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1. Let G = (V,E) be a simple graph such that |E| ≥ |V |. Then there exists an injective map
f : V → E such that each v ∈ V satisfies v /∈ f(v).

Proof. Let n = |V |, and assume without loss of generality that |E| = n (else we could
remove edges from G until |E| = n and apply the argument). Also assume WLOG that
V ∩ E = ∅ (else, we can rename the vertices). Note that we must have n ≥ 3, since a
simple graph with 2 or fewer vertices can have at most 1 edge. Now we seek a bijection
f : V → E with each v ∈ V satisfying v /∈ f(v). Construct a bipartite graph (G̃;V,E),
where v ∈ V is adjacent to e ∈ E if and only if v /∈ e. We seek a perfect matching, or simply
an E-complete matching of G̃. First we note that since each e ∈ E has exactly 2 endpoints
in G, it has exactly two elements of V which are not neighbors of e in G̃. That is, for each
e ∈ E, we have degG̃(e) = n−2. In other words, |N({e})| = n−2 ≥ 1, since n ≥ 3. Thus,
we have the Hall condition satisfied for subsets of E of size 1. Furthermore, we have that
any nonempty subset P of E satisfies |N(P )| ≥ n− 2 and thus we have verified the Hall
condition for all subsets of E with size ≤ n− 2. It remains to verify the Hall condition for
subsets P of E with |P | = n− 1 and |P | = n. If |P | = n, then P = E, and we claim that
N(P ) = V . Indeed, assume the contrary. Then there exists v ∈ V such that v is isolated

in G̃. By definition of G̃, this means that v is an endpoint of every edge in G. Since G is
simple, each edge in G must have a unique second endpoint. We have n edges, but only
at most n− 1 of these unique endpoints and by the Pigeonhole Principle we’ve reached a
contradiction. Thus, N(E) = V , and we have |N(E)| = |V | = |E|. Now let e ∈ E, and
consider P = E \ {e}. Then |P | = n − 1. Suppose that |N(P )| ≤ n − 2. This means
that we have two vertices incident with all edges in P . But |P | = n− 1 ≥ 3− 1 = 2, and
thus we have two vertices that must be simultaneously incident with two distinct edges.
This can only be achieved if we allow parallel edges, but G is simple, so this cannot be
the case. Thus we can conclude |N(P )| > n− 2, so that |N(P )| ≥ n− 1 = |P |.
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2. Let G = (V,E) be a connected simple graph such that |E| ≥ |V |. Then there exists an
injective map f : V → E such that each v ∈ V satisfies v ∈ f(v).

Proof. We shall describe a method to construct such a map. Since G is connected, consider
a spanning tree T = (V, F ) of G, where F ⊂ E. First, for each leaf ` of T , define f(`)
to be its unique incident edge in T . Now, consider T with all leaves (and incident edges)
removed. This new graph is T ′, and we can define f(`) for each leaf ` of T ′ to be its unique
incident edge in T ′. Note that if ` is a leaf in T , and `′ is a leaf in T ′, we cannot have
f(`) = f(`′) since all edges incident to leaves of T were removed in the construction of
T ′. We continue this process of pruning leaves and assigning edges until we are left with
either one vertex (if T has one center) or two vertices connected by an edge (if T has two
centers). If we have two vertices connected by an edge, choose one of them arbitrarily and
assign to it the remaining edge of T . Now in either case we have one vertex remaining,
call it c, and all other vertices v have been assigned a unique edge f(v) satisfying the
property that v ∈ f(v). Now we must assign an edge to c. If c is incident with an edge
in E \ F , then we can assign c to this edge in the mapping f and we are done. Assume
that there does not exist e ∈ E \ F such that c is incident with e. Then, there exists
v ∈ V \ {c} such that v is incident with an edge in E \ F . Denote this edge by e. Indeed,
since T is a spanning tree, it has |V | − 1 edges, but by assumption G satisfies |E| ≥ |V |
and consequently E \F 6= ∅. We can now change the mapping f such that f(v) = e. If c
is adjacent to v, then we can assign the edge {c, v} to c in the mapping f and we are done.
If c is not adjacent to v, then consider the neighbor w of v that is closest to c in T . Since
v is further from c, it was pruned earlier than w and thus the edge {w, v} was assigned
to v. Now, since f(v) = e 6= {w, v}, we can assign {w, v} to w. Then, we can look at the
neighbor u of w that is closest to c in T . Again we see that {u,w} was originally assigned
to w, but now it is free and can be assigned to u. We continue this process until u = c,
and we have assigned to c an edge incident with it.

