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0.1. Reminders

See the lecture notes and also the handwritten notes for relevant material. See also
the solutions to homework set 2 for various conventions and notations that are in
use here.

0.2. Exercise 1: a from-dominating set from a Hamiltonian path

Exercise 1. Let D = (V, A) be a digraph. A from-dominating set of D shall mean
a subset S of V such that for each vertex v ∈ V \ S, there exists at least one arc
uv ∈ A with u ∈ S.

Assume that D has a Hamiltonian path. Prove that D has a from-dominating

set of size ≤ |V|+ 1
2

.

Solution sketch to Exercise 1. We have assumed that D has a Hamiltonian path. Fix
such a path, and denote it by (v1, v2, . . . , vn).

Each vertex of D appears exactly once in the path (v1, v2, . . . , vn) (since (v1, v2, . . . , vn)
is a Hamiltonian path). In other words, each element of V appears exactly once in
the path (v1, v2, . . . , vn). Hence, |V| = n and V = {v1, v2, . . . , vn}.

Define a subset S of V by

S = {vi | i ∈ {1, 2, . . . , n} is odd} = {v1, v3, v5, . . .} .

http://www.cip.ifi.lmu.de/~grinberg/t/17s/nogra.pdf
http://www.cip.ifi.lmu.de/~grinberg/t/17s/
http://www.cip.ifi.lmu.de/~grinberg/t/17s/hw2s.pdf
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Then,1 |S| =
⌊

n + 1
2

⌋
≤ n + 1

2
=
|V|+ 1

2
(since n = |V|). Hence, the set S has size

≤ |V|+ 1
2

. It thus merely remains to prove that S is from-dominating.
According to the definition of “from-dominating”, this means proving that for

each vertex v ∈ V \ S, there exists at least one arc uv ∈ A with u ∈ S. So let us
prove this now.

Let v ∈ V \ S. Thus,

v ∈ V \ S = {v1, v2, . . . , vn} \ {v1, v3, v5, . . .}
(since V = {v1, v2, . . . , vn} and S = {v1, v3, v5, . . .})

= {v2, v4, v6, . . .} = {vi | i ∈ {1, 2, . . . , n} is even} .

In other words, v = vi for some even i ∈ {1, 2, . . . , n}. Consider this i. The integer
i is even and positive; hence, the integer i − 1 is odd and positive. Hence, i −
1 ∈ {1, 2, . . . , n− 1} (since i − 1 < i ≤ n), so that i − 1 ∈ {1, 2, . . . , n}. Thus,
vi−1 ∈ {v1, v3, v5, . . .} (since i− 1 is odd). Hence, vi−1 ∈ {v1, v3, v5, . . .} = S.

Furthermore, recall that (v1, v2, . . . , vn) is a path in D. Thus, vjvj+1 is an arc of D
for each j ∈ {1, 2, . . . , n− 1}. Applying this to j = i− 1, we conclude that vi−1vi is
an arc of D. In other words, vi−1vi ∈ A. Since vi = v, this rewrites as vi−1v ∈ A.
Hence, there exists at least one arc uv ∈ A with u ∈ S (namely, the arc vi−1v with
u = vi−1). This is exactly what we wanted to prove. Hence, we have shown that S
is from-dominating.

0.3. Exercise 2: Hamiltonian paths of a line graph

Exercise 2. Let G = (V, E) be a simple graph. The line graph L (G) is defined as
the simple graph (E, F), where

F = {{e1, e2} ∈ P2 (E) | e1 ∩ e2 6= ∅} .

(In other words, L (G) is the graph whose vertices are the edges of G, and in
which two vertices e1 and e2 are adjacent if and only if the edges e1 and e2 of G
share a common vertex.)

Assume that |V| > 1.
(a) If G has a Hamiltonian path, then prove that L (G) has a Hamiltonian path.
(b) If G has a Eulerian walk, then prove that L (G) has a Hamiltonian path.

Hints to Exercise 2. (a) Let (v0, v1, . . . , vn) be a Hamiltonian path in G. Let e1, e2, . . . , en
be the edges of this path (so that ei = vi−1vi for each i). Then, p = (e1, e2, . . . , en) is
a path in L (G). This path is not necessarily a Hamiltonian path; but we can turn it
into a Hamiltonian path by the following procedure:

1Here, we are using the following notation: If x is a real number, then bxc denotes the largest
integer that is smaller or equal to x. For example, b2.8c = 2 and b3c = 3 and b−1.6c = −2.
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• Insert all edges of G that contain v0 and are not already in the path p into p,
placing them at the beginning of p (just before e1).

• Insert all edges of G that contain v1 and are not already in the path p into p,
placing them between e1 and e2.

• Insert all edges of G that contain v2 and are not already in the path p into p,
placing them between e2 and e3.

• And so on, until all edges of G have been inserted.

It is easy to check that the result is a Hamiltonian path in L (G).
(b) Let e1, e2, . . . , em be the edges of an Eulerian walk in G. Then, (e1, e2, . . . , em)

is a Hamiltonian path in L (G).
[Remark: It is also true that if G has an Eulerian circuit, then L (G) has an Eulerian

circuit. To prove this, show that L (G) is connected and that each vertex of L (G)
has even degree.]

0.4. Exercise 3: a condition for a digraph to have a cycle

Exercise 3. Let D = (V, A) be a digraph with |V| > 0. Assume that each vertex
v ∈ V satisfies deg− v > 0. Prove that D has at least one cycle.

(Keep in mind that a length-1 circuit (v, v) counts as a cycle when A contains
the loop (v, v).)

Hints to Exercise 3. Fix a longest path (v0, v1, . . . , vk) in D. There is at least one
arc with target v0 (since deg− (v0) > 0). Let v−1 be the source of this arc. Then,
(v−1, v0, v1, . . . , vk) is a walk, but not a path (since (v0, v1, . . . , vk) is a longest path).
Hence, v−1 = vi for some i ∈ {0, 1, . . . , k}. Fix the smallest such i. Then, (v−1, v0, . . . , vi)
is a cycle.

[Remark: This is very similar to Lemma 0.2 in the solutions to homework set
2.]

0.5. Exercise 4: a condition for a multigraph to have a cycle

Recall that the degree deg v of a vertex v of a multigraph G is defined as the number
of all edges of G containing v.

Exercise 4. Let G be a multigraph with at least one edge. Assume that each
vertex of G has even degree. Prove that G has a cycle.

Hints to Exercise 4. Fix a longest path (v0, e1, v1, e2, v2, . . . , ek, vk) in G. There is at
least one edge containing v0 (namely, e1). Thus, the number deg (v0) is positive.
This number deg (v0) is furthermore even (since each vertex of G has even degree).
Hence, this number deg (v0) is ≥ 2 (because it is even and positive). In other

http://www.cip.ifi.lmu.de/~grinberg/t/17s/hw2s.pdf
http://www.cip.ifi.lmu.de/~grinberg/t/17s/hw2s.pdf
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words, there are at least two edges containing v0. Thus, there is at least one edge
containing v0 that is distinct from e1. Denote this edge by e0, and let v−1 be its
other endpoint. Then, (v−1, e0, v0, e1, v1, e2, v2, . . . , ek, vk) is a walk, but not a path
(since (v0, e1, v1, e2, v2, . . . , ek, vk) is a longest path). Hence, v−1 = vi for some i ∈
{0, 1, . . . , k}. Fix the smallest such i. Then, (v−1, e0, v0, e1, v1, . . . , ei, vi) is a cycle.

[Remark: This is (so to speak) the undirected version of Lemma 0.2 in the solu-
tions to homework set 2.]

0.6. Exercise 5: a coloring where neighbors shun equal colors

Exercise 5. Let k ∈N. Let p1, p2, . . . , pk be k nonnegative real numbers such that
p1 + p2 + · · ·+ pk ≥ 1.

Let G = (V, E) be a simple graph. A k-coloring of G shall mean a map f : V →
{1, 2, . . . , k}.

Prove that there exists a k-coloring f of G with the following property: For
each vertex v ∈ V, at most p f (v) deg v neighbors of v have the same color as v.
Here, the color of a vertex w ∈ V (under the k-coloring f ) means the value f (w).

