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0.1. Reminders

See the lecture notes and also the handwritten notes for relevant material. See also
the solutions to homework set 2 [Grinbe17a] for various conventions and notations
that are in use here.

0.2. Sandpiles: the basic results

Let me recall the definitions of the basic concepts on chip-firing done in class.
Various sources on this material are [BjoLov92] (and, less directly, [BjLoSh91]),
[HLMPPW13], [Musike09, Lectures 29–31] and [CorPet16]. (None of these is as
readable as I would like to have it, but the whole subject is about 30 years old, with

http://www.cip.ifi.lmu.de/~grinberg/t/17s/nogra.pdf
http://www.cip.ifi.lmu.de/~grinberg/t/17s/
http://www.cip.ifi.lmu.de/~grinberg/t/17s/hw2s.pdf
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most activity very recent... Also, be aware of incompatible notations, as well as of
the fact that some of the sources only consider undirected graphs.) The particular
case of the “integer lattice” graph has attracted particular attention due to the
mysterious pictures it generates; see http://www.math.cmu.edu/~wes/sand.html#
next-page for some of these pictures, as well as http://www.math.cornell.edu/
~levine/apollonian-slides.pdf for a talk with various illustrations.

Let me give a survey of the basics of the theory. (Due to a reliance on constructive
proofs, this survey is unfortunately longer than I expected it to be.)

0.2.1. Configurations, Z-configurations and toppling

We refer to [Grinbe17a] for the definition of a multidigraph, as well as for the
definitions of walks, paths, circuits and cycles in a multidigraph.

If v is a vertex of a multidigraph (V, A, ϕ), then the outdegree deg+ v of v is
defined to be the number of all arcs a ∈ A whose source is v. Similarly, if v is a
vertex of a multidigraph (V, A, ϕ), then the indegree deg− v of v is defined to be the
number of all arcs a ∈ A whose target is v.

An arc a of a multidigraph is said to be a loop if the source of a is the target of a.
Fix a multidigraph D = (V, A, ϕ).

Definition 0.1. A configuration (on D) means a map f : V → N. (Recall that
N = {0, 1, 2, . . .}.)

A configuration is also called a chip configuration or sandpile.
We like to think of a configuration as a way to place a finite number of game

chips on the vertices of D: Namely, the configuration f corresponds to placing
f (v) chips on the vertex v for each v ∈ V. The chips are understood to be
undistinguishable, so the only thing that matters is how many of them are placed
on each given vertex. Sometimes, we speak of grains of sand instead of chips.

Definition 0.2. A Z-configuration (on D) means a map f : V → Z. We shall
regard each configuration as a Z-configuration (since N ⊆ Z).

Definition 0.3. Let f : V → Z be a Z-configuration.
(a) A vertex v ∈ V is said to be active in f if and only if f (v) ≥ deg+ v. (Recall

that deg+ v is the outdegree of v.)
(b) The Z-configuration f is said to be stable if no vertex v ∈ V is active in f .

Thus, a Z-configuration f : V → Z is stable if and only if each vertex v ∈ V
satisfies f (v) < deg+ v.

Notice that there are only finitely many stable configurations (because if f is
a stable configuration, then, for each v ∈ V, the stability of f implies f (v) ≤
deg+ v, whereas the fact that f is a configuration implies f (v) ≥ 0; but these two
inequalities combined leave only finitely many possible values for f (v)).

http://www.math.cmu.edu/~wes/sand.html#next-page
http://www.math.cmu.edu/~wes/sand.html#next-page
http://www.math.cornell.edu/~levine/apollonian-slides.pdf
http://www.math.cornell.edu/~levine/apollonian-slides.pdf
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Definition 0.4. The set ZV of all Z-configurations can be equipped with opera-
tions of addition and subtraction, defined as follows:

• For any two Z-configurations f : V → Z and g : V → Z, we define a
Z-configuration f + g : V → Z by setting

( f + g) (v) = f (v) + g (v) for each v ∈ V.

• For any two Z-configurations f : V → Z and g : V → Z, we define a
Z-configuration f − g : V → Z by setting

( f − g) (v) = f (v)− g (v) for each v ∈ V.

These operations of addition and subtraction satisfy the standard rules (e.g.,
we always have ( f + g) + h = f + (g + h) and ( f − g)− h = f − (g + h)). Hence,
we can write terms like f + g + h or f − g − h without having to explicitly place
parentheses.

Also, we can define a “zero configuration” 0 : V → Z, which is the configu-
ration that sends each v ∈ V to the number 0. (Hopefully, the dual use of the
symbol 0 for both the number 0 and this zero configuration is not too confusing.)

Also, for each Z-configuration f : V → Z and each integer N, we define a
Z-configuration N f : V → Z by

(N f ) (v) = N f (v) for each v ∈ V.

Definition 0.5. Let f : V → Z be any Z-configuration. Then, ∑ f shall denote
the integer ∑

v∈V
f (v).

This integer ∑ f is called the degree of f .

If f is a configuration, then ∑ f is the total number of chips in f .
It is easy to see that any two Z-configurations f and g satisfy ∑ ( f + g) = ∑ f +

∑ g and ∑ ( f − g) = ∑ f − ∑ g. Also, any N ∈ Z and any Z-configuration f satisfy
∑ (N f ) = N ∑ f .

Proposition 0.6. Let f be a configuration. Let h = ∑ f and w ∈ V. Then,
f (w) ≤ h.

Proof of Proposition 0.6 (sketched). We have h = ∑ f = ∑
v∈V

f (v); this is a sum of

nonnegative integers (since f is a configuration). But a sum of nonnegative integers
is always ≥ to each of its addends. Hence, ∑

v∈V
f (v) ≥ f (w). Thus, h = ∑

v∈V
f (v) ≥

f (w). This proves Proposition 0.6.
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Definition 0.7. We shall use the Iverson bracket notation: If A is any logical state-
ment, then we define an integer [A] ∈ {0, 1} by

[A] =

{
1, if A is true;
0, if A is false

.

For example, [1 + 1 = 2] = 1 (since 1 + 1 = 2 is true), whereas [1 + 1 = 1] = 0
(since 1 + 1 = 1 is false).

Definition 0.8. If v and w are any two vertices of D, then av,w shall denote the
number of all arcs of D having source v and target w. This is a nonnegative
integer.

(Note that av,w might be > 1, since D is a multidigraph. Note also that av,v might
be nonzero, since loops are allowed.)

Definition 0.9. Let v ∈ V be a vertex. Then, a Z-configuration ∆v is defined by
setting

(∆v) (w) = [w = v]deg+ v − av,w for all w ∈ V.

Let us unpack the definition of ∆v we just gave: It says that

(∆v) (w) = −av,w for each vertex w ∈ V distinct from v

(because if w is distinct from v, then [w = v] = 0); and it says that

(∆v) (v) = deg+ v − av,v.

Definition 0.10. Let v ∈ V be a vertex. Then, firing v is the operation on Z-
configurations (i.e., formally speaking, the mapping from ZV to ZV) that sends
each Z-configuration f : V → Z to f − ∆v.

We sometimes say “toppling v” instead of “firing v”.

If f : V → N is a configuration, then the Z-configuration f − ∆v obtained by
firing v can be described as follows: The vertex v “donates” deg+ v of its chips to
its neighbors, by sending one chip along each of its outgoing arcs (i.e., for each
arc having source v, the vertex v sends one chip along this arc to the target of this
arc). Thus, the number of chips on v (weakly) decreases, while the number of chips
on each other vertex (weakly) increases. Of course, the resulting Z-configuration
f − ∆v is not necessarily a configuration. In fact, it is a configuration if the vertex
v is active in f , and also in some other cases:

Proposition 0.11. Let f : V → N be a configuration. Let v ∈ V.
(a) If the vertex v is active in f , then f − ∆v is a configuration.
(b) If f − ∆v is a configuration, and if D has no loops with source and target

v, then the vertex v is active in f .
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Note that the converse of Proposition 0.11 (a) does not hold when D has loops
with source and target v.

Proof of Proposition 0.11 (sketched). (a) Assume that the vertex v is active in f . Thus,
f (v) ≥ deg+ v. Hence,

( f − ∆v) (v) = ( f (v))︸ ︷︷ ︸
≥deg+ v

− ((∆v) (v))︸ ︷︷ ︸
=deg+ v−av,v

≥ deg+ v −
(
deg+ v − av,v

)
= av,v ≥ 0.

Also, each vertex w ∈ V distinct from v satisfies

( f − ∆v) (w) = f (w)− ((∆v) (w))︸ ︷︷ ︸
=−av,w≤0

≥ f (w) ≥ 0

(since f is a configuration). Combining these two inequalities, we conclude that
( f − ∆v) (w) ≥ 0 for each w ∈ V. In other words, f − ∆v is a configuration. This
proves Proposition 0.11 (a).

(b) Assume that f − ∆v is a configuration. Also, assume that D has no loops
with source and target v. Thus, av,v = 0. Now, ( f − ∆v) (v) ≥ 0 (since f − ∆v is a
configuration), so that

0 ≤ ( f − ∆v) (v) = f (v)− ((∆v) (v))︸ ︷︷ ︸
=deg+ v−av,v

= f (v)−
(
deg+ v − av,v

)
= f (v)− deg+ v + av,v︸︷︷︸

=0

= f (v)− deg+ v.

In other words, f (v) ≥ deg+ v. In other words, the vertex v is active in f . This
proves Proposition 0.11 (b).

Proposition 0.12. We have ∑ (∆v) = 0 for each vertex v ∈ V.

Proof of Proposition 0.12 (sketched). Let v ∈ V be any vertex. Then,

∑ (∆v) = ∑
w∈V

(∆v) (w)︸ ︷︷ ︸
=[w=v]deg+ v−av,w

= ∑
w∈V

(
[w = v]deg+ v − av,w

)
= ∑

w∈V
[w = v]︸ ︷︷ ︸
=1

deg+ v − ∑
w∈V

av,w︸ ︷︷ ︸
=(the number of all arcs with source v)

=deg+ v

= deg+ v − deg+ v = 0.

This proves Proposition 0.12.

Thus,
∑ ( f − ∆v) = ∑ f − ∑ (∆v)︸ ︷︷ ︸

=0
(by Proposition 0.12)

= ∑ f

for each Z-configuration f : V → Z and each vertex v. In other words, firing a
vertex v does not change the degree of a Z-configuration.
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0.2.2. Legal and stabilizing sequences

The word “sequence” shall always mean “finite sequence” (which is the same as
“finite list” or “tuple”).

We shall now study the effects of repeatedly firing vertices of D (that is, firing
several vertices one after the other). If v1, v2, . . . , vk are finitely many elements of V,
and if f : V → Z is any Z-configuration, then firing the vertices v1, v2, . . . , vk (one
after the other, in this order) results in the Z-configuration f − ∆v1 − ∆v2 − · · · −
∆vk. This shows, in particular, that the order in which we fire the vertices does not
matter for the final result (i.e., firing them in any other order would yield the same
resulting Z-configuration); however, the intermediate configurations of course do
depend on the order.

Definition 0.13. Let f : V → Z be a Z-configuration.
Let (v1, v2, . . . , vk) be a sequence of vertices of D.
(a) The sequence (v1, v2, . . . , vk) is said to be legal for f if for each i ∈

{1, 2, . . . , k}, the vertex vi is active in the Z-configuration f − ∆v1 − ∆v2 − · · · −
∆vi−1.