3. Let D = (V,A) be a digraph. Let k ∈ N. Let u,v, and w be three vertices of D. Assume
there exist k arc-disjoint paths from u to v. Assume furthermore that there exist k arc-
disjoint paths from v to w. Then, there exist k arc-disjoint paths from u to w.

4. Let G = (V,E) be a simple graph. Define a polynomial χG in a single indeterminate x
with integer coefficients by

χG =
∑
F⊆E

(−1)|F |xconn(V,F )

Fix k ∈ N. Then, the number of proper k-colorings of G is χG(k).
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Proof. Let n = |V |, m = |E|. If we wish to count the number of proper k-colorings of
G, we can count the total number of k-colorings of G and subtract off the number of
“improper” k-colorings of G (i.e. those that fail to be proper). We can characterize an
improper k-coloring of G to be one in which there exists e ∈ E such that both endpoints
of e are assigned to the same color. Create a listing e1, ..., em of all of the edges in G.
Now, for each i ∈ {1, ...,m}, define the set Ai by

Ai = {f ∈ {1, ..., k}V | f(u) = f(v), where ei = {u, v}}

In other words, Ai denotes the set of all k-colorings of G where the endpoints of ei share
the same color. Then, we see that the number N of proper k-colorings of G is given by

N = #{all k-colorings of G} −#{improper k-colorings of G}

= |{1, ..., k}V | −
∣∣∣∣ m⋃
i=1

Ai

∣∣∣∣
= kn −

∣∣∣∣ m⋃
i=1

Ai

∣∣∣∣ (1)

By inclusion-exclusion, we have∣∣∣∣ m⋃
i=1

Ai

∣∣∣∣ =
m∑
i=1

|Ai| −
∑

1≤i<j≤m

(|Ai ∩ Aj|) + ...+ (−1)m−1|A1 ∩ ... ∩ Am| (2)

Let us consider one such intersection of Ai’s. More precisely, consider F = {ei1 , ..., ei`},
an `-element subset of E, where 1 ≤ ` ≤ m. Then,

Ai1 ∩ ... ∩ Ai`

represents the set of all k-colorings of G in which the endpoints of each edge of F share
the same color. Thus, we can assign a color to each connected component of (V, F )
independently, but we’d like all vertices of one connected component to share a color
(since they will be connected by edges of F ). It follows that

|Ai1 ∩ ... ∩ Ai` | = kconn(V,F )
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Then, (2) becomes∣∣∣∣ m⋃
i=1

Ai

∣∣∣∣ =
∑
F⊆E,
|F |=1

kconn(V,F ) −
∑
F⊆E,
|F |=2

kconn(V,F ) + ...+ (−1)m−1kconn(V,E)

= (−1)1−1
∑
F⊆E,
|F |=1

xconn(V,F ) + (−1)2−1
∑
F⊆E,
|F |=2

kconn(V,F ) + ...+ (−1)m−1kconn(V,E)

=
∑
F⊆E
F 6=∅

(−1)|F |−1kconn(V,F )

We also note that kn = kconn(V,∅), since the graph (V,∅) consists of n isolated vertices.
Then, (1) becomes

N = kconn(V,∅) −
∑
F⊆E
F 6=∅

(−1)|F |−1kconn(V,F )

= (−1)|∅|kconn(V,∅) +
∑
F⊆E
F 6=∅

(−1)|F |kconn(V,F )

=
∑
F⊆E

(−1)|F |kconn(V, F )

= χG(k)

5. (a) For each n ∈ N, the complete graph Kn has chromatic polynomial

χKn = x(x− 1)...(x− n+ 1).

Proof. Let n ∈ N. By 4, we have that the number of proper k-colorings of any graph
G is χG(k), and thus we shall show that for each k, we have that the number of
proper k-colorings of Kn is given by k(k− 1)....(k− n+ 1). Let k ∈ N. If we wish to
color Kn properly, each vertex must have a different color, since every pair of vertices
in Kn is adjacent. As a result we must have k ≥ n, so assume this is the case. We
can color vertices sequentially, so we create a listing v1, ..., vn of the vertices of Kn

and color them in this order. Then we have k choices with which to color v1. Since
v2 is adjacent to v1, we have k − 1 choices with which to color v2 since it cannot
share its color with v1. Each time we color a new vertex, we have one less choice for
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which color we use than for the previous vertex. Once properly colored, there will
be k − n unused colors, and so the number of choices with which to color vn will be
k − n + 1. Thus, after coloring all n vertices, we have that the number of ways to
properly k-color Kn is

k(k − 1)...(k − n+ 1).