Hints to Exercise 5. This is a generalization of Exercise 1 on homework set 0. Indeed,
you obtain the latter exercise if you set k = 2, p1 = 1/2 and p2 = 1/2.

To solve Exercise 5, we can generalize the solution of Exercise 1 on homework
set 0. Four changes need to be made:

1. We need to deal with the cases k ≤ 1 separately.

2. In the algorithm, we need to explain how precisely to “flip” the color f (v) of
the vertex v. (Indeed, for k > 2, there is more than one possibility.)

3. We need to change the definition of “enmity”.

4. We need to prove that the enmity cannot keep decreasing forever.

I leave change 1 to the reader (the cases k ≤ 1 are essentially trivial).
As for change 2: We have some v ∈ V such that more than p f (v) deg v among the

neighbors of v have the same color of v. Then, there exists some i ∈ {1, 2, . . . , k}
such that at most pi deg v among the neighbors of v have the color i (because

otherwise, by summing over all i, we conclude that v has more than
k
∑

i=1
pi deg v =

(p1 + p2 + . . . + pk)︸ ︷︷ ︸
≥1

deg v ≥ deg v neighbors in total; but this is absurd)2. Fix such

an i, and replace the color f (v) of v by this i.
What about change 3? We formerly defined the enmity of a coloring f to be

the number of f -monochromatic edges. This definition no longer works. However,

2You can even find an i such that fewer than pi deg v among the neighbors of v have the color i.
But that’s not necessary for us.

http://www.cip.ifi.lmu.de/~grinberg/t/17s/hw2s.pdf
http://www.cip.ifi.lmu.de/~grinberg/t/17s/hw2s.pdf
http://www.cip.ifi.lmu.de/~grinberg/t/17s/hw0s.pdf
http://www.cip.ifi.lmu.de/~grinberg/t/17s/hw0s.pdf
http://www.cip.ifi.lmu.de/~grinberg/t/17s/hw0s.pdf
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what works is the following subtler definition: For each i ∈ {1, 2, . . . , k}, an edge e
of G is said to be ( f , i)-chromatic if the two endpoints of e both have color i in the
k-coloring f . The enmity of a k-coloring f is now defined as the sum

k

∑
i=1

1
pi

(the number of all ( f , i) -chromatic edges) .

This definition requires a minor technical fix: It only works if all pi are positive
(i.e., nonzero). Fortunately, we can WLOG assume that all pi are positive (indeed,
if some pi is zero, then we can discard this pi, and correspondingly agree to never
use the color i in our coloring). Proving that the enmity decreases throughout the
algorithm is rather easy (a straightforward modification of the original argument).

Change 4 is simple but subtle; it is really easy to miss its importance. In the solu-
tion of Exercise 1 on homework set 0, we just argued that the enmity of a 2-coloring
cannot keep decreasing forever because it is a nonnegative integer. However, in our
more general setting, the enmity no longer is a nonnegative integer, and thus one
could imagine it decreasing indefinitely (e.g., from 1 to 1/2, then on to 1/3, then on
to 1/4, etc.). So we need a new argument. Fortunately, there is an easy one: There
are only finitely many k-colorings of G (namely, k|V| many). Hence, there are only
finitely many values that the enmity of a k-coloring of G can take. Hence, the en-
mity cannot keep decreasing forever (because that would force it to take infinitely
many different values along the way). So we are done.

0.7. Exercise 6: adding edges to get an Eulerian circuit

Exercise 6. Let G be a connected multigraph. Let m be the number of vertices of
G that have odd degree. Prove that we can add m/2 new edges to G in such a
way that the resulting multigraph will have an Eulerian circuit. (It is allowed to
add an edge even if there is already an edge between the same two vertices.)

Hints to Exercise 6. Proposition 2.5.8 in the lecture notes says that the number of
vertices of G having odd degree is even3. In other words, m is even. Let v1, v2, . . . , vm
be the m vertices of G that have odd degree.

Now, let us add m/2 new edges e1, e2, . . . , em/2 to G, where each ei has φ (ei) =
{v2i−1, v2i}. (This is well-defined, since m is even.) The resulting multigraph is
clearly connected (since G was connected), and has the property that each of its
vertices has even degree4. Hence, by the Euler-Hierholzer theorem, this new graph
has an Eulerian circuit.

3To be fully precise, Proposition 2.5.8 in the lecture notes only states this fact for simple graphs,
not for multigraphs. But the proof for multigraphs is almost the same. (The only difference is
that “v ∈ e” must be replaced by “v ∈ φ (e)”.)

4Proof. Let us see how the degrees of the vertices of our multigraph have been affected by adding
the m/2 new edges e1, e2, . . . , em/2:

• The degrees of the vertices v1, v2, . . . , vm have been incremented by 1 when we added our
m/2 new edges. This caused these degrees to become even (because back in the original

http://www.cip.ifi.lmu.de/~grinberg/t/17s/hw0s.pdf
http://www.cip.ifi.lmu.de/~grinberg/t/17s/nogra.pdf
http://www.cip.ifi.lmu.de/~grinberg/t/17s/nogra.pdf
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0.8. Exercise 7: how large can the perimeter of a triangle on a
graph be?

0.8.1. Distances in a graph

If u and v are two vertices of a simple graph G, then d (u, v) denotes the distance
between u and v. This is defined to be the minimum length of a path from u to v if
such a path exists; otherwise it is defined to be the symbol ∞.

We observe the following simple facts:

Lemma 0.1. Let u and v be two vertices of a connected simple graph G = (V, E).
Then, d (u, v) ≤ |V| − 1.

Proof of Lemma 0.1. The simple graph G is connected. Hence, there exists a walk
from u to v in G. Let k be the length of this walk. Therefore, there exists a walk from
u to v in G having length ≤ k (namely, the walk we have just constructed). Hence,
Corollary 2.8.10 in the lecture notes shows that there exists a path from u to v
having length ≤ k. Let

(
u0, u1, . . . , ug

)
be this path. Then, the vertices u0, u1, . . . , ug

are pairwise distinct (since
(
u0, u1, . . . , ug

)
is a path). Hence,

∣∣{u0, u1, . . . , ug
}∣∣ =

g + 1. But from
{

u0, u1, . . . , ug
}
⊆ V, we obtain

∣∣{u0, u1, . . . , ug
}∣∣ ≤ |V|. Thus,

g + 1 =
∣∣{u0, u1, . . . , ug

}∣∣ ≤ |V|. Hence, g ≤ |V| − 1.
Now, there exists a path from u to v having length g (namely, the path

(
u0, u1, . . . , ug

)
).

Hence, the minimum length of a path from u to v is ≤ g. But this minimum length
is d (u, v) (by the definition of d (u, v)). Hence, we obtain d (u, v) ≤ g ≤ |V| − 1.
This proves Lemma 0.1.

Lemma 0.1 shows that if u and v are two vertices of a connected simple graph G,
then d (u, v) is an actual integer (as opposed to ∞).

Lemma 0.2. Let u and v be two vertices of a simple graph G. Let k ∈N. If there
exists a walk from u to v in G having length k, then d (u, v) ≤ k.

Proof of Lemma 0.2. We assumed that there exists a walk from u to v in G having
length k. Therefore, Corollary 2.8.10 in the lecture notes shows that there exists a
path from u to v having length ≤ k. Therefore, the minimum length of a path from
u to v is ≤ k. But this minimum length is d (u, v) (by the definition of d (u, v)).
Hence, we obtain d (u, v) ≤ k. This proves Lemma 0.2.

multigraph G, they were odd).

• The degrees of all other vertices have not changed when we added our m/2 new edges
(because none of these new edges contains any of the other vertices). Hence, these degrees
have remained even (because they were even in the original multigraph G).