(b) The sequence (v1, v2, . . . , vk) is said to be stabilizing for f if the Z-
configuration f − ∆v1 − ∆v2 − · · · − ∆vk is stable.

What is the rationale behind the notions of “legal” and “stabilizing”? A sequence
of vertices provides a way to modify a Z-configuration by first firing the first vertex
in the sequence, then firing the second, and so on. The sequence is said to be legal
(for f ) if only active vertices are being fired in this process (i.e., each vertex that gets
fired is active at the time of its firing); thus, in particular, if f was a configuration,
then it remains a configuration throughout this process (i.e., at no point does a
vertex have a negative number of chips)1. The sequence is said to be stabilizing (for
f ) if the Z-configuration resulting from it at the very end is stable.

We notice some obvious consequences of the definitions:

Proposition 0.14. Let f be a Z-configuration.
(a) If f is a configuration, and if a sequence (v1, v2, . . . , vk) is legal for f , then

all of the Z-configurations f − ∆v1 − ∆v2 − · · · − ∆vi for i ∈ {0, 1, . . . , k} are
actually configurations.

(b) If a sequence (v1, v2, . . . , vk) is legal for f , then each prefix of this sequence
(i.e., each sequence of the form (v1, v2, . . . , vi) for some i ∈ {0, 1, . . . , k}) is legal
for f as well.

(c) If a sequence (v1, v2, . . . , vk) is stabilizing for f , then each permutation
of this sequence (i.e., each sequence of the form

(
vσ(1), vσ(2), . . . , vσ(k)

)
for a

permutation σ of {1, 2, . . . , k}) is stabilizing for f as well.

1This follows from Proposition 0.11 (a) (applied repeatedly).
If our multidigraph D has no loops, then the converse is also true: If the configuration re-

mains a configuration throughout the process, then the sequence is legal. (This follows from
Proposition 0.11 (b).) But if D has loops, this is not always the case.
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(d) If (v1, v2, . . . , vk) is a legal sequence for f , then (v1, v2, . . . , vk) is stabilizing
if and only if there exist no v ∈ V such that the sequence (v1, v2, . . . , vk, v) is
legal.

An important property of chip-firing is the following result (sometimes called
the “least action principle”):

Theorem 0.15. Let f : V → Z be any Z-configuration. Let ℓ and s be two
sequences of vertices of D such that ℓ is legal for f while s is stabilizing for f .
Then, ℓ is a subpermutation of s.

Here, we are using the following notation:

Definition 0.16. Let (p1, p2, . . . , pu) and (q1, q2, . . . , qv) be two finite sequences.
Then, we say that (p1, p2, . . . , pu) is a subpermutation of (q1, q2, . . . , qv) if and only
if, for each object t, the following holds: The number of i ∈ {1, 2, . . . , u} satisfying
pi = t is less or equal to the number of j ∈ {1, 2, . . . , v} satisfying qj = t.

Equivalently, the sequence (p1, p2, . . . , pu) is a subpermutation of the sequence
(q1, q2, . . . , qv) if and only if you can obtain the former from the latter by remov-
ing some entries and permuting the remaining entries. (“Some” allows for the
possibility of “zero”.)

Our proof of Theorem 0.15 relies on the following simple facts about subpermu-
tations (whose proofs are left to the reader):

Lemma 0.17. (a) Any permutation of a finite sequence s is a subpermutation of
s.

(b) If three finite sequences a, b and c have the property that a is a subpermu-
tation of b, and that b is a subpermutation of c, then a is a subpermutation of
c.

(c) If (a1, a2, . . . , aN) and (b1, b2, . . . , bM) are two finite sequences such that
N > 0 and M > 0 and a1 = b1, and if the sequence (a2, a3, . . . , aN) is a subpermu-
tation of (b2, b3, . . . , bM), then the sequence (a1, a2, . . . , aN) is a subpermutation
of (b1, b2, . . . , bM).

(d) If two finite sequences a and b are such that a is a subpermutation of b and
b is a subpermutation of a, then a is a permutation of b.

(e) Any subpermutation of a finite sequence s is at most as long as s.

Proof of Theorem 0.15 (sketched). We shall prove Theorem 0.15 by induction on the
length of ℓ.

Induction base: Theorem 0.15 is obvious when the length of ℓ is 0.
Induction step: Fix a positive integer N. Assume (as the induction hypothesis)

that Theorem 0.15 is true when the sequence ℓ has length N − 1. We must prove
that Theorem 0.15 is true when the sequence ℓ has length N.
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So let f , ℓ and s be as in Theorem 0.15, and assume that ℓ has length N. We must
then prove that ℓ is a subpermutation of s.

Write the sequence s in the form s = (s1, s2, . . . , sM).
Write the sequence ℓ in the form ℓ = (ℓ1, ℓ2, . . . , ℓN) (this is possible, since ℓ has

length N). The entry ℓ1 exists (since N is positive). Clearly, the vertex ℓ1 is active
in f (because ℓ1 is the first entry of a sequence that is legal for f ). In other words,
f (ℓ1) ≥ deg+ (ℓ1).

Now, we claim that ℓ1 ∈ {s1, s2, . . . , sM}. Indeed, assume the contrary. Thus,
ℓ1 /∈ {s1, s2, . . . , sM}. In other words, ℓ1 ̸= si for each i ∈ {1, 2, . . . , M}. Hence, for
each i ∈ {1, 2, . . . , M}, the definition of ∆si yields

(∆si) (ℓ1) = [ℓ1 = si]︸ ︷︷ ︸
=0

(since ℓ1 ̸=si)

deg+ (si)− asi,ℓ1︸︷︷︸
≥0

≤ 0. (1)

But the sequence (s1, s2, . . . , sM) = s is stabilizing; in other words, the Z-configuration
f − ∆s1 − ∆s2 − · · · − ∆sM is stable. Thus, in particular,

( f − ∆s1 − ∆s2 − · · · − ∆sM) (ℓ1) < deg+ (ℓ1) ≤ f (ℓ1)

(since f (ℓ1) ≥ deg+ (ℓ1)). Hence,

f (ℓ1) > ( f − ∆s1 − ∆s2 − · · · − ∆sM) (ℓ1) = f (ℓ1)−
M

∑
i=1

(∆si) (ℓ1)︸ ︷︷ ︸
≤0

(by (1))

≥ f (ℓ1) ,

which is absurd. This contradiction completes our proof of ℓ1 ∈ {s1, s2, . . . , sM}.
In other words, ℓ1 is an entry of the sequence s. Thus, there exists a permutation

t of the sequence s such that ℓ1 is the first entry of t. Consider such a t. Write
t in the form t = (t1, t2, . . . , tM). (This is possible, since t has length M, being a
permutation of the length-M sequence s.)

We know that ℓ1 is the first entry of the sequence t = (t1, t2, . . . , tM). In other
words, ℓ1 = t1. In particular, M > 0.

Recall that (t1, t2, . . . , tM) = t is a permutation of the sequence (s1, s2, . . . , sM) = s.
Thus, f − ∆t1 − ∆t2 − · · · − ∆tM = f − ∆s1 − ∆s2 − · · · − ∆sM.

We have  f − ∆ ℓ1︸︷︷︸
=t1

− ∆t2 − ∆t3 − · · · − ∆tM

= ( f − ∆t1)− ∆t2 − ∆t3 − · · · − ∆tM

= f − ∆t1 − ∆t2 − · · · − ∆tM = f − ∆s1 − ∆s2 − · · · − ∆sM.

Hence, the Z-configuration ( f − ∆ℓ1)− ∆t2 − ∆t3 − · · · − ∆tM is stable (since the
Z-configuration f − ∆s1 − ∆s2 − · · · − ∆sM is stable). In other words, the sequence
(t2, t3, . . . , tM) is stabilizing for the Z-configuration f − ∆ℓ1.
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On the other hand, the sequence (ℓ1, ℓ2, . . . , ℓN) = ℓ is legal for f . Hence, for
each i ∈ {2, 3, . . . , N}, the vertex ℓi is active in the Z-configuration f − ∆ℓ1 − ∆ℓ2 −
· · · − ∆ℓi−1. In other words, for each i ∈ {2, 3, . . . , N}, the vertex ℓi is active in the
Z-configuration ( f − ∆ℓ1)− ∆ℓ2 − ∆ℓ3 − · · · − ∆ℓi−1 (since f − ∆ℓ1 − ∆ℓ2 − · · · −
∆ℓi−1 = ( f − ∆ℓ1)− ∆ℓ2 − ∆ℓ3 − · · · − ∆ℓi−1). Renaming i as i + 1 in this fact, we
obtain the following: For each i ∈ {1, 2, . . . , N − 1}, the vertex ℓi+1 is active in the
Z-configuration ( f − ∆ℓ1) − ∆ℓ2 − ∆ℓ3 − · · · − ∆ℓi. In other words, the sequence
(ℓ2, ℓ3, . . . , ℓN) is legal for the Z-configuration f −∆ℓ1. Moreover, this sequence has
length N − 1 < N.

Hence, by the induction hypothesis, we can apply Theorem 0.15 to f − ∆ℓ1,
(ℓ2, ℓ3, . . . , ℓN) and (t2, t3, . . . , tM) instead of f , ℓ and t. We thus conclude that
the sequence (ℓ2, ℓ3, . . . , ℓN) is a subpermutation of (t2, t3, . . . , tM). Hence, Lemma
0.17 (c) (applied to ai = ℓi and bj = tj) shows that the sequence (ℓ1, ℓ2, . . . , ℓN)
is a subpermutation of (t1, t2, . . . , tM) (since N > 0 and M > 0 and ℓ1 = t1). In
other words, the sequence ℓ is a subpermutation of t (since ℓ = (ℓ1, ℓ2, . . . , ℓN) and
t = (t1, t2, . . . , tM)).

But the sequence t is a permutation of s, and thus a subpermutation of s (by
Lemma 0.17 (a)). Hence, Lemma 0.17 (b) (applied to a = ℓ, b = t and c = s) shows
that the sequence ℓ is a subpermutation of s. This completes the induction step.
Thus, Theorem 0.15 is proven.

Corollary 0.18. Let f : V → N be any configuration. Let ℓ and ℓ′ be two se-
quences of vertices of D that are both legal and stabilizing for f . Then:

(a) The sequence ℓ′ is a permutation of ℓ.
In particular:
(b) The sequences ℓ and ℓ′ have the same length.
(c) For each t ∈ V, the number of times t appears in ℓ′ equals the number of

times t appears in ℓ.
(d) The configuration obtained from f by firing all vertices in ℓ (one after the

other) equals the configuration obtained from f by firing all vertices in ℓ′ (one
after the other).

Proof of Corollary 0.18 (sketched). Theorem 0.15 (applied to ℓ′ instead of s) shows that
ℓ is a subpermutation of ℓ′. But Theorem 0.15 (applied to ℓ′ and ℓ instead of ℓ and
s) shows that ℓ′ is a subpermutation of ℓ. Hence, Lemma 0.17 (d) (applied to a = ℓ′

and b = ℓ) shows that ℓ′ is a permutation of ℓ. This proves part (a) of Corollary 0.18.
Parts (b) and (c) follow immediately from part (a). Part (d) also follows from part
(a), because we know that the order in which we fire a sequence of vertices does
not matter for the final result (so any permutation of a sequence yields the same
configuration as the sequence itself).

