it
could still happen that cp = bq for some n < p < j and 1 ≤ q < k. In this case, set p to
be the smallest number such that cp = bq for some 1 ≤ q < k. Otherwise set p = j and
q = 0. Now form the circuit with vertices

(x, a1, . . . , am = cn, cn+1, . . . , cp = bq, bq+1, . . . , bk−1, x) (16)

and again retaining the same edges between each consecutive pair of vertices as the
original circuit.

All vertices in {cn, cn+1, . . . , cp = bq, bq+1, . . . , bk−1, x} are now distinct. However, it
could still happen that br = as for some q < r ≤ k − 1 and 1 ≤ s < m. In this case, set
r to be the smallest number such that br = as for some 1 ≤ s < m. Otherwise set r = k
and s = 0. Now form the circuit with vertices

(br = as, as+1, . . . , am = cn, cn+1, . . . , cp = bq, bq+1, . . . , br = as) (17)

and yet again retaining the same edges between each consecutive pair of vertices as
the original circuit. All vertices in this circuit are distinct, so it is a cycle. We have
within this cycle the edges ea, eb, and ec with φ(ea) = {as, as+1}, φ(eb) = {bq, bq+1}, and
φ(ec) = {cn, cn+1} 5, which are in the graphs G[A], G[B], and G[C] respectively. Thus
it is an eclectic cycle.

4Note that any of i, j, and k may be 1, i.e., the path from x to z could consist of just x and z, and
similarly for the paths z → y and y → x.

5Indeed, if one of these edges were missing – say, ea –, then we would have s = m, thus br = as =
am = cn; but this would imply that the vertex br = as = am = cn lies in each of the sets A, B and
C, contradicting A ∩B ∩ C = ∅.

Nicholas Rancourt, * 11 *
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