Thus, in the resulting multigraph, the degrees of all vertices have become even.

http://www.cip.ifi.lmu.de/~grinberg/t/17s/nogra.pdf
http://www.cip.ifi.lmu.de/~grinberg/t/17s/nogra.pdf
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Lemma 0.3. Let G = (V, E) be a simple graph.
(a) Each u ∈ V satisfies d (u, u) = 0.
(b) Each u ∈ V and v ∈ V satisfy d (u, v) = d (v, u).
(c) Each u ∈ V, v ∈ V and w ∈ V satisfy d (u, v) + d (v, w) ≥ d (u, w). (This

inequality has to be interpreted appropriately when one of the distances is in-
finite: For example, we understand ∞ to be greater than any integer, and we
understand ∞ + m to be ∞ whenever m ∈ Z.)

(d) If u ∈ V and v ∈ V satisfy d (u, v) = 0, then u = v.

Proof of Lemma 0.3 (sketched). Parts (a), (b) and (d) of Lemma 0.3 are easy to check,
and thus left to the reader.

(c) We WLOG assume that none of the two distances d (u, v) and d (v, w) is ∞
(since otherwise, Lemma 0.3 (c) holds for obvious reasons).

If there was no path from u to v, then d (u, v) would be ∞ (by the definition
of d (u, v)), which would contradict the fact that none of the two distances d (u, v)
and d (v, w) is ∞. Hence, there must exist at least one path from u to v. Thus,
d (u, v) is the minimum length of a path from u to v (by the definition of d (u, v)).
Hence, there exists a path from u to v having length d (u, v). Fix such a path, and
denote it by p =

(
p0, p1, . . . , pg

)
. Hence, (the length of the path p) = g. Therefore,

g = (the length of the path p) = d (u, v) (since p has length d (u, v)).
We have shown that there exists a path from u to v having length d (u, v). Simi-

larly, we can show that there exists a path from v to w having length d (v, w). Fix
such a path, and denote it by q = (q0, q1, . . . , qh). Hence, (the length of the path q) =
h. Therefore, h = (the length of the path q) = d (v, w) (since h has length d (v, w)).

Now,
(

p0, p1, . . . , pg
)

is a path from u to v. Hence, p0 = u and pg = v. Also,
(q0, q1, . . . , qh) is a path from v to w. Hence, q0 = v and qh = w.

The lists
(

p0, p1, . . . , pg
)

and (q0, q1, . . . , qh) are paths, and therefore walks. The
ending point pg of the first of these two walks is the starting point q0 of the sec-
ond (because pg = v = q0). Hence, we can combine these two walks to a walk(

p0, p1, . . . , pg, q1, q2, . . . , qh
)
=
(

p0, p1, . . . , pg−1, q0, q1, . . . , qh
)
. This latter walk has

length g + h, and is a walk from u to w (since p0 = u and qh = w). Thus, there
exists a walk from u to w having length g + h (namely, the walk that we have just
constructed). Hence, Lemma 0.2 (applied to w and g + h instead of v and k) shows
that d (u, w) ≤ g + h = d (u, v) + d (v, w) (since g = d (u, v) and h = d (v, w)). In
other words, d (u, v) + d (v, w) ≥ d (u, w). This proves Lemma 0.3 (c).

Lemma 0.3 (c) is known as the triangle inequality for distances on a graph. Of
course, this is due to its similarity to the well-known triangle inequality in Eu-
clidean geometry. In fact, this similarity goes deeper: Lemma 0.1 shows that if
G = (V, E) is a connected simple graph, then the definition of the distance d (u, v)
for each pair (u, v) ∈ V × V gives rise to a well-defined map d : V × V → N.
Lemma 0.3 shows that this map d is a metric. We shall not use this in the follow-
ing, but it is a useful fact to keep in one’s mind.

https://en.wikipedia.org/wiki/Metric_(mathematics)
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0.8.2. Statement of the exercise

Exercise 7. Let a, b and c be three vertices of a connected simple graph G =
(V, E). Prove that d (b, c) + d (c, a) + d (a, b) ≤ 2 |V| − 2.

0.8.3. First solution

Solution sketch to Exercise 7. The following solution was found by Jiali Huang and
Nicholas Rancourt.

Fix some path z =
(
z0, z1, . . . , zg

)
from a to b having minimum length. Then, the

length of z is d (a, b) (since d (a, b) is defined as the minimum length of a path from
a to b). Hence,

d (a, b) = (the length of the path z) = g (1)

(since z =
(
z0, z1, . . . , zg

)
).

Since
(
z0, z1, . . . , zg

)
is a path from a to b, we have z0 = a and zg = b.

Since
(
z0, z1, . . . , zg

)
is a path, the g + 1 vertices z0, z1, . . . , zg are distinct. Hence,∣∣{z0, z1, . . . , zg

}∣∣ = g + 1.
Now, pick an element i ∈ {0, 1, . . . , g} for which the number d (c, zi) is minimum.

Hence,
d (c, zi) ≤ d

(
c, zj

)
for each j ∈ {0, 1, . . . , g} . (2)

Fix some path t = (t0, t1, . . . , th) from c to zi having minimum length. Then, the
length of t is d (c, zi) (since d (c, zi) is defined as the minimum length of a path from
c to zi). Hence,

d (c, zi) = (the length of the path t) = h

(since t = (t0, t1, . . . , th)).
Since (t0, t1, . . . , th) is a path from c to zi, we have t0 = c and th = zi.
Since (t0, t1, . . . , th) is a path, the h + 1 vertices t0, t1, . . . , th are distinct. In partic-

ular, the h vertices t0, t1, . . . , th−1 are distinct. Hence, |{t0, t1, . . . , th−1}| = h.
Now, there is a walk from c to a in G having length h + i 5. Hence, Lemma 0.2

(applied to u = c, v = a and k = h + i) shows that

d (c, a) ≤ h + i. (3)

On the other hand, there is a walk from b to c in G having length (g− i) + h 6.
Hence, Lemma 0.2 (applied to u = b, v = c and k = (g− i) + h) shows that

d (b, c) ≤ (g− i) + h. (4)
5Proof. We know that

(
z0, z1, . . . , zg

)
is a path, thus a walk. Hence, (z0, z1, . . . , zi) is a walk as well.

Therefore, (zi, zi−1, . . . , z0) is a walk (being the reversal of the walk (z0, z1, . . . , zi)). On the other
hand, (t0, t1, . . . , th) is a walk. Since the ending point of the walk (t0, t1, . . . , th) is the starting
point of the walk (zi, zi−1, . . . , z0) (because th = zi), we can combine these two walks, obtaining
a new walk (t0, t1, . . . , th−1, zi, zi−1, . . . , z0). This new walk is a walk from c to a (since t0 = c and
z0 = a) and has length h + i. Hence, there is a walk from c to a in G having length h + i (namely,
the walk that we have just constructed).

6Proof. We know that
(
z0, z1, . . . , zg

)
is a path, thus a walk. Hence,

(
zi, zi+1, . . . , zg

)
is a walk as

well. Therefore,
(
zg, zg−1, . . . , zi

)
is a walk (being the reversal of the walk

(
zi, zi+1, . . . , zg

)
). On

the other hand, (t0, t1, . . . , th) is a walk. Hence, (th, th−1, . . . , t0) is a walk as well (being the
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It is easy to see that the sets {t0, t1, . . . , th−1} and
{

z0, z1, . . . , zg
}

are disjoint7.
Hence, the sum of the sizes of these sets equals the size of their union. In other
words,

|{t0, t1, . . . , th−1}|+
∣∣{z0, z1, . . . , zg

}∣∣ =
∣∣∣∣∣∣∣{t0, t1, . . . , th−1} ∪

{
z0, z1, . . . , zg

}︸ ︷︷ ︸
⊆V

∣∣∣∣∣∣∣ ≤ |V| .
Since

∣∣{z0, z1, . . . , zg
}∣∣ = g + 1 and |{t0, t1, . . . , th−1}| = h, this rewrites as h +

(g + 1) ≤ |V|. Hence, (g + h) + 1 = h + (g + 1) ≤ |V|, so that g + h ≤ |V| − 1.
Adding together the two inequalities (4) and (3) and the equation (1), we obtain

d (b, c) + d (c, a) + d (a, b) ≤ ((g− i) + h) + (h + i) + g = 2

 g + h︸ ︷︷ ︸
≤|V|−1


≤ 2 (|V| − 1) = 2 |V| − 2.

This solves the exercise.