0.2.3. Concatenation of legal sequences

For the next lemma, we need a simple piece of notation:
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Definition 0.19. (a) If u =
(
u1, u2, . . . , up

)
and v =

(
v1, v2, . . . , vq

)
are two fi-

nite sequences, then u ∗ v denote the sequence
(
u1, u2, . . . , up, v1, v2, . . . , vq

)
. This

sequence u ∗ v is called the concatenation of the sequences u and v.
(b) If u is a finite sequence, and if k ∈ N, then u∗k denotes the sequence

u ∗ u ∗ · · · ∗ u︸ ︷︷ ︸
k times

. (This is well-defined, since the operation of concatenation is asso-

ciative. Notice that u∗0 is the empty sequence ().)

Lemma 0.20. Let f : V → Z be a Z-configuration. Let u be a legal sequence
for f . Let g be the Z-configuration obtained from f by firing all vertices in u
(that is, g = f − ∆u1 − ∆u2 − · · · − ∆up, where u is written in the form u =(
u1, u2, . . . , up

)
). Let v be a legal sequence for g. Then, u ∗ v is a legal sequence

for f .

Proof of Lemma 0.20 (sketched). Write the sequence u in the form u =
(
u1, u2, . . . , up

)
.

Write the sequence v in the form v =
(
v1, v2, . . . , vq

)
. Then, the definition of u ∗ v

yields u ∗ v =
(
u1, u2, . . . , up, v1, v2, . . . , vq

)
.

We want to prove that the sequence u ∗ v is legal for f . In other words, we
want to prove that the sequence

(
u1, u2, . . . , up, v1, v2, . . . , vq

)
is legal for f (since

u ∗ v =
(
u1, u2, . . . , up, v1, v2, . . . , vq

)
). In other words, we want to prove that if we

start with the Z-configuration f , and fire the vertices u1, u2, . . . , up, v1, v2, . . . , vq one
by one (from first to last), then each vertex we fire is active at the time of firing.

This process can be subdivided into two phases: The phase where we fire the
first p vertices u1, u2, . . . , up will be called phase 1. It is followed by a phase where
we fire the next q vertices, which are v1, v2, . . . , vq; this latter phase will be called
phase 2.

We must prove that each vertex we fire in our process is active at the time of
firing. We call this the activity claim. This claim is obvious for the first p vertices
being fired (because these are the vertices u1, u2, . . . , up, and we already know that
the sequence

(
u1, u2, . . . , up

)
= u is legal for f ); in other words, the activity claim is

obvious for the vertices fired in phase 1. It thus remains to prove the activity claim
for the vertices fired in phase 2.

In phase 1, the Z-configuration f is transformed by firing all vertices in u (be-
cause the vertices u1, u2, . . . , up are precisely the vertices in u). Thus, the Z-configuration
obtained at the end of phase 1 is g (because g is defined as the Z-configuration ob-
tained from f by firing all vertices in u). In phase 2, this Z-configuration g is trans-
formed further by firing the vertices v1, v2, . . . , vq. Since the sequence

(
v1, v2, . . . , vq

)
is legal for g, we thus conclude that these vertices are active at the time of firing (in
phase 2). Hence, the activity claim for the vertices fired in phase 2 is proven. As
we have explained, this completes our proof of Lemma 0.20.

Lemma 0.21. Let f : V → Z be a Z-configuration. Let u =
(
u1, u2, . . . , up

)
be a

legal sequence for f such that ∆u1 + ∆u2 + · · ·+ ∆up = 0. Let k ∈ N. Then, the
sequence u∗k is legal for f .
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Proof of Lemma 0.21 (sketched). We want to prove that

the sequence u∗k is legal for f . (2)

We shall prove this by induction over k:
Induction base: The sequence u∗0 = () (the empty sequence) is clearly legal for f .

In other words, (2) holds for k = 0. This completes the induction base.
Induction step: Let K ∈ N. Assume that (2) holds for k = K. We must prove that

(2) holds for k = K + 1.
We have assumed that (2) holds for k = K. In other words, the sequence u∗K is

legal for f .
Let g be the Z-configuration obtained from f by firing all vertices in u. Thus,

g = f − ∆u1 − ∆u2 − · · · − ∆up = f −
(
∆u1 + ∆u2 + · · ·+ ∆up

)︸ ︷︷ ︸
=0

= f .

Hence, the sequence u∗K is legal for g (since the sequence u∗K is legal for f ). Thus,
Lemma 0.20 (applied to v = u∗K) shows that the sequence u ∗ u∗K is legal for f . In
other words, the sequence u∗(K+1) is legal for f (since u∗(K+1) = u ∗ u∗K). In other
words, (2) holds for k = K + 1. This completes the induction step.

Thus, (2) is proven. This proves Lemma 0.21.

Lemma 0.22. Let f : V → Z be a Z-configuration. Let ℓ = (ℓ1, ℓ2, . . . , ℓk) be a
legal sequence for f . Let i and j be two elements of {0, 1, . . . , k} such that i < j
and

f − ∆ℓ1 − ∆ℓ2 − · · · − ∆ℓi = f − ∆ℓ1 − ∆ℓ2 − · · · − ∆ℓj. (3)

Then:
(a) For every r ∈ N, the sequence (ℓ1, ℓ2, . . . , ℓi) ∗

(
ℓi+1, ℓi+2, . . . , ℓj

)∗r is legal
for f . (This is the sequence which begins with ℓ1, ℓ2, . . . , ℓi and then goes on
repeating the j − i elements ℓi+1, ℓi+2, . . . , ℓj for a total of r times.)

(b) There exist legal sequences (for f ) of arbitrary length.

Proof of Lemma 0.22 (sketched). If we subtract f − ∆ℓ1 − ∆ℓ2 − · · · − ∆ℓi from both
sides of (3), we obtain

0 = −∆ℓi+1 − ∆ℓi+2 − · · · − ∆ℓj.

Thus,
∆ℓi+1 + ∆ℓi+2 + · · ·+ ∆ℓj = 0. (4)

(a) Let r ∈ N. The sequence (ℓ1, ℓ2, . . . , ℓk) is legal for f . Thus, its prefix
(ℓ1, ℓ2, . . . , ℓi) is also legal for f .

Let g be the Z-configuration obtained from f by firing all vertices in (ℓ1, ℓ2, . . . , ℓi).
Thus, g = f − ∆ℓ1 − ∆ℓ2 − · · · − ∆ℓi. Then, the sequence

(
ℓi+1, ℓi+2, . . . , ℓj

)
is le-
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gal for g 2. Hence, Lemma 0.21 (applied to g, j − i,
(
ℓi+1, ℓi+2, . . . , ℓj

)
, ℓi+h

and r instead of f , p, u, uh and k) shows that the sequence
(
ℓi+1, ℓi+2, . . . , ℓj

)∗r

is legal for g (because of (4)). Hence, Lemma 0.20 (applied to (ℓ1, ℓ2, . . . , ℓi) and(
ℓi+1, ℓi+2, . . . , ℓj

)∗r instead of u and v) yields that (ℓ1, ℓ2, . . . , ℓi) ∗
(
ℓi+1, ℓi+2, . . . , ℓj

)∗r

is a legal sequence for f . This proves Lemma 0.22 (a).
(b) We must show that for each r ∈ N, there exists a legal sequence for f of

length r.
So let us fix r ∈ N. From i < j, we obtain j − i ≥ 1. Lemma 0.22 (a) shows

that the sequence (ℓ1, ℓ2, . . . , ℓi) ∗
(
ℓi+1, ℓi+2, . . . , ℓj

)∗r is legal for f . This sequence
has length i + r (j − i)︸ ︷︷ ︸

≥1

≥ i︸︷︷︸
≥0

+r ≥ r. Hence, the first r entries of this sequence

form a sequence of length r. This sequence is legal for f (being a prefix of the
legal sequence (ℓ1, ℓ2, . . . , ℓi) ∗

(
ℓi+1, ℓi+2, . . . , ℓj

)∗r). Hence, we have found a legal
sequence for f of length r. This proves Lemma 0.22 (b).

0.2.4. Bounds on legal sequences

This section is of technical nature; it will later be helpful in constructive proofs and
algorithms. You should probably skip it at first read.

Let us state a simple lemma for future use:

Lemma 0.23. Let f : V → Z be a Z-configuration. Let v1, v2, . . . , vN be any
vertices of D. Then,

∑ ( f − ∆v1 − ∆v2 − · · · − ∆vN) = ∑ f .

Proof of Lemma 0.23. We have

∑ ( f − ∆v1 − ∆v2 − · · · − ∆vN)

= ∑ f − ∑ (∆v1)− ∑ (∆v2)− · · · − ∑ (∆vN) = ∑ f

(since Proposition 0.12 yields ∑
(
∆vj
)
= 0 for each j ∈ {1, 2, . . . , N}). This proves

Lemma 0.23.

2Proof. We need to show that for each p ∈ {1, 2, . . . , j − i}, the vertex ℓi+p is active in the Z-
configuration g − ∆ℓi+1 − ∆ℓi+2 − · · · − ∆ℓi+p−1.

So let p ∈ {1, 2, . . . , j − i}. Then, the vertex ℓi+p is active in the Z-configuration f − ∆ℓ1 −
∆ℓ2 − · · · − ∆ℓi+p−1 (since the sequence (ℓ1, ℓ2, . . . , ℓk) is legal for f ). In view of

f − ∆ℓ1 − ∆ℓ2 − · · · − ∆ℓi+p−1 = ( f − ∆ℓ1 − ∆ℓ2 − · · · − ∆ℓi)︸ ︷︷ ︸
=g

−∆ℓi+1 − ∆ℓi+2 − · · · − ∆ℓi+p−1

= g − ∆ℓi+1 − ∆ℓi+2 − · · · − ∆ℓi+p−1,

this rewrites as follows: The vertex ℓi+p is active in the Z-configuration g − ∆ℓi+1 − ∆ℓi+2 −
· · · − ∆ℓi+p−1. But this is precisely what we needed to show.
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Next we state some inequality-type facts about legal sequences:

Lemma 0.24. Let f : V → N be a configuration. Let h = ∑ f . Let (ℓ1, ℓ2, . . . , ℓN)
be a legal sequence for f . Then, deg+ (ℓi) ≤ h for each i ∈ {1, 2, . . . , N}.

Proof of Lemma 0.24 (sketched). Fix i ∈ {1, 2, . . . , N}.
The sequence (ℓ1, ℓ2, . . . , ℓN) is legal for f . Thus, the vertex ℓi is active in the

Z-configuration f − ∆ℓ1 − ∆ℓ2 − · · · − ∆ℓi−1 (by the definition of a legal sequence).
In other words, ( f − ∆ℓ1 − ∆ℓ2 − · · · − ∆ℓi−1) (ℓi) ≥ deg+ (ℓi).