So we have shown that χKn(k) = k(k−1)...(k−n+1) for all integers k ≥ n. Therefore,
the two polynomials χKn and x(x−1)...(x−n+1) have the same value whenever x is
set to be an integer ≥ k. In other words, the polynomial χKn −x(x− 1)...(x−n+ 1)
vanishes whenever x is set to be an integer ≥ k. Thus, this polynomial has infinitely
many zeroes (viz., all integers ≥ k). Since the only polynomial with infinitely many
zeroes is the zero polynomial, we therefore obtain that χKn − x(x− 1)...(x− n+ 1)
is the zero polynomial. This solves part (a).

(b) Let T be a tree. Let n = |V (T )|. Then

χT = x(x− 1)n−1.

Proof. Again we will show that T has k(k− 1)n−1 proper k-colorings for each k ∈ N.
Fix k ∈ N, and we will induct on n. For the base case, consider n = 1. Then the
tree consisting of a single vertex has k = k(k−1)1−1 proper k-colorings, since we can
choose any of the k colors to assign to the unique vertex. Now assume that all trees
on n− 1 vertices (where n ≥ 2) have k(k − 1)n−2 proper k-colorings. Consider T on
n vertices. Choose a leaf ` ∈ V (T ) (assuming n ≥ 2), and remove it along with its
incident edge to create a new tree T ′ on n− 1 vertices. By our inductive hypothesis,
T ′ can have k(k − 1)n−2 proper k-colorings. Now, if we reconstruct T from T ′ and
properly k-color the vertices of T ′, we have k − 1 ways in which to color `, since it
only has one neighbor. Thus, the number of ways to properly k-color T on n vertices
is

k(k − 1)n−2(k − 1) = k(k − 1)n−1.

From here, we proceed as in (a) to prove the polynomial identity χT = x(x−1)n−1.

(c) The chromatic polynomial of the path graph P3 is

χP3 = x3 − 2x2 + x

Proof. Let V = V (P3), E = E(P3), and a, b be the two edges of E (that is, E =
{a, b}). Then, by definition of the chromatic polynomial, we have

χP3 = (−1)|∅|xconn(V,∅) + (−1)|{a}|xconn(V,{a}) + (−1)|{b}|xconn(V,E{b}) + (−1)|E|xconn(V,E)

(1)

5



Since P3 has 3 vertices, we have that

conn(V,∅) = 3.

When we remove 1 edge from E, we are left with an isolated vertex and a path of
length 1. In other words,

conn(V,E{a}) = conn(V,E{b}) = 2.

Thus, (1) becomes

χP3 = (−1)0x3 + (−1)1x2 + (−1)1x2 + (−1)2x1

= x3 − 2x2 + x

6. Let G be a tree. Let x, y, z, w be four vertices of G. Then the two larger ones among the
numbers d(x, y) + d(z, w), d(x, z) + d(y, w), and d(x,w) + d(y, z) are equal.

Proof. We will use induction on |V (G)|. Since x, y, z, w need not be distinct, we have
that our base case is when |V (G)| = 1. Then x = y = z = w, and d(x, y) + d(z, w) =
d(x, z) + d(y, w) = d(x,w) + d(y, z) = 0. Now let n ≥ 2, and assume the statement
holds for all trees G′ with |V (G′)| = n − 1. Now consider G with |V (G)| = n. Choose
a leaf ` ∈ V (G) and remove it along with its incident edge to obtain a tree G′ on n − 1
vertices. If none of x, y, z, or w is equal to `, then by our induction hypothesis we are
done, so assume that one of x, y, z, w is equal to `. Without loss of generality, assume
w = `. Assume also that w is distinct from x, y, and z. Let w′ be the unique neighbor
of w in G. Then w′, x, y, z ∈ V (G′). Since w is a leaf, we have for any v ∈ V (G) \ {w},
dG(v, w) = dG(v, w′) + 1. Therefore,