0.8.4. Second solution

Hints to a second solution of Exercise 7. The following solution is how I originally solved
the exercise.

Let ` (w) denote the length of a walk w.
Fix

reversal of the walk (t0, t1, . . . , th)). Since the ending point of the walk
(
zg, zg−1, . . . , zi

)
is the

starting point of the walk (th, th−1, . . . , t0) (because zi = th), we can combine these two walks,
obtaining a new walk

(
zg, zg−1, . . . , zi, th−1, th−2, . . . , t0

)
. This new walk is a walk from b to c

(since zg = b and t0 = c) and has length (g− i) + h. Hence, there is a walk from b to c in G
having length (g− i) + h (namely, the walk that we have just constructed).

7Proof. Let v ∈ {t0, t1, . . . , th−1} ∩
{

z0, z1, . . . , zg
}

. We shall derive a contradiction.
We have v ∈ {t0, t1, . . . , th−1} ∩

{
z0, z1, . . . , zg

}
⊆ {t0, t1, . . . , th−1}. Hence, v = tp for some

p ∈ {0, 1, . . . , h− 1}. Consider this p.
We have v ∈ {t0, t1, . . . , th−1} ∩

{
z0, z1, . . . , zg

}
⊆
{

z0, z1, . . . , zg
}

. Hence, v = zj for some
j ∈ {0, 1, . . . , g}. Consider this j.

Recall that (t0, t1, . . . , th) is a walk. Hence,
(
t0, t1, . . . , tp

)
is a walk as well. This walk(

t0, t1, . . . , tp
)

is a walk from c to v (since t0 = c and tp = v) and has length p. Hence,
there is a walk from c to v in G having length p (namely, the walk

(
t0, t1, . . . , tp

)
). Conse-

quently, Lemma 0.2 (applied to u = c and k = p) shows that d (c, v) ≤ p ≤ h − 1 (since
p ∈ {0, 1, . . . , h− 1}).

But (2) yields d (c, zi) ≤ d
(
c, zj

)
= d (c, v) (since zj = v). Thus, d (c, v) ≥ d (c, zi) = h > h− 1.

This contradicts d (c, v) ≤ h− 1.
Now, forget that we fixed v. Thus, we have obtained a contradiction for each v ∈
{t0, t1, . . . , th−1} ∩

{
z0, z1, . . . , zg

}
. Hence, there exists no v ∈ {t0, t1, . . . , th−1} ∩

{
z0, z1, . . . , zg

}
.

Thus, {t0, t1, . . . , th−1} ∩
{

z0, z1, . . . , zg
}

= ∅. In other words, the sets {t0, t1, . . . , th−1} and{
z0, z1, . . . , zg

}
are disjoint.
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• a shortest path x from b to c;

• a shortest path y from c to a.

• a shortest path z from a to b.

Let X be the set of all vertices of x. Similarly define Y and Z. Thus,

d (b, c) = ` (x) = |X| − 1 and (5)
d (c, a) = ` (y) = |Y| − 1 and (6)
d (a, b) = ` (z) = |Z| − 1. (7)

Now, we claim that |X ∩Y ∩ Z| ≤ 1. Indeed, assume the contrary. Then,
|X ∩Y ∩ Z| ≥ 2. Hence, there exist two distinct vertices p and q in X ∩ Y ∩ Z.
Consider these p and q.

Both vertices p and q belong to X ∩ Y ∩ Z ⊆ X, thus appear on the path x. We
WLOG assume that p appears before q on this path (i.e., the path x has the form
(. . . , p, . . . , q, . . .), where some of the . . . may be empty). (This WLOG assumption
is legitimate, since we can switch p with q.)

But the vertices p and q also appear on the path y (since they belong to X ∩ Y ∩
Z ⊆ Y). The vertex p must appear after q on this path8. In other words, the vertex
q appears before p on the path y.

8Proof. Assume the contrary. Thus, p appears before q on the path y.
Now, let us split the path x into three parts: Namely,

• let x1 be the part between b and p;

• let x2 be the part between p and q;

• let x3 be the part between q and c.

(This is possible because p appears before q in x.) Then, ` (x) = ` (x1) + ` (x2) + ` (x3).
Next, let us split the path y into three parts: Namely,

• let y1 be the part between c and p;

• let y2 be the part between p and q;

• let y3 be the part between q and a.

(This is possible because p appears before q in y.) Then, ` (y) = ` (y1) + ` (y2) + ` (y3).
The path x2 connects p and q, and thus has length > 0 (since p and q are distinct). Hence,

` (x2) > 0. Thus,
` (x) = ` (x1) + ` (x2)︸ ︷︷ ︸

>0

+` (x3) > ` (x1) + ` (x3) ,

so that

` (x1) + ` (x3) < ` (x) = d (b, c) . (8)

Similarly,

` (y1) + ` (y3) < d (c, a) . (9)
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The same reasoning (but applied to b, c, a, y, z, x, q and p instead of a, b, c, x, y,
z, p and q) now shows that the vertex p appears before q on the path z (because the
vertex q appears before p on the path y). The same reasoning (but applied to b, c,
a, y, z and x instead of a, b, c, x, y and z) therefore shows that the vertex p appears
before q on the path y. But this contradicts the fact that the vertex q appears before
p on the path y.

This contradiction shows that our assumption was wrong. Hence, |X ∩Y ∩ Z| ≤
1 is proven. From this, we can easily obtain |X|+ |Y|+ |Z| ≤ 2 |X ∪Y ∪ Z|+ 1 9.
Now, adding the equalities (5), (6) and (7) together, we obtain

d (b, c) + d (c, a) + d (a, b) = (|X| − 1) + (|Y| − 1) + (|Z| − 1) = |X|+ |Y|+ |Z|︸ ︷︷ ︸
≤2|X∪Y∪Z|+1

−3

≤ 2

∣∣∣∣∣∣X ∪Y ∪ Z︸ ︷︷ ︸
⊆V

∣∣∣∣∣∣+ 1− 3 ≤ 2 |V|+ 1− 3 = 2 |V| − 2.

0.8.5. Third solution

Let me finally sketch a third solution of the exercise. The idea of the below solution
is due to Sasha Pevzner, although I am restating it in slightly different terms. First,
let me generalize the problem as follows:

Combining the reversal of the walk x3 with the walk y3, we obtain a walk from c to a (via
q). This walk has length ` (x3) + ` (y3). Hence, there exists a walk from c to a having length
` (x3) + ` (y3). Consequently, Lemma 0.2 (applied to u = c, v = a and k = ` (x3) + ` (y3)) shows
that

d (c, a) ≤ ` (x3) + ` (y3) . (10)

Combining the walk x1 with the reversal of the walk y1, we obtain a walk from b to c (via
p). This walk has length ` (x1) + ` (y1). Hence, there exists a walk from b to c having length
` (x1) + ` (y1). Consequently, Lemma 0.2 (applied to u = b, v = c and k = ` (x1) + ` (y1)) shows
that

d (b, c) ≤ ` (x1) + ` (y1) . (11)

Adding together the inequalities (10) and (11), we obtain

d (c, a) + d (b, c) ≤ (` (x3) + ` (y3)) + (` (x1) + ` (y1))

= ` (y1) + ` (y3)︸ ︷︷ ︸
<d(c,a)
(by (9))

+ ` (x1) + ` (x3)︸ ︷︷ ︸
<d(b,c)
(by (8))

< d (c, a) + d (b, c) .

This is absurd. Hence, we have found a contradiction, qed.
9Proof. The sum |X|+ |Y|+ |Z| counts the elements of X ∪Y ∪ Z, but it counts some of them twice

and some thrice: Namely, an element is counted thrice if it belongs to X ∩ Y ∩ Z; otherwise, it
is counted at most twice. Since |X ∩Y ∩ Z| ≤ 1, we know that at most one element is counted
thrice. All other elements are counted at most twice. Hence, the total sum |X|+ |Y|+ |Z| is at
most 3 + 2 (|X ∪Y ∪ Z| − 1) = 2 |X ∪Y ∪ Z|+ 1. Qed.
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Theorem 0.4. Let k ∈ N be odd. Let a1, a2, . . . , ak be k vertices of a connected
simple graph G. Let us set ak+1 = a1. Then,

k

∑
i=1

d (ai, ai+1) ≤ (k− 1) (|V (G)| − 1) .