But the sequence (ℓ1, ℓ2, . . . , ℓN) is legal for f . Thus, f − ∆ℓ1 − ∆ℓ2 − · · · − ∆ℓi−1
is a configuration (since f is a configuration). Moreover, Lemma 0.23 (applied to
i − 1 and ℓp instead of N and vp) yields ∑ ( f − ∆ℓ1 − ∆ℓ2 − · · · − ∆ℓi−1) = ∑ f = h.
Hence, Proposition 0.6 (applied to f − ∆ℓ1 − ∆ℓ2 − · · · − ∆ℓi−1 and ℓi instead of f
and w) yields ( f − ∆ℓ1 − ∆ℓ2 − · · · − ∆ℓi−1) (ℓi) ≤ h. Hence,

h ≥ ( f − ∆ℓ1 − ∆ℓ2 − · · · − ∆ℓi−1) (ℓi) ≥ deg+ (ℓi) .

This proves Lemma 0.24.

Lemma 0.25. Let f : V → N be a configuration. Let h = ∑ f . Let ℓ be a legal
sequence for f .

Let a be an arc of D. Let u be the source of a, and let v be the target of a.
(a) If u appears more than h times in the sequence ℓ, then v must appear at

least once in the sequence ℓ.
(b) Fix k ∈ N. If u appears more than kh times in the sequence ℓ, then v must

appear at least k times in the sequence ℓ.

Proof of Lemma 0.25 (sketched). (b) Assume that u appears more than kh times in the
sequence ℓ. We must prove that v must appear at least k times in the sequence ℓ.

Assume the contrary. Thus, v appears less than k times in the sequence ℓ. In
other words, v appears at most k − 1 times in the sequence ℓ.

Write the sequence ℓ in the form ℓ = (ℓ1, ℓ2, . . . , ℓN). Then, (ℓ1, ℓ2, . . . , ℓN) = ℓ is
a legal sequence for f . Hence, f − ∆ℓ1 − ∆ℓ2 − · · · − ∆ℓN is a configuration (since
f is a configuration). Denote this configuration by f ′. Thus, f ′ = f − ∆ℓ1 − ∆ℓ2 −
· · · − ∆ℓN.

At least one arc of D has source u and target v (namely, a). Thus, au,v ≥ 1. Thus,

aw,v ≥ [w = u] for each vertex w ∈ V (5)

(because if w ̸= u, then this is obvious, but for w = u it follows from au,v ≥ 1).
From f ′ = f − ∆ℓ1 − ∆ℓ2 − · · · − ∆ℓN, we obtain

∑ f ′ = ∑ ( f − ∆ℓ1 − ∆ℓ2 − · · · − ∆ℓN)

= ∑ f
(
by Lemma 0.23, applied to vp = ℓp

)
= h.
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Hence, Proposition 0.6 (applied to f ′ and v instead of f and w) yields f ′ (v) ≤ h.
Also, f (v) ≥ 0 (since f is a configuration). Furthermore, every i ∈ {1, 2, . . . , N}

satisfies

(∆ℓi) (v) = [v = ℓi] deg+ (ℓi)︸ ︷︷ ︸
≤h

(by Lemma 0.24)

− aℓi,v︸︷︷︸
≥[ℓi=u]
(by (5))

(by the definition of ∆ℓi)

≤ [v = ℓi] h − [ℓi = u] . (6)

But f ′ = f − ∆ℓ1 − ∆ℓ2 − · · · − ∆ℓN. Hence,

f ′ (v) = ( f − ∆ℓ1 − ∆ℓ2 − · · · − ∆ℓN) (v) = f (v)︸︷︷︸
≥0

−
N

∑
i=1

(∆ℓi) (v)

≥ −
N

∑
i=1

(∆ℓi) (v)︸ ︷︷ ︸
≤[v=ℓi]h−[ℓi=u]

(by (6))

≥ −
N

∑
i=1

([v = ℓi] h − [ℓi = u])

= −
N

∑
i=1

[v = ℓi]︸ ︷︷ ︸
=(the number of all i∈{1,2,...,N} such that v=ℓi)

≤k−1
(since v appears at most k−1 times in the sequence ℓ)

h

+
N

∑
i=1

[ℓi = u]︸ ︷︷ ︸
=(the number of all i∈{1,2,...,N} such that ℓi=u)

>kh
(since u appears more than kh times in the sequence ℓ)

> − (k − 1) h + kh = h.

This contradicts f ′ (v) ≤ h. This contradiction proves that our assumption was
wrong. Thus, Lemma 0.25 (b) is proven.

(a) Lemma 0.25 (a) follows by applying Lemma 0.25 (b) to k = 1.

Lemma 0.26. Let f : V → N be a configuration. Let h = ∑ f . Let ℓ be a legal
sequence for f .

Let u and v be two vertices of D such that there exists a path of length d from
u to v.

If u appears at least h0 + h1 + · · · + hd times in the sequence ℓ, then v must
appear at least once in the sequence ℓ.

Proof of Lemma 0.26. We shall prove Lemma 0.26 by induction over d:
Induction base: If d = 0, then u = v. Thus, if d = 0, then Lemma 0.26 holds for

obvious reasons. This completes the induction base.
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Induction step: Fix a positive integer e. Assume (as the induction hypothesis) that
Lemma 0.26 holds for d = e − 1. We must show that Lemma 0.26 holds for d = e.

Let f , h, ℓ, u, v and d be as in Lemma 0.26, and assume that d = e. Assume that
u appears at least h0 + h1 + · · ·+ hd times in the sequence ℓ. We must show that v
must appear at least once in the sequence ℓ.

There exists a path of length d from u to v. Fix such a path, and let w be its
second vertex. (This is well-defined, since this path has length d = e > 0.) Then,
the path can be split into a single arc from u to w, and a path of length d − 1 from
w to v. Let us denote this arc from u to w by a. Thus, a is an arc with source u and
target w.

We have assumed that u appears at least h0 + h1 + · · ·+ hd times in the sequence
ℓ. Since

h0 + h1 + · · ·+ hd = h0︸︷︷︸
=1>0

+ h1 + h2 + · · ·+ hd︸ ︷︷ ︸
=(h0+h1+···+hd−1)h

>
(

h0 + h1 + · · ·+ hd−1
)

h,

we thus conclude that u appears more than
(
h0 + h1 + · · ·+ hd−1) h times in the

sequence ℓ. Thus, Lemma 0.25 (b) (applied to h0 + h1 + · · ·+ hd−1 and w instead
of k and v) shows that w must appear at least h0 + h1 + · · · + hd−1 times in the
sequence ℓ.

But d − 1 = e − 1 (since d = e). Hence, by the induction hypothesis, we can
apply Lemma 0.26 to w and d − 1 instead of u and d (since there exists a path of
length d − 1 from w to v). We thus conclude that v must appear at least once in the
sequence ℓ. This completes the induction step. Thus, Lemma 0.26 is proven.

Proposition 0.27. Let f : V → N be a configuration. Let h = ∑ f . Let ℓ be a legal
sequence for f . Let n = |V|.

Let q be a vertex of D such that for each vertex u ∈ V, there exists a path from
u to q.

If the length of ℓ is > (n − 1)
(
h1 + h2 + · · ·+ hn−1), then q must appear at

least once in the sequence ℓ.

Proof of Proposition 0.27. Assume that the length of ℓ is > (n − 1)
(
h1 + h2 + · · ·+ hn−1).

We must prove that q must appear at least once in the sequence ℓ.
Assume the contrary. Thus, q never appears in the sequence ℓ. Hence, all entries

of ℓ are elements of V \ {q}.
Now, let u ∈ V \ {q} be arbitrary. Then,

u appears at most h1 + h2 + · · ·+ hn−1 times in the sequence ℓ. (7)

[Proof of (7): Assume the contrary.3 Thus, u appears more than h1 + h2 + · · ·+
hn−1 times in the sequence ℓ. In other words, u appears at least

(
h1 + h2 + · · ·+ hn−1)+

1 times in the sequence ℓ.

3Yes, this is a proof by contradiction inside a proof by contradiction.
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But u ∈ V \ {q} ⊆ V. Thus, there exists a path from u to q (by one of the
assumptions of Proposition 0.27). Consider such a path p. Let d be the length of
this path p. The vertices of this path p are distinct (since it is a path), and belong
to the n-element set V. Thus, this path p has at most n vertices; in other words, it
has length ≤ n − 1. In other words, d ≤ n − 1 (since we have denoted the length of
the path p by d). Hence, n − 1 ≥ d.

But recall that u appears at least
(
h1 + h2 + · · ·+ hn−1)+ 1 times in the sequence

ℓ. Thus, u appears at least(
h1 + h2 + · · ·+ hn−1

)
+ 1︸︷︷︸

=h0

=
(

h1 + h2 + · · ·+ hn−1
)
+ h0 = h0 + h1 + · · ·+ hn−1

≥ h0 + h1 + · · ·+ hd (since n − 1 ≥ d)

times in the sequence ℓ. Hence, Lemma 0.26 (applied to v = q) yields that q must
appear at least once in the sequence ℓ (since there exists a path of length d from
u to q (namely, the path p)). This contradicts the fact that q never appears in the
sequence ℓ. This proves (7).]

Now, forget that we fixed u. We thus have proven (7) for each u ∈ V \ {q}.
Notice that |V \ {q}| = |V|︸︷︷︸

=n

−1 = n − 1. In other words, there are n − 1 elements

of V \ {q}.
The sequence ℓ consists of elements of V \ {q} (since all entries of ℓ are ele-

ments of V \ {q}), and contains each of these elements at most h1 + h2 + · · ·+ hn−1

times (by (7)). Hence, it has at most (n − 1)
(
h1 + h2 + · · ·+ hn−1) elements in total

(because there are n − 1 elements of V \ {q}). In other words, the length of ℓ is
≤ (n − 1)

(
h1 + h2 + · · ·+ hn−1). This contradicts the fact that the length of ℓ is

> (n − 1)
(
h1 + h2 + · · ·+ hn−1). This shows that our assumption was wrong; this

proves Proposition 0.27.

Proposition 0.28. Let f : V → N be a configuration. Let h = ∑ f . Let ℓ =
(ℓ1, ℓ2, . . . , ℓk) be a legal sequence for f . Let i ∈ {0, 1, . . . , k}. Let g = f −
∆ℓ1 − ∆ℓ2 − · · · − ∆ℓi be the configuration obtained from f by firing the vertices
ℓ1, ℓ2, . . . , ℓi.

Then, g ∈ {0, 1, . . . , h}V . (In other words, g (v) ∈ {0, 1, . . . , h} for each v ∈ V.)

Proof of Proposition 0.28. Fix v ∈ V.
The sequence ℓ is legal for f . Thus, the sequence (ℓ1, ℓ2, . . . , ℓi) (being a prefix of

ℓ) is also legal for f . Hence, f − ∆ℓ1 − ∆ℓ2 − · · · − ∆ℓi is a configuration (since f is
a configuration). In other words, g is a configuration (since g = f − ∆ℓ1 − ∆ℓ2 −
· · · − ∆ℓi). Thus, g (v) ≥ 0.

On the other hand, from g = f − ∆ℓ1 − ∆ℓ2 − · · · − ∆ℓi, we obtain

∑ g = ∑ ( f − ∆ℓ1 − ∆ℓ2 − · · · − ∆ℓi)

= ∑ f
(
by Lemma 0.23, applied to N = i and vp = ℓp

)
= h.
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Hence, Proposition 0.6 (applied to g and v instead of f and w) shows that g (v) ≤ h.
Combined with g (v) ≥ 0, this yields g (v) ∈ {0, 1, . . . , h}.