dG(x, y) + dG(z, w) = dG(x, y) + dG(z, w′) + 1

dG(x, z) + dG(y, w) = dG(x, z) + dG(y, w′) + 1

dG(x,w) + dG(y, z) = dG(x,w′) + dG(y, z) + 1

But then for any u, v ∈ V (G′), we have dG(u, v) = dG′(u, v). By our induction hypothesis,
in G′ we have that the largest two among dG′(x, y) + dG′(z, w′), dG′(x, z) + dG′(y, w′),
and dG′(x,w′) + d(y, z) are equal. Then the largest 2 among dG′(x, y) + dG′(z, w′) + 1,
dG′(x, z) + dG′(y, w′) + 1, and dG′(x,w′) + d(y, z) + 1 are equal. Thus the statement holds
when x, y, and z are distinct from w (but not necessarily from each other).
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Now consider the case where, without loss of generality, z = w. Then d(z, w) = 0, and
we are comparing the three numbers d(x, y), d(x, z) + d(y, w), and d(x,w) + d(y, z). Note
that the latter two are equal, and thus we need to show that we cannot have d(x, y) >
d(x, z) + d(y, w). But by the symmetry of distance and the triangle inequality, d(x, z) +
d(y, w) = d(x,w) + d(w, y) ≥ d(x, y). Thus the statement holds.

7. Let G = (V,E, φ) be a multigraph. Let A, B, and C be three subsets of V such that the
sub-multigraphs G[A], G[B], and G[C] are connected.

(a) If the sets B ∩ C, C ∩A, A ∩B are nonempty, but A ∩B ∩ C is empty, then G has
an eclectic cycle.

Proof. Assume B∩C, C∩A, A∩B are nonempty, and assume A∩B∩C is empty. Let
v ∈ A∩B, u ∈ B∩C, w ∈ C ∩A. Then, since G[A] is connected, we have that there
exists a path w → v in G[A]. Since G[B] is connected, there exists a path u→ v in
G[B]. Since G[C] is connected, there exists a path w → u in G[C]. Concatenating
the latter two paths and removing cycles, we obtain a path w → v in G[B ∪ C]
which contains at least one vertex q ∈ B∩C, and moreover enters this vertex q along
an edge of G[B] and exits it along an edge of G[C]. This path therefore cannot be
identical with the old path w → v in G[A] (because if it was, then q ∈ B ∩ C would
also belong to A, contradicting the assumption that A ∩ B ∩ C be empty). Hence,
we have found two distinct paths w → v in G. Consequently, there must be a cycle
consisting of a nonempty segment of one path and a nonempty segment of the other1.
With a bit more work, we can see that there exists an eclectic cycle.2

(b) If the subgraphs G[B ∩C], G[C ∩A], and G[A∩B] are connected, but the subgraph
G[A ∩B ∩ C] it not connected, then G has an eclectic cycle.

Proof. Assume the subgraphs G[B ∩C], G[C ∩A], and G[A ∩B] are connected and
that the subgraph G[A ∩B ∩ C] is not connected. Then, since G[B ∩ C], G[C ∩ A],
and G[A ∩ B] are connected, they each have at least one vertex and thus B ∩ C,
C ∩ A, and A ∩ B are all non-empty. If A ∩ B ∩ C = ∅, then we can apply (a).
Thus assume A∩B ∩C 6= ∅. Then there exist distinct x, v ∈ A∩B ∩C such that x

1Here we are using the following general observation about multigraphs: If s and t are two vertices of a
multigraph, and if there exist two distinct paths s → t, then there must be a cycle consisting of a nonempty
segment of one path and a nonempty segment of the other.

2To obtain such a cycle, concatenate the former path w → v with the reversal of the latter, obtaining a
circuit; then, rotate this circuit to make sure that it starts and ends at q; then, keep removing cycles until only
a single cycle remains. The result will be a cycle that enters q along an edge of G[B], exits q along an edge of
G[C], and somewhere inbetween also uses an edge of G[A] – hence, an eclectic cycle.
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and v lie in two different connected components of G[A ∩B ∩ C]. Since G[A ∩B] is
connected, and x and v belong to A∩B, there exists a path p in G[A∩B] from x to
v. Similarly, there exists a path q from x to v in G[B ∩ C]. We claim that p and q
are distinct and thus constitute a cycle in G. Indeed, if they were not distinct, then
p would also be a path in G[B ∩ C], and thus a path in G[C]. But then p would be
a path from x to v in G[A∩B ∩C], contradicting our assumption that no such path
exists. Thus, p and q are distinct and we have a cycle in G. This cycle is eclectic,
since it uses at least one edge of G[A∩B] from the path p (and thus an edge of G[A]
and an edge of G[B]), and since it uses at least one edge of G[B ∩ C] from the path
q, this edge must lie in G[C].
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