Before we start proving this, let us notice that Theorem 0.4 does not hold for

k even, and the whole question of maximizing
k
∑

i=1
d (ai, ai+1) for k even is rather

trivial10. This makes Theorem 0.4 (which answers the question of maximizing
k
∑

i=1
d (ai, ai+1) for k odd11) all the more interesting.

Exercise 7 is the particular case of Theorem 0.4 for k = 3.
For the proof of Theorem 0.4, we shall need a slightly more advanced notation

for the distance between two vertices in a graph: Namely, if u and v are two vertices
of a simple graph G, then the distance d (u, v) will often be denoted by dG (u, v) (in
order to stress the dependence on G). This allows us to unambiguously speak of
distances between u and v even when there are several different graphs containing
u and v as vertices.

Sasha’s argument begins by reducing the problem to the situation in which the
graph is a tree. Thus, we will need to prove the following lemma, which of course
is a particular case of Theorem 0.4:

Lemma 0.5. Let k ∈ N be odd. Let a1, a2, . . . , ak be k vertices of a tree G. Let us
set ak+1 = a1. Then,

k

∑
i=1

d (ai, ai+1) ≤ (k− 1) (|V (G)| − 1) .

(Here, we regard a tree as a simple graph.)

Let us first see why proving this lemma is sufficient:

Proof of Theorem 0.4 using Lemma 0.5 (sketched). Assume that Lemma 0.5 is already
proven.

10To wit, it is obvious that
k
∑

i=1
d (ai, ai+1) ≤ k (|V (G)| − 1) (since Lemma 0.1 shows that each of the

k numbers d (ai, ai+1) is ≤ |V (G)| − 1). When k is even, this bound cannot be improved, because
it is attained whenever G is the path graph Pn, the vertices a1, a3, a5, . . . all equal to one endpoint
of this path, and the vertices a2, a4, a6, . . . all equal to the other endpoint.

11Indeed, it is not hard to see that equality can be obtained in the inequality in Theorem 0.4; hence,

it really maximizes
k
∑

i=1
d (ai, ai+1).
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The graph G is connected, and thus has a spanning tree T. Fix such a T. Clearly,
V (T) = V (G). Being a tree, T is of course still connected.

But T is a tree. Therefore, Lemma 0.5 (applied to T instead of G) shows that
k
∑

i=1
dT (ai, ai+1) ≤ (k− 1) (|V (T)| − 1) = (k− 1) (|V (G)| − 1) (since V (T) = V (G)).

Since T is a subgraph of G, each walk in T is a walk in G. Hence, dG (u, v) ≤
dT (u, v) for any two vertices u and v of G. Thus,

k

∑
i=1

dG (ai, ai+1)︸ ︷︷ ︸
≤dT(ai,ai+1)

≤
k

∑
i=1

dT (ai, ai+1) ≤ (k− 1) (|V (G)| − 1) .

Hence, Theorem 0.4 is proven.

It thus remains to prove Lemma 0.5.

Proof of Lemma 0.5 (sketched). We proceed by induction on |V (G)|.
The induction base is the case when |V (G)| = 1. This case is easy (indeed, G has

only one vertex in this case, so that all k vertices a1, a2, . . . , ak must be identical, and
therefore their distances d (ai, ai+1) are all 0).

Now, to the induction step: Fix an integer N > 1. Assume (as the induction
hypothesis) that Lemma 0.5 is proven in the case when |V (G)| = N − 1. We must
now prove Lemma 0.5 in the case when |V (G)| = N.

Thus, let us consider the situation of Lemma 0.5 under the assumption that
|V (G)| = N. We need to prove that

k

∑
i=1

dG (ai, ai+1) ≤ (k− 1) (|V (G)| − 1) . (12)

The graph G is a tree with more than 1 vertex (since |V (G)| = N > 1). Hence,
G has at least one leaf. Pick such a leaf, and denote it by v. Let v′ be the only
neighbor of v in G.

Let G′ be the subgraph of G obtained from G by removing the vertex v and
the unique edge with endpoint v (that is, the edge vv′). Thus, G′ is a tree with
|V (G) \ {v}| = N − 1 vertices. Hence, |V (G′)| = N − 1.

For each vertex u of G, we define a vertex u of G′ as follows:

u =

{
u, if u 6= v;
v′, if u = v

.

Then, all of a1, a2, . . . , ak are vertices of G′. Hence, (by the induction hypothesis) we
can apply Lemma 0.5 to G′ and ai instead of G and ai. We thus obtain

k

∑
i=1

dG′ (ai, ai+1) ≤ (k− 1)
(∣∣V (G′)∣∣− 1

)
. (13)
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Recall that v is a leaf of the tree G. Hence, any path in G that neither starts
nor ends at v must be a path in G′ as well (because otherwise, it would have to
traverse v, but this would entail that v is contained in at least two edges, which
would contradict the fact that v is a leaf). Thus,

dG (x, y) = dG′ (x, y) (14)

for any two vertices x and y of G′.
Let us, however, notice that

dG (x, y) = dG′ (x, y) + [exactly one of x and y equals v] (15)

for any two vertices x and y of G, where we are using the Iverson bracket notation12.

12Proof of (15). Let x and y be two vertices of G. We must prove (15). If none of x and y equals v,
then (15) follows from (14) (because in this case, we have x = x and y = y). If both x and y equal
v, then (15) holds as well (since in this case, we have x = y). Hence, it remains to prove (15) in the
case when exactly one of x and y equals v. Thus, consider this case. WLOG assume that x = v
and y 6= v (since otherwise, we can switch x with y). Thus, [exactly one of x and y equals v] = 1.
From x = v, we obtain x = v′ (by the definition of x). From y 6= v, we obtain y = y (by the
definition of y). Recall that v′ is the only neighbor of v. Hence, vv′ is the only edge that contains
v. In other words, vv′ is the only edge that contains x (since x = v). Recall that G is a tree.
Hence, there is only one path from x to y. The length of this path must therefore be dG (x, y).
This path has length > 0 (since y 6= v = x) and therefore begins with an edge that contains x.
Hence, it begins with the edge vv′ (because the only edge that contains x is vv′). After traversing
this edge, the path must proceed from v′ to y, which requires dG (v′, y) edges (again because
G is a tree, and thus there is exactly one path from v′ to y). Hence, the length of this path is
1 + dG (v′, y). Since we already know that the length of this path is dG (x, y), we thus obtain

dG (x, y) = 1 + dG
(
v′, y

)︸ ︷︷ ︸
=dG′ (v

′ ,y)
(by (14), applied to v′ instead of x (since v′ and y are vertices of G′))

= 1 + dG′
(
v′, y

)

= dG′

 v′︸︷︷︸
=x

, y︸︷︷︸
=y

+ 1 = dG′ (x, y) + 1 = dG′ (x, y) + [exactly one of x and y equals v]

(since 1 = [exactly one of x and y equals v]). This proves (15).
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Hence,

k

∑
i=1

dG (ai, ai+1)︸ ︷︷ ︸
=dG′ (ai,ai+1)+[exactly one of ai and ai+1 equals v]

(by (15), applied to x=ai and y=ai+1)

=
k

∑
i=1

(dG′ (ai, ai+1) + [exactly one of ai and ai+1 equals v])

=
k

∑
i=1

dG′ (ai, ai+1)︸ ︷︷ ︸
≤(k−1)(|V(G′)|−1)

(by (13))

+
k

∑
i=1

[exactly one of ai and ai+1 equals v]︸ ︷︷ ︸
≤1

≤ (k− 1)
(∣∣V (G′)∣∣− 1

)
+

k

∑
i=1

1︸︷︷︸
=k

= (k− 1)

∣∣V (G′)∣∣︸ ︷︷ ︸
=N−1

−1

+ k

= (k− 1) ((N − 1)− 1) + k = (k− 1) (N − 1) + 1. (16)

But recall that our goal is to prove (12). We assume the contrary (for the sake of
contradiction). Hence, we have

k

∑
i=1

dG (ai, ai+1) > (k− 1)

|V (G)|︸ ︷︷ ︸
=N

−1

 = (k− 1) (N − 1) .