Now, forget that we fixed v. We thus have shown that g (v) ∈ {0, 1, . . . , h} for
each v ∈ V. In other words, g ∈ {0, 1, . . . , h}V . This proves Proposition 0.28.

Proposition 0.29. Let f : V → N be a configuration. Let h = ∑ f . Let n = |V|.
Let ℓ be a legal sequence for f . If the sequence ℓ has length ≥ (h + 1)n, then
there exist legal sequences (for f ) of arbitrary length.

Proof of Proposition 0.29. Assume that the sequence ℓ has length ≥ (h + 1)n. We
must prove that there exist legal sequences (for f ) of arbitrary length.

Write the sequence ℓ in the form ℓ = (ℓ1, ℓ2, . . . , ℓk). Thus, k ≥ (h + 1)n (since ℓ
has length ≥ (h + 1)n).

For each i ∈ {0, 1, . . . , k}, we have f − ∆ℓ1 − ∆ℓ2 − · · · − ∆ℓi ∈ {0, 1, . . . , h}V (by
Proposition 0.28, applied to g = f − ∆ℓ1 − ∆ℓ2 − · · · − ∆ℓi). In other words, all
the k + 1 configurations f − ∆ℓ1 − ∆ℓ2 − · · · − ∆ℓi (with i ∈ {0, 1, . . . , k}) belong
to the set {0, 1, . . . , h}V . But the set {0, 1, . . . , h}V has exactly (h + 1)n elements4.
Since k + 1 > k ≥ (h + 1)n, we thus conclude (by the pigeonhole principle) that two
of the k + 1 configurations f − ∆ℓ1 − ∆ℓ2 − · · · − ∆ℓi (with i ∈ {0, 1, . . . , k}) must
be equal (because all these k + 1 configurations belong to {0, 1, . . . , h}V). In other
words, there exist two elements i and j of {0, 1, . . . , k} satisfying i < j and

f − ∆ℓ1 − ∆ℓ2 − · · · − ∆ℓi = f − ∆ℓ1 − ∆ℓ2 − · · · − ∆ℓj.

Consider these i and j. Then, Lemma 0.22 (b) yields that there exist legal sequences
(for f ) of arbitrary length. This proves Proposition 0.29.

0.2.5. Finitary and infinitary configurations, and stabilization

Definition 0.30. Let f : V → N be a configuration.
We say that f is finitary if there exists a sequence of vertices that is stabilizing

for f . Otherwise, we say that f is infinitary.

Theorem 0.31. Let f : V → N be a configuration. Then, exactly one of the
following two statements holds:

• Statement 1: The configuration f is finitary.

There exists a sequence s of vertices that is both legal and stabilizing for f .

All such sequences are permutations of s.

4since∣∣∣{0, 1, . . . , h}V
∣∣∣ = |{0, 1, . . . , h}||V| = (h + 1)n (because |{0, 1, . . . , h}| = h + 1 and |V| = n)
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All legal sequences (for f ) are subpermutations of s, and in particular are
at most as long as s.

• Statement 2: The configuration f is infinitary.

There exists no stabilizing sequence for f .

There exist legal sequences for f of arbitrary length. More precisely, each
legal sequence for f can be extended to a longer legal sequence.

Proof of Theorem 0.31. Set h = ∑ f and n = |V|.
Consider the following simple algorithm:

• Start with the configuration f .

• Search for an active vertex. If you find one, fire it. Keep doing so until you
either can no longer find an active vertex or you have fired (h + 1)n many
vertices5.

• Say you are in Case 1 if you have stopped because you could no longer find
an active vertex. Say you are in Case 2 if you have stopped because you have
fired (h + 1)n many vertices.

Now, let us consider Case 1 first. In this case, you have stopped because you
could no longer find an active vertex. Thus, you have arrived at a stable configu-
ration. Let s be the sequence of vertices you have fired during the algorithm (from
first to last). Then, the sequence s is legal (because you have only fired active ver-
tices) and stabilizing (since you have arrived at a stable configuration). Thus, there
exists a sequence of vertices that is both legal and stabilizing for f (namely, s).
In particular, there exists a sequence of vertices that is stabilizing for f . In other
words, f is finitary. Thus, f is not infinitary. Hence, Statement 2 cannot hold.

Furthermore, Corollary 0.18 (a) shows that every sequence of vertices that is both
legal and stabilizing is a permutation of s. In other words, all such sequences are
permutations of s.

Finally, Theorem 0.15 shows that all legal sequences (for f ) are subpermutations
of s (since s is stabilizing), and therefore in particular are at most as long as s (since
a subpermutation of s is always at most as long as s).

Hence, Statement 1 holds. Thus, exactly one of the two Statements 1 and 2 holds
(namely, Statement 1, but not Statement 2). Theorem 0.31 is thus proven in Case 1.

Let us now consider Case 2. In this case, you have stopped because you have fired
(h + 1)n many vertices. Let ℓ be the sequence of vertices you have fired during the
algorithm (from first to last). Then, the sequence ℓ is legal (because you have only
fired active vertices) and has length (h + 1)n (since you have fired (h + 1)n many
vertices). Hence, Proposition 0.29 shows that there exist legal sequences (for f ) of

5Of course, many of these vertices will be equal.
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arbitrary length. Thus, there exists no stabilizing sequence for f 6. Hence, the
configuration f is infinitary. In other words, f is not finitary. Therefore, Statement
1 does not hold.

Each legal sequence for f can be extended to a longer legal sequence7. Thus,
Statement 2 holds. Thus, exactly one of the two Statements 1 and 2 holds (namely,
Statement 2, but not Statement 1). Theorem 0.31 is thus proven in Case 2.

We have now proven Theorem 0.31 in both Cases 1 and 2. Hence, Theorem 0.31
is always proven.

How do we actually tell whether a given configuration f is finitary or infinitary?
We simply follow the algorithm given in the proof of Proposition 0.29: Keep firing
active vertices over and over until either no more active vertices remain, or you have
fired (h + 1)n many times (where h = ∑ f and n = |V|). In the former case, f is
finitary (and the sequence of vertices you have fired is a legal stabilizing sequence
for f ). In the latter case, f is infinitary (by Proposition 0.29, since the sequence
of vertices you have fired is a legal sequence of length ≥ (h + 1)n). Needless to
say, this algorithm is extremely slow and inefficient in practice, but to some extent
this slowness is unavoidable: A finitary configuration may require a huge number
of firings before it stabilizes. Nevertheless, there are faster algorithms in many
particular cases; this is a subject of ongoing research.

There are also criteria which, in certain cases, guarantee that a configuration is
finitary or infinitary. For example, the following is not hard to show:

Proposition 0.32. Let f : V → N be a configuration with ∑ f > |A| − |V|. Then,
f is infinitary.

Proof of Proposition 0.32. Let s be a sequence of vertices that is stabilizing for f . We
shall derive a contradiction.

Let g be the configuration obtained from f by firing the vertices in s. Thus, g is
stable (since s is stabilizing for f ). In other words, there are no active vertices in g.

6Proof. Let s be a stabilizing sequence for f . Then, there exists a legal sequence ℓ for f that is
longer than s (since there exist legal sequences (for f ) of arbitrary length). Consider such an ℓ.
But Theorem 0.15 shows that ℓ is a subpermutation of s. Hence, ℓ is at most as long as s (since
a subpermutation of s is always at most as long as s). This contradicts the fact that ℓ is longer
than s.

Now, forget that we fixed s. We thus have found a contradiction for each stabilizing sequence
s for f . Thus, there exists no stabilizing sequence for f .

7Proof. Let ℓ be a legal sequence for f . We must prove that ℓ can be extended to a longer legal
sequence.

The sequence ℓ is not stabilizing (since there exists no stabilizing sequence for f ). Thus, if we
start with f and fire all vertices of ℓ, we end up with a configuration f ′ that is not stable. Hence,
the configuration f ′ has at least one active vertex; consider such a vertex, and denote it by v.
Append the vertex v to the end of the sequence ℓ, and denote the resulting sequence by ℓ′. Then,
ℓ′ is a legal sequence for f (since v is an active vertex in f ′). Thus, ℓ can be extended to a longer
legal sequence (namely, to ℓ′). Qed.
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Write the sequence s in the form s = (s1, s2, . . . , sN). Then, g = f − ∆s1 − ∆s2 −
· · · − ∆sN (since g is obtained from f by firing the vertices in s). Hence, ∑ g =
∑ ( f − ∆s1 − ∆s2 − · · · − ∆sN) = ∑ f (by Lemma 0.23, applied to vi = si).

A well-known fact (shown, e.g., during [Grinbe17a, solution to Exercise 4]) says
that ∑

v∈V
deg+ v = |A|. Thus,

∑
v∈V

(
deg+ v − 1

)
= ∑

v∈V
deg+ v︸ ︷︷ ︸
=|A|

− ∑
v∈V

1︸ ︷︷ ︸
=|V|

= |A| − |V| .

But the definition of ∑ g yields

∑
v∈V

g (v) = ∑ g = ∑ f > |A| − |V| = ∑
v∈V

(
deg+ v − 1

)
. (8)

Hence, there exists at least one v ∈ V satisfying g (v) > deg+ v − 1 (because
otherwise, each v ∈ V would satisfy g (v) ≤ deg+ v − 1, so that we would get
∑

v∈V
g (v)︸︷︷︸

≤deg+ v−1

≤ ∑
v∈V

(
deg+ v − 1

)
, which would contradict (8)). In other words,

there exists at least one v ∈ V satisfying g (v) ≥ deg+ v (since g (v) and deg+ v are
integers). In other words, there exists at least one active vertex v ∈ V in g. This
contradicts the fact that there are no active vertices in g.

Now, forget that we fixed s. We thus have obtained a contradiction whenever s
is a sequence of vertices that is stabilizing for f . Hence, there exists no sequence
of vertices that is stabilizing for f . In other words, f is infinitary. This proves
Proposition 0.32.

Conversely, the results of Exercise 3 can be viewed as bounds on ∑ f that guar-
antee that f must be finitary.

Definition 0.33. Let f : V → N be a finitary configuration. Then, Statement 1
in Theorem 0.31 must hold. Therefore, there exists a sequence s of vertices that
is both legal and stabilizing for f . The stabilization of f means the configuration
obtained from f by firing all vertices in s (one after the other). (This does not
depend on the choice of s, because of Corollary 0.18 (d).)

The stabilization of f is denoted by f ◦.

0.2.6. q-stabilization

Something similar holds if we forbid firing a specific vertex:

Definition 0.34. Let q ∈ V. Let f : V → Z be a Z-configuration.
The Z-configuration f is said to be q-stable if no vertex v ∈ V except (possibly)

q is active in f .
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So the vertex q may and may not be active in a q-stable configuration; but no
other vertex is allowed to be active.

Definition 0.35. Let q ∈ V.
Let f : V → Z be a Z-configuration.
Let (v1, v2, . . . , vk) be a sequence of vertices of D.
(a) The sequence (v1, v2, . . . , vk) is said to be q-legal for f if it is legal and does

not contain the vertex q.
(b) The sequence (v1, v2, . . . , vk) is said to be q-stabilizing for f if the Z-

configuration f − ∆v1 − ∆v2 − · · · − ∆vk is q-stable (i.e., has no active vertices
except (possibly) q).

We can now define “q-finitary” and “q-infinitary” and obtain an analogue of
Theorem 0.31. But the most commonly considered case is that when q is a “global
sink” (a vertex with no outgoing arcs, and which is reachable from any vertex), and
in this case every configuration is q-finitary. Let us state this as its own result:

Theorem 0.36. Let f : V → N be a configuration. Let q ∈ V. Assume that for
each vertex u ∈ V, there exists a path from u to q. Then, there exists a sequence
s of vertices that is both q-legal and q-stabilizing for f . All such sequences are
permutations of s. All q-legal sequences (for f ) are subpermutations of s, and in
particular are at most as long as s.

Before we can prove this, let us state the analogue of Theorem 0.15 for q-legal
and q-stabilizing sequences:

Theorem 0.37. Let f : V → Z be any Z-configuration. Let q ∈ V. Let ℓ and s be
two sequences of vertices of D such that ℓ is q-legal for f while s is q-stabilizing
for f . Then, ℓ is a subpermutation of s.

Proof of Theorem 0.37. This proof is completely analogous to the proof of Theo-
rem 0.15 above. (Of course, you should use that none of the ℓi can be equal to
q.)

We also get an analogue of Corollary 0.18:

Corollary 0.38. Let f : V → N be any configuration. Let q ∈ V. Let ℓ and ℓ′ be
two sequences of vertices of D that are both q-legal and q-stabilizing for f . Then:

(a) The sequence ℓ′ is a permutation of ℓ.
In particular:
(b) The sequences ℓ and ℓ′ have the same length.
(c) For each t ∈ V, the number of times t appears in ℓ′ equals the number of

times t appears in ℓ.
(d) The configuration obtained from f by firing all vertices in ℓ (one after the

other) equals the configuration obtained from f by firing all vertices in ℓ′ (one
after the other).
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Proof of Corollary 0.38. This proof is completely analogous to the proof of Corol-
lary 0.18 above. (Of course, Theorem 0.37 needs to be used now instead of Theo-
rem 0.15.)

Proof of Theorem 0.36. This is somewhat similar to how we proved Theorem 0.31,
but there will be a twist.

Set h = ∑ f and n = |V|.
Consider the following simple algorithm:

• Start with the configuration f .

• Search for an active vertex distinct from q. If you find one, fire it. Keep doing
so until you either can no longer find an active vertex distinct from q or you
have fired (n − 1)

(
h1 + h2 + · · ·+ hn−1)+ 1 many vertices8.

• Say you are in Case 1 if you have stopped because you could no longer find
an active vertex distinct from q. Say you are in Case 2 if you have stopped
because you have fired (n − 1)

(
h1 + h2 + · · ·+ hn−1)+ 1 many vertices.

Now, let us consider Case 1 first. In this case, you have stopped because you
could no longer find an active vertex distinct from q. Thus, you have arrived at
a q-stable configuration. Let s be the sequence of vertices you have fired during
the algorithm (from first to last). Then, the sequence s is q-legal (because you have
only fired active vertices distinct from q) and q-stabilizing (since you have arrived
at a q-stable configuration). Thus, there exists a sequence of vertices that is both
q-legal and q-stabilizing for f (namely, s). Hence, Corollary 0.38 (a) shows that
every sequence of vertices that is both q-legal and q-stabilizing is a permutation of
s. In other words, all such sequences are permutations of s.

Finally, Theorem 0.37 shows that all q-legal sequences (for f ) are subpermuta-
tions of s (since s is q-stabilizing), and therefore in particular are at most as long as
s (since a subpermutation of s is always at most as long as s). Theorem 0.36 is thus
proven in Case 1.

Let us now consider Case 2. In this case, you have stopped because you have
fired (n − 1)

(
h1 + h2 + · · ·+ hn−1) + 1 many vertices. Let ℓ be the sequence of

vertices you have fired during the algorithm (from first to last). Then, the se-
quence ℓ is legal (because you have only fired active vertices) and has length
(n − 1)

(
h1 + h2 + · · ·+ hn−1)+ 1 (since you have fired (n − 1)

(
h1 + h2 + · · ·+ hn−1)+

1 many vertices). Also, the sequence ℓ does not contain the vertex q (since you have
only fired vertices distinct from q).

The length of the sequence ℓ is
(n − 1)

(
h1 + h2 + · · ·+ hn−1)+ 1 > (n − 1)

(
h1 + h2 + · · ·+ hn−1). Hence, Propo-

sition 0.27 shows that q must appear at least once in the sequence ℓ. This contradicts
the fact that the sequence ℓ does not contain the vertex q. This contradiction shows
that Case 2 cannot happen. Thus, the only possible case is Case 1.

8Of course, many of these vertices will be equal.
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But we have proven Theorem 0.36 in Case 1. Thus, Theorem 0.36 always holds.

Definition 0.39. Let f : V → N be a configuration. Let q ∈ V. Assume that for
each vertex u ∈ V, there exists a path from u to q. Then, Theorem 0.36 shows
that there exists a sequence s of vertices that is both q-legal and q-stabilizing
for f . The q-stabilization of f means the configuration obtained from f by firing
all vertices in s (one after the other). (This does not depend on the choice of s,
because of Corollary 0.38 (d).)

0.3. Exercise 1: better bounds for legal sequences

The following exercise improves on the bound given in Proposition 0.29 and also
on the one given in Proposition 0.279. I don’t know whether the improved bounds
can be further improved.

Exercise 1. Fix a multidigraph D = (V, A, ϕ). Let f : V → N be a configuration.
Let h = ∑ f . Let n = |V|. Assume that n > 0.

Let ℓ = (ℓ1, ℓ2, . . . , ℓk) be a legal sequence for f having length k ≥
(

n + h − 1
n − 1

)
.

Prove the following:
(a) There exist legal sequences (for f ) of arbitrary length.
(b) Let q be a vertex of D such that for each vertex u ∈ V, there exists a path

from u to q. Then, q must appear at least once in the sequence ℓ.
[Hint: For (a), apply the same pigeonhole-principle argument as for Proposi-

tion 0.29.]

In the solution of Exercise 1, the following classical fact will turn out useful:

Proposition 0.40. Let n ∈ N and h ∈ N be such that n > 0. The number of
n-tuples (a1, a2, . . . , an) of nonnegative integers satisfying a1 + a2 + · · ·+ an = h

is
(

n + h − 1
n − 1

)
.

Proof of Proposition 0.40. See, for example, https://math.stackexchange.com/questions/
36250/number-of-monomials-of-certain-degree for a proof of this fact (in the
language of monomials). Or see [Stanle11, §1.2] (search for “weak composition”
and read the first paragraph that comes up). Or see [Galvin17, Proposition 13.3]
(in the case h > 0; but the case h = 0 is trivial).

9To see that Exercise 1 (b) improves on the bound given in Proposition 0.27, we need to check that

(n − 1)
(
h1 + h2 + · · ·+ hn−1)+ 1 ≥

(
n + h − 1

n − 1

)
. This is easy for n ≤ 1 (in fact, the case n = 0

is impossible due to the existence of a q ∈ V, and the case n = 1 is an equality case). In the

remaining case n ≥ 2, the stronger inequality 1 + h1 + h2 + · · · + hn−1 ≥
(

n + h − 1
n − 1

)
can be

proven by a simple induction over n.

https://math.stackexchange.com/questions/36250/number-of-monomials-of-certain-degree
https://math.stackexchange.com/questions/36250/number-of-monomials-of-certain-degree
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Hints to Exercise 1. For each i ∈ {0, 1, . . . , k}, the Z-configuration f − ∆ℓ1 − ∆ℓ2 −
· · · − ∆ℓi is a configuration (since the sequence (ℓ1, ℓ2, . . . , ℓk) is legal for f ). More-
over, each of the k+ 1 configurations f −∆ℓ1 −∆ℓ2 −· · ·−∆ℓi (with i ∈ {0, 1, . . . , k})
has exactly h chips10.

There exist precisely
(

n + h − 1
n − 1

)
configurations having exactly h chips11. Since

k + 1 > k ≥
(

n + h − 1
n − 1

)
, we thus conclude (by the pigeonhole principle) that two

of the k + 1 configurations f − ∆ℓ1 − ∆ℓ2 − · · · − ∆ℓi (with i ∈ {0, 1, . . . , k}) must
be equal (because all these k + 1 configurations are configurations having exactly
h chips). In other words, there exist two elements i and j of {0, 1, . . . , k} satisfying
i < j and

f − ∆ℓ1 − ∆ℓ2 − · · · − ∆ℓi = f − ∆ℓ1 − ∆ℓ2 − · · · − ∆ℓj. (9)

Consider these i and j. Hence, Lemma 0.22 (a) shows that there exist legal se-
quences (for f ) of arbitrary length. This solves Exercise 1 (a).

10Proof. Let i ∈ {0, 1, . . . , k}. Then,

∑ ( f − ∆ℓ1 − ∆ℓ2 − · · · − ∆ℓi)︸ ︷︷ ︸
= f−

i
∑

j=1
∆ℓj

= ∑
(

f −
i

∑
j=1

∆ℓj

)
= ∑ f︸︷︷︸

=h

−
i

∑
j=1

∑
(
∆ℓj
)︸ ︷︷ ︸

=0
(since ∑(∆v)=0

for each vertex v)

= h −
i

∑
j=1

0︸︷︷︸
=0

= h.

In other words, the configuration f − ∆ℓ1 − ∆ℓ2 − · · · − ∆ℓi has exactly h chips.
11Proof. Recall that N denotes the set of nonnegative integers.

Let v1, v2, . . . , vn be the vertices of D (listed with no repetitions). Then, there is a bijection

{configurations on D} → Nn,
f 7→ ( f (v1) , f (v2) , . . . , f (vn)) .

This bijection restricts to a bijection

{configurations on D having exactly h chips} → {(a1, a2, . . . , an) ∈ Nn | a1 + a2 + · · ·+ an = h} ,
f 7→ ( f (v1) , f (v2) , . . . , f (vn))

(since the number of chips in a configuration f on D is ∑ f = f (v1) + f (v2) + · · · + f (vn)).
Hence,

|{configurations on D having exactly h chips}|
= |{(a1, a2, . . . , an) ∈ Nn | a1 + a2 + · · ·+ an = h}|

=

(
n + h − 1

n − 1

)
(by Proposition 0.40) .

In other words, there exist precisely
(

n + h − 1
n − 1

)
configurations having exactly h chips.
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(b) Define an r ∈ N by r = (n − 1)
(
h1 + h2 + · · ·+ hn−1) + 1. Let ℓ′ be the

sequence (ℓ1, ℓ2, . . . , ℓi) ∗
(
ℓi+1, ℓi+2, . . . , ℓj

)∗r. Lemma 0.22 (b) thus shows that this
sequence ℓ′ is legal for f . But the length of this sequence ℓ′ is

i︸︷︷︸
≥0

+r (j − i)︸ ︷︷ ︸
≥1

(since i<j)

≥ 0 + r · 1 = r = (n − 1)
(

h1 + h2 + · · ·+ hn−1
)
+ 1

> (n − 1)
(

h1 + h2 + · · ·+ hn−1
)

.