Since both sides of this inequality are integers, we thus obtain

k

∑
i=1

dG (ai, ai+1) ≥ (k− 1) (N − 1) + 1.

Combining this with (16), we see that the inequality (16) must be an equality.
Hence, each inequality that was used in the derivation of (16) must also be an
equality13. In particular, the inequality

[exactly one of ai and ai+1 equals v] ≤ 1

must be an equality for each i ∈ {1, 2, . . . , k} (because all of these inequalities were
used in the derivation of (16)). In other words, the following claim holds:

Claim 1: For each i ∈ {1, 2, . . . , k}, exactly one of ai and ai+1 equals v.

13This is not to be taken fully literally. For example, we can derive the inequality 2 · 0 ≤ 0 by
multiplying the two inequalities 2 ≤ 0 and 0 ≤ 0, and it is not true that each of the latter two
inequalities must be an equality, even though the former inequality is an equality. However, the
derivation of the inequality (16) involved only addition (not multiplication) of other inequalities;
and therefore, equality in (16) forces equality in each of the inequalities that were added.
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Now, let us assume that a1 = v. Then, Claim 1 (applied to i = 1) shows that
exactly one of a1 and a2 equals v. Hence, a2 6= v (since a1 = v). But Claim 2
(applied to i = 2) shows that exactly one of a2 and a3 equals v. Hence, a3 = v
(since a2 6= v). We can continue this line of reasoning, thus showing that ai = v for
each odd i ∈ {1, 2, . . . , k + 1} and that ai 6= v for each even i ∈ {1, 2, . . . , k + 1}. In
particular, this shows that ak+1 6= v (since k + 1 is even (since k is odd)). But this
contradicts ak+1 = a1 = v.

Thus, we have obtained a contradiction under the assumption that a1 = v. But
we could similarly have obtained a contradiction under the assumption that a1 6= v
(indeed, the very same argument would have worked, except that the roles of
“being equal to v” and “being not equal to v” would be interchanged). Thus, we
always have a contradiction. This completes the proof of Lemma 0.5.

0.8.6. The generalization derived from the problem

As already mentioned, Exercise 7 can be obtained as a particular case of Theo-
rem 0.4 for k = 3. Conversely, we can also prove Theorem 0.4 using a fairly sim-
ple induction argument that relies on Exercise 7 and Lemma 0.3. Unlike Sasha
Pevzner’s proof above, this does not give a new solution to Exercise 7, but might
still be of interest.

Proof of Theorem 0.4 using Exercise 7 and Lemma 0.3. Write the graph G in the form
G = (V, E). Thus, V (G) = V and E (G) = E. Set n = |V|. Also, set n′ = n− 1.

We shall first show that for each j ∈N satisfying 2j ≤ k, we have

2j

∑
i=1

d (ai, ai+1) ≤ 2jn′ − d
(
a2j+1, a1

)
. (17)

Proof of (17): We shall prove (17) by induction over j.
Induction base: The inequality (17) holds for j = 0 14. Hence, the induction base

is complete.
Induction step: Fix a positive J ∈ N satisfying 2J ≤ k. Assume that (17) holds for

j = J − 1. We must then show that (17) holds for j = J.
Since J is a positive integer, we have J − 1 ∈ N. Moreover, 2 (J − 1) ≤ 2J ≤ k.

Hence, (17) is applicable to j = J − 1. Since we have assumed that (17) holds for

14Proof. We have d

a2·0+1︸ ︷︷ ︸
=a1

, a1

 = d (a1, a1) = 0 (by Lemma 0.3 (a)), so that 2 · 0n′︸ ︷︷ ︸
=0

− d (a1, a2·0+1)︸ ︷︷ ︸
=0

=

0− 0 = 0. Now,
2·0
∑

i=1
d (ai, ai+1) = (empty sum) = 0 ≤ 0 = 2 · 0n′ − d (a2·0+1, a1). In other words,

the inequality (17) holds for j = 0.



Math 5707 Spring 2017 (Darij Grinberg): midterm 1 page 17

j = J − 1, we thus obtain

2(J−1)

∑
i=1

d (ai, ai+1) ≤ 2 (J − 1) n′ − d
(

a2(J−1)+1, a1

)
= 2 (J − 1) n′ − d

(
a2J−1, a1

)
(18)

(since 2 (J − 1) + 1 = 2J − 1).
Lemma 0.3 (c) (applied to u = a2J−1, v = a1 and w = a2J) yields d

(
a2J−1, a1

)
+

d (a1, a2J) ≥ d
(
a2J−1, a2J

)
. Hence,

d
(
a2J−1, a2J

)
≤ d

(
a2J−1, a1

)
+ d (a1, a2J) .

But Exercise 7 (applied to a = a2J , b = a2J+1 and c = a1) yields

d
(
a2J+1, a1

)
+ d (a1, a2J) + d

(
a2J , a2J+1

)
≤ 2 |V|︸︷︷︸

=n

−2 = 2n− 2 = 2 (n− 1)︸ ︷︷ ︸
=n′

= 2n′.

Subtracting d
(
a2J+1, a1

)
from both sides of this inequality, we obtain

d (a1, a2J) + d
(
a2J , a2J+1

)
≤ 2n′ − d

(
a2J+1, a1

)
.

Now,

2J

∑
i=1

d (ai, ai+1) =
2J−2

∑
i=1

d (ai, ai+1) + d
(
a2J−1, a2J

)
+ d

(
a2J , a2J+1

)
=

2(J−1)

∑
i=1

d (ai, ai+1)︸ ︷︷ ︸
≤2(J−1)n′−d(a2J−1,a1)

(by (18))

+ d
(
a2J−1, a2J

)︸ ︷︷ ︸
≤d(a2J−1,a1)+d(a1,a2J)

+d
(
a2J , a2J+1

)

(since 2J − 2 = 2 (J − 1))

≤ 2 (J − 1) n′ − d
(
a1, a2J−1

)
+ d

(
a1, a2J−1

)
+ d (a1, a2J) + d

(
a2J , a2J+1

)
= 2 (J − 1) n′ + d (a1, a2J) + d

(
a2J , a2J+1

)︸ ︷︷ ︸
≤2n′−d(a2J+1,a1)

≤ 2 (J − 1) n′ + 2n′︸ ︷︷ ︸
=2Jn′

−d
(
a2J+1, a1

)
= 2Jn′ − d

(
a2J+1, a1

)
.

In other words, (17) holds for j = J. This completes the induction step. Thus, (17)
is proven by induction.

We know that k is an odd nonnegative integer. Hence, there exists some j ∈ N

satisfying k = 2j+ 1. Consider this j. From 2j+ 1 = k, we obtain a(2j+1)+1 = ak+1 =

a1. Also, 2j = k− 1 (since k = 2j + 1) and n′ = n︸︷︷︸
=|V|

−1 =

∣∣∣∣∣∣ V︸︷︷︸
=V(G)

∣∣∣∣∣∣− 1 = |V (G)| − 1.
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From k = 2j + 1, we obtain

k

∑
i=1

d (ai, ai+1) =
2j+1

∑
i=1

d (ai, ai+1) =
2j

∑
i=1

d (ai, ai+1)︸ ︷︷ ︸
≤2jn′−d(a2j+1,a1)

(by (17))

+d

a2j+1, a(2j+1)+1︸ ︷︷ ︸
=a1



≤ 2jn′ − d
(
a2j+1, a1

)
+ d

(
a2j+1, a1

)
= 2j︸︷︷︸

=k−1

n′︸︷︷︸
=|V(G)|−1

= (k− 1) (|V (G)| − 1) .

This proves Theorem 0.4.

0.9. Exercise 8: two steps away from a forest

We prepare for Exercise 8 by showing several lemmas.

Lemma 0.6. Let H be a multigraph such that |E (H)| ≥ |V (H)|. Assume that H
has at least one vertex. Then, H contains a cycle.