Hence, Proposition 0.27 (applied to ℓ′ instead of ℓ) yields that q must appear at
least once in the sequence ℓ′. Therefore, q must also appear at least once in the
sequence ℓ (since each entry of ℓ′ is an entry of ℓ). This solves Exercise 1 (b).

0.4. Exercise 2: examples of chip-firing

We identify each simple digraph (V, A) with the multidigraph (V, A, ι), where ι is
the map V → A × A that sends each arc a ∈ A to itself.
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Exercise 2. (a) Let D be the following simple digraph:

u // v // q

(i.e., the digraph D with three vertices u, v, q and two arcs uv, vq).
Let k be a positive integer. Consider the configuration gk on D which has k

chips at u and 0 chips at each other vertex.
Find the q-stabilization of gk.
(b) Let D be the following simple digraph:

u v // q

where a curve without an arrow stands for one arc in each direction. (Thus, for-
mally speaking, the digraph D has three vertices u, v, q and three arcs uv, vu, vq.)

Let k be a positive integer. Consider the configuration gk on D which has k
chips at u and 0 chips at each other vertex.

Find the q-stabilization of gk.
(c) Let D be the following simple digraph:

v

��

u

��

w

��

q

where a curve without an arrow stands for one arc in each direction. (Thus,
formally speaking, the digraph D has four vertices u, v, w, q and nine arcs
uv, vu, vw, wv, wu, uw, uq, vq, wq.)

Let k ≥ 2 be an integer. Consider the configuration fk on D which has k chips
at each vertex (i.e., which has fk (v′) = k for each v′ ∈ {u, v, w, q}).

Find the q-stabilization of fk.

Before we approach this exercise, let us introduce a simple notation:

Definition 0.41. If k and k′ are two configurations on D, then k ∗→ k′ shall mean
that there exists a legal sequence ℓ for k such that firing all vertices in ℓ (one after
the other) transforms k into k′. Thus, we have defined a binary relation ∗→ on the
set of all configurations of D.

Proposition 0.42. (a) The binary relation ∗→ is reflexive (i.e., each configuration
k satisfies k ∗→ k) and transitive (i.e., every three configurations k1, k2 and k3

satisfying k1
∗→ k2 and k2

∗→ k3 satisfy k1
∗→ k3).

(b) If c, k and k′ are three configurations satisfying k ∗→ k′, then c + k ∗→ c + k′.
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Proof of Proposition 0.42 (sketched). (a) Each configuration k satisfies k ∗→ k (because
the empty sequence () is legal for k, and clearly firing all vertices in the empty
sequence () transforms k into k). Thus, the relation ∗→ is reflexive. It now remains
to prove that the relation ∗→ is transitive.

Let k1, k2 and k3 be three configurations satisfying k1
∗→ k2 and k2

∗→ k3. We shall
show that k1

∗→ k3.
From k1

∗→ k2, we conclude that there exists a legal sequence ℓ1 for k1 such that
firing all vertices in ℓ1 transforms k1 into k2. Consider this ℓ1.

From k2
∗→ k3, we conclude that there exists a legal sequence ℓ2 for k2 such that

firing all vertices in ℓ2 transforms k2 into k3. Consider this ℓ2.
Write the sequences ℓ1 and ℓ2 as ℓ1 =

(
v1, v2, . . . , vp

)
and ℓ2 =

(
w1, w2, . . . , wq

)
.

Let ℓ be the sequence ℓ1 ∗ ℓ2 =
(
v1, v2, . . . , vp, w1, w2, . . . , wq

)
. (We are using the

notation from Definition 0.19 here.) Then, firing all vertices in ℓ transforms k1 into
k3 (because the first p firings transform k1 into k2, and from there on the remaining
q firings take us to k3). Moreover, this sequence ℓ = ℓ1 ∗ ℓ2 is legal for k1 (by
Lemma 0.20, applied to k1, ℓ1, k2 and ℓ2 instead of f , u, g and v).

We thus have found a legal sequence ℓ for k1 such that firing all vertices in ℓ (one
after the other) transforms k1 into k3. Hence, such a legal sequence ℓ exists. In
other words, k1

∗→ k3 (by the definition of the relation ∗→).
We thus have shown that every three configurations k1, k2 and k3 satisfying k1

∗→
k2 and k2

∗→ k3 satisfy k1
∗→ k3. In other words, the relation ∗→ is transitive. This

proves Proposition 0.42 (a).
(b) Let c, k and k′ be three configurations satisfying k ∗→ k′.
From k ∗→ k′, we conclude that there exists a legal sequence ℓ for k such that

firing all vertices in ℓ transforms k into k′. Consider this ℓ.
The sequence ℓ is legal for k, and thus also for c+ k (since (c + k) (v) = c (v)︸︷︷︸

≥0

+k (v) ≥

k (v) for each vertex v of D). Moreover, firing all vertices in ℓ transforms c + k into
c + k′ (since firing all vertices in ℓ transforms k into k′). Hence, we have found
a legal sequence ℓ for c + k such that firing all vertices in ℓ (one after the other)
transforms c + k into c + k′. Hence, such a legal sequence ℓ exists. In other words,
c + k ∗→ c + k′ (by the definition of the relation ∗→). This proves Proposition 0.42
(b).

Similar facts hold for q-stabilization:

Definition 0.43. Let q be a vertex of D. If k and k′ are two configurations on D,
then k ∗→

q
k′ shall mean that there exists a q-legal sequence ℓ for k such that firing

all vertices in ℓ (one after the other) transforms k into k′. Thus, we have defined
a binary relation ∗→

q
on the set of all configurations of D.
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Proposition 0.44. Let q be a vertex of D.
(a) The binary relation ∗→

q
is reflexive (i.e., each configuration k satisfies k ∗→

q
k)

and transitive (i.e., every three configurations k1, k2 and k3 satisfying k1
∗→
q

k2

and k2
∗→
q

k3 satisfy k1
∗→
q

k3).

(b) If c, k and k′ are three configurations satisfying k ∗→
q

k′, then c + k ∗→
q

c + k′.

Proof of Proposition 0.44 (sketched). Analogous to the proof of Proposition 0.42.

Hints to Exercise 2. (a) We shall write each configuration f on D as the triple ( f (u) , f (v) , f (q)).
Thus, gk = (k, 0, 0).

For each h ∈ {0, 1, . . . , k}, define a configuration zh by zh = (k − h, 0, h).
Now, for each h ∈ {0, 1, . . . , k − 1}, we have

zh
∗→
q

zh+1

12. Hence,
z0

∗→
q

z1
∗→
q

z2
∗→
q

z3
∗→
q
· · · ∗→

q
zk−1

∗→
q

zk.

Since the relation ∗→
q

is transitive, we thus have z0
∗→
q

zk. In other words, gk
∗→
q

(0, 0, k) (since z0 = (k − 0, 0, 0) = (k, 0, 0) = gk and zk = (k − k, 0, k) = (0, 0, k)).
Since the configuration (0, 0, k) is q-stable, this shows that (0, 0, k) is the q-stabilization
of gk.

(b) We shall write each configuration f on D as the triple ( f (u) , f (v) , f (q)).
Thus, gk = (k, 0, 0).

For each h ∈ {0, 1, . . . , k}, define a configuration zh by zh = (k − h, 0, h).
Now, for each h ∈ {0, 1, . . . , k − 2}, we have

zh
∗→
q

zh+1

13. Hence,
z0

∗→
q

z1
∗→
q

z2
∗→
q

z3
∗→
q
· · · ∗→

q
zk−2

∗→
q

zk−1.

12Proof. Let h ∈ {0, 1, . . . , k − 1}. The sequence (u, v) is q-legal for zh, and firing all vertices in this
sequence transforms zh into zh+1 (because this firing process looks as follows:

zh = (k − h, 0, h) fire u−→ (k − h − 1, 1, h) fire v−→ (k − h − 1, 0, h + 1) = (k − (h + 1) , 0, h + 1) = zh+1

). Hence, zh
∗→
q

zh+1.
13Proof. Let h ∈ {0, 1, . . . , k − 2}. The sequence (u, u, v) is q-legal for zh, and firing all vertices in this
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14 Since the relation ∗→
q

is transitive and reflexive, we thus have z0
∗→
q

zk−1. In

other words, gk
∗→
q

(1, 0, k − 1) (since z0 = (k − 0, 0, 0) = (k, 0, 0) = gk and zk−1 =

(k − (k − 1) , 0, k − 1) = (1, 0, k − 1)).
Combining this with (1, 0, k − 1) ∗→

q
(0, 1, k − 1) (because firing the legal se-

quence (u) transforms the configuration (1, 0, k − 1) into (0, 1, k − 1)), we obtain
gk

∗→
q

(0, 1, k − 1). Since the configuration (0, 1, k − 1) is q-stable, this shows that

(0, 1, k − 1) is the q-stabilization of gk.
(c) We shall write each configuration f on D as the 4-tuple ( f (u) , f (v) , f (w) , f (q)).

Thus, fk = (k, k, k, k).
For each h ∈ {0, 1, . . . , k}, define a configuration zh by zh = (k − h, k − h, k − h, k + 3h).
Now, for each h ∈ {0, 1, . . . , k − 3}, we have

zh
∗→
q

zh+1

15. Hence,
z0

∗→
q

z1
∗→
q

z2
∗→
q

z3
∗→
q
· · · ∗→

q
zk−3

∗→
q

zk−2.

16 Since the relation ∗→
q

is transitive and reflexive, we thus have z0
∗→
q

zk−2. In other

words, fk
∗→
q

(2, 2, 2, 4k − 6) (since z0 = (k − 0, k − 0, k − 0, k + 3 · 0) = (k, k, k, k) =

fk and zk−2 = (k − (k − 2) , k − (k − 2) , k − (k − 2) , k + 3 (k − 2)) = (2, 2, 2, 4k − 6)).
Since the configuration (2, 2, 2, 4k − 6) is q-stable, this shows that (2, 2, 2, 4k − 6) is
the q-stabilization of fk.

sequence transforms zh into zh+1 (because this firing process looks as follows:

zh = (k − h, 0, h) fire u−→ (k − h − 1, 1, h) fire u−→ (k − h − 2, 2, h)
fire v−→ (k − h − 1, 0, h + 1) = (k − (h + 1) , 0, h + 1) = zh+1

). Hence, zh
∗→
q

zh+1.
14This chain of relations can consist of a single configuration (and 0 relation signs) when k = 1.

There is nothing wrong about this!
15Proof. Let h ∈ {0, 1, . . . , k − 3}. The sequence (u, v, w) is q-legal for zh, and firing all vertices in

this sequence transforms zh into zh+1 (because this firing process looks as follows:

zh = (k − h, k − h, k − h, k + 3h)
fire u−→ (k − h − 3, k − h + 1, k − h + 1, k + 3h + 1) fire v−→ (k − h − 2, k − h − 2, k − h + 2, k + 3h + 2)
fire w−→ (k − h − 1, k − h − 1, k − h − 1, k + 3h + 3)
= (k − (h + 1) , k − (h + 1) , k − (h + 1) , k + 3 (h + 1)) = zh+1

). Hence, zh
∗→
q

zh+1.
16This chain of relations can consist of a single configuration (and 0 relation signs) when k = 2.