Proof of Lemma 0.6 (sketched). Assume the contrary. Hence, H contains no cycle, i.e.,
is a forest. Therefore, Corollary 20 from lecture 9 shows that15 |E (H)| = |V (H)| −
b0 (H) < |V (H)| (since b0 (H) > 0), which contradicts |E (H)| ≥ |V (H)|. Hence,
our assumption was false, qed.

In the following, we shall use the Iverson bracket notation. In other words, for

any logical statement A, we set [A] =
{

1, if A is true;
0, if A is false

.

Let us introduce one more notation:

• If A and B are two sets, then A4 B shall denote the symmetric difference of
A and B; this is defined as the set (A ∪ B) \ (A ∩ B) = (A \ B) ∪ (B \ A). In
other words, A4 B is the set of all elements that belong to exactly one of A
and B. (This is the operation on sets that corresponds to the logical operation
XOR.)

Lemma 0.7. Let G = (V, E, φ) be a multigraph. Let A and B be two subsets of E.
Let v ∈ V. Then,

deg(V,A4B,φ|A4B)
v = deg(V,A,φ|A) v + deg(V,B,φ|B) v− 2 deg(V,A∩B,φ|A∩B)

v.

15Recall that b0 (H) denotes the number of connected components of H. Since H has at least one
connected component (because H has at least one vertex), we have b0 (H) > 0.

http://www.cip.ifi.lmu.de/~grinberg/t/17s/5707lec9.pdf
https://en.wikipedia.org/wiki/Symmetric_difference
https://en.wikipedia.org/wiki/Exclusive_or
https://en.wikipedia.org/wiki/Exclusive_or
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Proof of Lemma 0.7. Each edge e ∈ E satisfies

[e ∈ A4 B] = [e ∈ A] + [e ∈ B]− 2 [e ∈ A ∩ B] (19)

16.
But for each subset F of E, we have

deg(V,F,φ|F) v = ∑
e∈E; v∈φ(e)

[e ∈ F] (20)

17. Applying this to F = A4 B, we obtain

deg(V,A4B,φ|A4B)
v = ∑

e∈E; v∈φ(e)
[e ∈ A4 B]︸ ︷︷ ︸

=[e∈A]+[e∈B]−2[e∈A∩B]
(by (19))

= ∑
e∈E; v∈φ(e)

([e ∈ A] + [e ∈ B]− 2 [e ∈ A ∩ B])

= ∑
e∈E; v∈φ(e)

[e ∈ A] + ∑
e∈E; v∈φ(e)

[e ∈ B]− 2 ∑
e∈E; v∈φ(e)

[e ∈ A ∩ B] .

16Proof of (19). Let e ∈ E. We must prove the equality (19). We are in one of the following four
cases:

• Case 1: We have e ∈ A and e ∈ B.

• Case 2: We have e ∈ A but not e ∈ B.

• Case 3: We have e ∈ B but not e ∈ A.

• Case 4: We have neither e ∈ A nor e ∈ B.

Let us prove (19) in Case 1. In this case, we have e ∈ A and e ∈ B. Thus, e ∈ A ∩ B, so that
e /∈ (A ∪ B) \ (A ∩ B) = A4 B. Thus, [e ∈ A4 B] = 0. Also, [e ∈ A ∩ B] = 1 (since e ∈ A ∩ B)
and [e ∈ A] = 1 (since e ∈ A) and [e ∈ B] = 1 (since e ∈ B). Thus,

[e ∈ A]︸ ︷︷ ︸
=1

+ [e ∈ B]︸ ︷︷ ︸
=1

−2 [e ∈ A ∩ B]︸ ︷︷ ︸
=1

= 1 + 1− 2 · 1 = 0 = [e ∈ A4 B] .

Hence, (19) is proven in Case 1. Similarly, (19) can be proven in Case 2, in Case 3, and in Case 4.
Therefore, (19) always holds. This completes the proof of (19).

17Proof of (20). Let F be a subset of E. The definition of deg(V,F,φ|F) v shows that deg(V,F,φ|F) v
is the number of edges of the multigraph (V, F, φ |F) that contain v. Since the edges of the
multigraph (V, F, φ |F) are the elements of F, this rewrites as follows: deg(V,F,φ|F) v is the number
of elements of F that contain v. In other words, deg(V,F,φ|F) v is the number of all e ∈ F that
satisfy v ∈ (φ |F) (e). In other words, deg(V,F,φ|F) v is the number of all e ∈ F that satisfy
v ∈ φ (e) (because obviously, we have (φ |F) (e) = φ (e) for each e ∈ F). In other words,

deg(V,F,φ|F) v = (the number of all e ∈ F that satisfy v ∈ φ (e)) . (21)
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Comparing this with

deg(V,A,φ|A) v︸ ︷︷ ︸
= ∑

e∈E; v∈φ(e)
[e∈A]

(by (20), applied to F=A)

+ deg(V,B,φ|B) v︸ ︷︷ ︸
= ∑

e∈E; v∈φ(e)
[e∈B]

(by (20), applied to F=B)

−2 deg(V,A∩B,φ|A∩B)
v︸ ︷︷ ︸

= ∑
e∈E; v∈φ(e)

[e∈A∩B]

(by (20), applied to F=A∩B)

= ∑
e∈E; v∈φ(e)

[e ∈ A] + ∑
e∈E; v∈φ(e)

[e ∈ B]− 2 ∑
e∈E; v∈φ(e)

[e ∈ A ∩ B] ,

we obtain

deg(V,A4B,φ|A4B)
v = deg(V,A,φ|A) v + deg(V,B,φ|B) v− 2 deg(V,A∩B,φ|A∩B)

v.

This proves Lemma 0.7.

Lemma 0.8. Let G = (V, E, φ) be a multigraph. Let a and b be two cycles of G.
Let A be the set of the edges of a. Let B be the set of the edges of b.

(a) For each vertex v ∈ V, the number deg(V,A4B,φ|A4B)
v is even.

(b) If A 6= B, then the multigraph
(
V, A4 B, φ |A4B

)
has a cycle.

(c) Let c be a cycle of the multigraph
(
V, A4 B, φ |A4B

)
. Then, at least one of

the cycles a, b and c has length ≤ 2 |E|
3

.

Proof of Lemma 0.8. (a) Let v ∈ V. Then, deg(V,A,φ|A) v ≡ 0 mod 2 18. Similarly,

But

∑
e∈E; v∈φ(e)

[e ∈ F] = ∑
e∈E; v∈φ(e); e∈F

[e ∈ F]︸ ︷︷ ︸
=1

(since e∈F)

+ ∑
e∈E; v∈φ(e); not e∈F

[e ∈ F]︸ ︷︷ ︸
=0

(since we do not have e∈F)

(since each e ∈ E either satisfies e ∈ F or does not)

= ∑
e∈E; v∈φ(e); e∈F

1 + ∑
e∈E; v∈φ(e); not e∈F

0︸ ︷︷ ︸
=0

= ∑
e∈E; v∈φ(e); e∈F

1

= (the number of all e ∈ E that satisfy v ∈ φ (e) and e ∈ F) · 1
= (the number of all e ∈ E that satisfy v ∈ φ (e) and e ∈ F)
= (the number of all e ∈ F that satisfy v ∈ φ (e))

(because the e ∈ E that satisfy e ∈ F are precisely the e ∈ F). Comparing this with (21), we
obtain

deg(V,F,φ|F) v = ∑
e∈E; v∈φ(e)

[e ∈ F] .

This proves (20).
18Proof. We are in one of the following two cases:
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deg(V,B,φ|B) v ≡ 0 mod 2. Now, Lemma 0.7 yields

deg(V,A4B,φ|A4B)
v = deg(V,A,φ|A) v︸ ︷︷ ︸

≡0 mod 2

+deg(V,B,φ|B) v︸ ︷︷ ︸
≡0 mod 2

− 2︸︷︷︸
≡0 mod 2

deg(V,A∩B,φ|A∩B)
v

≡ 0 + 0− 0 = 0 mod 2.

In other words, the number deg(V,A4B,φ|A4B)
v is even. This proves Lemma 0.8 (a).

(b) It is well-known that if X and Y are two sets satisfying X 6= Y, then X4Y 6=
∅. Applying this to X = A and Y = B, we obtain A4 B 6= ∅. Hence, the multi-
graph

(
V, A4 B, φ |A4B

)
has at least one edge. Furthermore, each vertex of this

multigraph has even degree (because of Lemma 0.8 (a)). Thus, Exercise 4 (applied
to
(
V, A4 B, φ |A4B

)
instead of G) shows that this multigraph

(
V, A4 B, φ |A4B

)
has a cycle. This proves Lemma 0.8 (b).

(c) Assume the contrary. Thus, none of the cycles a, b and c has length ≤ 2 |E|
3

.

In other words, each of the cycles a, b and c has length >
2 |E|

3
.

Let C be the set of edges of c. Then, C ⊆ A4 B (since c is a cycle of the
multigraph

(
V, A4 B, φ |A4B

)
). Hence,

|C| ≤

∣∣∣∣∣∣∣ A4 B︸ ︷︷ ︸
=(A∪B)\(A∩B)

∣∣∣∣∣∣∣ = |(A ∪ B) \ (A ∩ B)|

= |A ∪ B| − |A ∩ B|︸ ︷︷ ︸
=|A|+|B|−|A∪B|

(since A ∩ B ⊆ A ⊆ A ∪ B)

= |A ∪ B| − (|A|+ |B| − |A ∪ B|) = 2

∣∣∣∣∣∣A ∪ B︸ ︷︷ ︸
⊆E

∣∣∣∣∣∣− |A| − |B| ≤ 2 |E| − |A| − |B| .

• Case 1: The vertex v does not lie on the cycle a.

• Case 2: The vertex v lies on the cycle a.

Let us consider Case 1 first. In this case, the vertex v does not lie on the cycle a. Hence, no
edge of a contains v. In other words, no edge in A contains v (since the edges in A are precisely
the edges of a). In other words, deg(V,A,φ|A) v = 0. Hence, deg(V,A,φ|A) v = 0 ≡ 0 mod 2. Thus,
deg(V,A,φ|A) v ≡ 0 mod 2 is proven in Case 1.

Let us next consider Case 2. In this case, the vertex v lies on the cycle a. Hence, exactly two
edges of a contain v (because a vertex on a cycle is entered exactly once by the cycle, and exited
exactly once by the cycle). These two edges are distinct (since the edges of a cycle are always
distinct). Thus, exactly two distinct edges of a contain v. In other words, exactly two edges in A
contain v (since the edges in A are precisely the edges of a). In other words, deg(V,A,φ|A) v = 2.
Hence, deg(V,A,φ|A) v = 2 ≡ 0 mod 2. Thus, deg(V,A,φ|A) v ≡ 0 mod 2 is proven in Case 2.

We have now proven deg(V,A,φ|A) v ≡ 0 mod 2 in each of the two Cases 1 and 2. Hence,
deg(V,A,φ|A) v ≡ 0 mod 2 always holds.
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Adding |A|+ |B| to both sides of this inequality, we obtain |A|+ |B|+ |C| ≤ 2 |E|.
But

|A| = (the number of all elements of A) = (the number of all edges of a)
(since the elements of A are the edges of a, and since these edges are all distinct)

= (the length of a) >
2 |E|

3

(since the cycle a has length >
2 |E|

3
). Similarly, |B| > 2 |E|

3
and |C| > 2 |E|

3
.

Adding these three inequalities together, we obtain

|A|+ |B|+ |C| > 2 |E|
3

+
2 |E|

3
+

2 |E|
3

= 2 |E| .

This contradicts |A|+ |B|+ |C| ≤ 2 |E|. This contradiction shows that our assump-
tion was wrong. Hence, Lemma 0.8 (c) is proven.

Lemma 0.9. Let G = (V, E, φ) be a multigraph such that |E| > |V|. Let n = |V|.
Then, G has a cycle of length ≤ 2n + 2

3
.

Proof of Lemma 0.9 (sketched). Recall that |E| > |V|. Thus, |E| ≥ |V|+ 1. Hence, we
can WLOG assume that |E| = |V|+ 1 (since otherwise, we can keep deleting edges

from G until |E| = |V|+ 1 holds; if we can find a cycle of length ≤ 2n + 2
3

after
that, then we clearly also get such a cycle in the original graph).

Thus, |E| = |V|︸︷︷︸
=n

+1 = n + 1.

The multigraph G has at least one edge (since |E| > |V| ≥ 0), and therefore
has at least one vertex. Also, |E (G)| = |E| ≥ |V| = |V (G)|. Hence, Lemma 0.6
(applied to H = G) yields that G contains a cycle. Fix such a cycle, and denote it
by a. Fix an edge a of a.

Removing the edge a from G yields a new multigraph G′, which has one fewer
edge than G. Thus, this new graph G′ satisfies |E (G′)| = |E| − 1 ≥ |V| (since
|E| > |V|). This rewrites as |E (G′)| ≥ |V (G′)| (since V = V (G′)). Consequently,
Lemma 0.6 (applied to H = G′) yields that G′ contains a cycle. Fix such a cycle,
and denote it by b. Of course, b is a cycle of G as well (since G′ is a subgraph of
G).

Let A be the set of the edges of a, and let B be the set of edges of b. Then,
A 6= B (since a ∈ A but a /∈ B). Hence, Lemma 0.8 (b) shows that the multigraph(
V, A4 B, φ |A4B

)
has a cycle. Fix such a cycle, and denote it by c. Clearly, c is a

cycle of G (since
(
V, A4 B, φ |A4B

)
is a subgraph of G). Lemma 0.8 (c) shows that

at least one of the cycles a, b and c has length ≤ 2 |E|
3

. Since 2 |E|︸︷︷︸
=n+1

= 2 (n + 1) =
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2n + 2, this rewrites as follows: At least one of the cycles a, b and c has length

≤ 2n + 2
3

. Hence, G has a cycle of length ≤ 2n + 2
3

(since all of a, b and c are cycles
of G). This proves Lemma 0.9.

Exercise 8. Let G = (V, E) be a simple graph such that |E| > |V|. Prove that G

has a cycle of length ≤ 2n + 2
3

, where n = |V|.

Solution sketch to Exercise 8. Recall that each simple graph can be viewed as a multi-
graph in an obvious way. Thus, we can view G as a multigraph this way. Hence,
Exercise 8 follows immediately from Lemma 0.9.

[Remarks:

• A statement fairly close to Exercise 8 appears in [BoCaDu13, Lemma 6].

• The bound
2n + 2

3
cannot be improved. For a graph G which achieves this

bound, see Exercise 2 (c) on homework set 3. A slight modification of this
construction allows us to find a graph G with n vertices achieving the bound⌊

2n + 2
3

⌋
for each n > 3.

• We have generalized Exercise 8 to Lemma 0.9 by replacing the simple graph
G by a multigraph. However, this generalization does not add any significant
new power to the statement, because each multigraph with no two parallel
edges (= two distinct edges e1 and e2 satisfying φ (e1) = φ (e2)) can be re-
garded as a simple graph (as long as we are willing to forget the names of the
edges, which in our case is harmless), whereas Lemma 0.9 holds obviously for
a multigraph with two parallel edges (in fact, two parallel edges form a cy-
cle of length 2). Nevertheless, I find the generalization worth stating, since it
appears to me that the setting of multigraphs is more natural for this exercise.

• Given two integers k ≥ 0 and n > 1, we can define ρ (n, k) to be the smallest
integer such that each multigraph G satisfying |E (G)| ≥ |V (G)| + k and
|V (G)| = n must have a cycle of length ≤ ρ (n, k). Can we compute this
ρ (n, k), or at least find a good upper bound on it? From Lemma 0.6 (and
the example of the cycle graph Cn), we can easily obtain ρ (n, 0) = n. From
Lemma 0.9 (and an example of a graph G achieving the bound), we obtain

ρ (n, 1) =

⌊
2n + 2

3

⌋
for each n > 3. What can we say about ρ (n, 2) ? The

notion of cages seems relevant (even though not directly applicable).

]

http://www.cip.ifi.lmu.de/~grinberg/t/17s/hw3.pdf
http://www.win.tue.nl/~aeb/drg/graphs/cages/cages.html
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