There is nothing wrong about this!
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0.5. Exercise 3: a lower bound on the degree of an infinitary
configuration

0.5.1. The exercise

Exercise 3. Assume that the multidigraph D is strongly connected. Let f : V →
N be an infinitary configuration.

(a) Prove that D cannot have more than ∑ f vertex-disjoint cycles. (A set of
cycles is said to be vertex-disjoint if no two distinct cycles in the set have a vertex
in common.)

(b) Prove that D cannot have more than ∑ f arc-disjoint cycles. (A set of cycles
is said to be arc-disjoint if no two distinct cycles in the set have an arc in common.)

Exercise 3 (b) is [BjoLov92, Theorem 2.2], but the proof given there is vague and
unrigorous.

0.5.2. Solution to part (a)

We shall first solve Exercise 3 (a). First, let us introduce a simple notation:

Definition 0.45. Let g : V → N be a configuration. Let c be a cycle of D. We say
that the cycle c is non-void in g if and only if there exists at least one vertex v on
c satisfying g (v) ≥ 1. (In other words, the cycle c is non-void in g if and only if
at least one vertex of c has at least one chip in g.)

In the following lemma, we shall use the notation from Definition 0.41.

Lemma 0.46. Let g : V → N and g′ : V → N be two configurations such that
g ∗→ g′. Let c be a cycle of D such that c is non-void in g. Then, c is non-void in
g′.

Proof of Lemma 0.46 (sketched). We must merely show that whenever we fire a vertex
w in g, the cycle c remains non-void. But this is easy:

We know that there exists at least one vertex v on c satisfying g (v) ≥ 1 (since c
is non-void in g). Consider this v. Now:

• If w = v, then the vertex that follows v on the cycle c gains at least one chip
when we fire w; thus, the cycle c remains non-void in this case.

• If w ̸= v, then the vertex v does not lose any chips when we fire w; thus, the
cycle c remains non-void in this case as well.

This concludes the proof of Lemma 0.46.
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Hints to Exercise 3. (a) Let h = ∑ f . Thus, we must prove that D cannot have more
than h vertex-disjoint cycles.

The configuration f is infinitary. Thus, there exist arbitrarily long legal sequences
for f . In particular, there exists a legal sequence ℓ = (ℓ1, ℓ2, . . . , ℓk) for f of length
k > (n − 1)

(
h1 + h2 + · · ·+ hn−1). Consider this ℓ.

Each vertex of D appears at least once in the sequence ℓ 17.
Let f ′ be the configuration obtained from f by firing the vertices in ℓ (one after

the other). Each cycle of D is non-void in f ′ 18.
Recall that we must prove that D cannot have more than h vertex-disjoint cycles.
Assume the contrary. Thus, D has more than h vertex-disjoint cycles. In other

words, there exist h + 1 vertex-disjoint cycles c1, c2, . . . , ch+1. Consider these cycles
c1, c2, . . . , ch+1. All these cycles are non-void in f ′ (since each cycle of D is non-void
in f ′), and of course are vertex-disjoint. Thus, the configuration f ′ has h + 1 vertex-
disjoint non-void cycles. Thus, it has a chip on each of these cycles. Consequently,
it has at least h + 1 chips. In other words, ∑ f ′ ≥ h + 1.

But f ′ is obtained from f by firing vertices. Hence, ∑ f ′ = ∑ f (since firing
vertices does not change the total number of chips). Thus, ∑ f = ∑ f ′ ≥ h + 1,
which contradicts ∑ f = h < h + 1. This contradiction proves that our assumption
was wrong, qed.

0.5.3. Solution to part (b)

Our next goal is to solve Exercise 3 (b). Our solution is going to be a rigorous ver-
sion of [BjoLov92, proof of Theorem 2.2].19 We first need to prepare by introducing
notations and showing lemmas.

17Proof. Let q be a vertex of D. We must show that q appears at least once in the sequence ℓ.
For each vertex u ∈ V, there exists a path from u to q (since D is strongly connected). Hence,

Proposition 0.27 shows that q appears at least once in the sequence ℓ.
18Proof. Let c be a cycle of D. We must then show that c is non-void in f ′.

For each i ∈ {0, 1, . . . , k}, we define fi to be the configuration f − ∆ℓ1 − ∆ℓ2 − · · · − ∆ℓi ob-
tained from f by firing the vertices ℓ1, ℓ2, . . . , ℓi (in this order). (This is indeed a configuration,
since the sequence ℓ is legal.) Thus, f0

∗→ f1
∗→ · · · ∗→ fk. Notice that f0 = f and fk = f ′ (by the

definition of f ′).
Pick a vertex v on the cycle c. Then, v appears at least once in the sequence ℓ (since each vertex

of D appears at least once in the sequence ℓ). In other words, there exists some i ∈ {1, 2, . . . , k}
satisfying ℓi = v. Consider this i.

The vertex v lies on the cycle c, and thus there exists at least one arc with source v (namely,
the arc of the cycle c emanating from v). In other words, deg+ v ≥ 1.

The sequence (ℓ1, ℓ2, . . . , ℓk) is legal for f . Thus, the vertex ℓi is active in the configuration
f − ∆ℓ1 − ∆ℓ2 − · · · − ∆ℓi−1 = fi−1 (since this is how fi−1 is defined). In other words, fi−1 (ℓi) ≥
deg+ (ℓi). In other words, fi−1 (v) ≥ deg+ (v) (since ℓi = v). Hence, fi−1 (v) ≥ deg+ (v) ≥ 1.
Thus, the cycle c is non-void in fi−1. But fi−1

∗→ fk (since f0
∗→ f1

∗→ · · · ∗→ fk, and since the
relation ∗→ is transitive). Hence, the cycle c is non-void in fk (by Lemma 0.46, applied to g = fi−1
and g′ = fk). In other words, the cycle c is non-void in f ′ (since fk = f ′). Qed.

19This is one of those cases where making a proof rigorous is difficult and makes the proof much
longer.
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We begin by introducing some notations:

Definition 0.47. Let f : V → Z and g : V → Z be two Z-configurations on a
multidigraph D = (V, A, ϕ). Then, we say that f ≥ g if and only if each v ∈ V
satisfies f (v) ≥ g (v).

Thus, a Z-configuration f : V → Z is a configuration if and only if f ≥ 0 (where
0 means the “zero configuration” 0 : V → Z).

Definition 0.48. Let v ∈ V be a vertex of a multidigraph D = (V, A, ϕ). Then, a
configuration δv : V → N is defined by setting

δv (w) =

{
1, if w = v;
0, if w ̸= v

for all w ∈ V.

(Roughly speaking, δv is the configuration having 1 chip at vertex v and no
further chips.)

Thus, each Z-configuration f : V → Z satisfies f = ∑
v∈V

f (v) δv. Notice that

∑ δv = 1 for each v ∈ V.

Definition 0.49. Consider a multidigraph D = (V, A, ϕ).
(a) If c is a cycle of D, then V (c) shall mean the set of all vertices on c.
(b) Let K be a set of cycles of D. Let f : V → Z be a Z-configuration on D. We

say that f is K-captured if and only if we can choose a vertex vc ∈ V (c) for each
cycle c ∈ K such that f ≥ ∑

c∈K
δvc .

The notion of “K-captured” Z-configurations is somewhat subtle. Intuitively
speaking, a Z-configuration f is K-captured if and only if (pretending that the chips
in f are distinguishable) we can assign to each cycle c ∈ K a specific chip in f that
lies on a vertex of c, without having to assign the same chip to two different cycles.
Notice that the vertices vc in Definition 0.49 (b) need not be distinct. (Intuitively
speaking, this means that the chips assigned to different cycles may lie on the same
vertices – but they must not be the same chip.)

We notice that if a Z-configuration f : V → Z is K-captured for some set K
of cycles of D, then f is a configuration (since the vertices vc from Definition 0.49
(b) satisfy f ≥ ∑

c∈K
δvc ≥ 0). Also, we notice that a Z-configuration f : V → Z is

∅-captured if and only if f is a configuration.

Lemma 0.50. Let f : V → Z be a Z-configuration on a multidigraph D =
(V, A, ϕ). Let K be a set of cycles of D such that f is K-captured. Then, ∑ f ≥ |K|.
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Proof of Lemma 0.50. We know that f is K-captured. In other words, we can choose
a vertex vc ∈ V (c) for each cycle c ∈ K such that f ≥ ∑

c∈K
δvc . Consider these

vertices vc.
Now,

∑ f = ∑
p∈V

f (p)︸ ︷︷ ︸
≥
(

∑
c∈K

δvc

)
(p)

(since f≥ ∑
c∈K

δvc )

≥ ∑
p∈V

(
∑
c∈K

δvc

)
(p) = ∑

p∈V
∑
c∈K

δvc (p)

= ∑
c∈K

∑
p∈V

δvc (p)︸ ︷︷ ︸
=∑ δvc=1

(since ∑ δv=1 for each v∈V)

= ∑
c∈K

1 = |K| .

This proves Lemma 0.50.

The following lemma will be crucial:

Lemma 0.51. Let f : V → Z be a Z-configuration on a multidigraph D =
(V, A, ϕ). Let w ∈ V be a vertex such that w is active in f . Let C be a set of
arc-disjoint cycles of D. Let Cw = {c ∈ C | w ∈ V (c)}. Let K ⊆ C be such that
f is K-captured. Then, the Z-configuration f − ∆w is K ∪ Cw-captured.

Proof of Lemma 0.51. We know that f is K-captured. In other words, we can choose
a vertex vc ∈ V (c) for each cycle c ∈ K such that f ≥ ∑

c∈K
δvc . Consider these

vertices vc.
Notice that K ∪ Cw ⊆ C (since K ⊆ C and Cw ⊆ C).
For each c ∈ K ∪ Cw, we define a vertex uc ∈ V (c) by

uc =

{
vc, if w /∈ V (c) ;
(the vertex succeeding w on the cycle c) , if w ∈ V (c)

.

(This definition makes sense, because vc is a well-defined element of V (c) when-
ever w /∈ V (c) 20.)

Now, we claim that

( f − ∆w) (p) ≥
(

∑
c∈K∪Cw

δuc

)
(p) for every p ∈ V. (10)

[Proof of (10): Let p ∈ V. We must prove the inequality (10).

20Proof. Assume that w /∈ V (c). Then, c /∈ Cw (by the definition of Cw). Combining this with
c ∈ K ∪ Cw, we obtain c ∈ (K ∪ Cw) \ Cw ⊆ K. Hence, vc is a well-defined element of V (c).



Math 5707 Spring 2017 (Darij Grinberg): homework set 5 page 34

Notice that(
∑

c∈K∪Cw

δuc

)
(p) = ∑

c∈K∪Cw

δuc (p)︸ ︷︷ ︸
=

1, if p = uc;
0, if p ̸= uc

= ∑
c∈K∪Cw

{
1, if p = uc;
0, if p ̸= uc

= |{c ∈ K ∪ Cw | p = uc}| . (11)

The definition of ∆w yields

(∆w) (p) = [p = w]deg+ w − aw,p. (12)

Let Q = {c ∈ K \ Cw | p = vc}. Then, it is not hard to see that

f (p)− [p = w]deg+ w ≥ |Q| (13)

21.

21Proof of (13): We are in one of the following two cases:
Case 1: We have p = w.
Case 2: We have p ̸= w.
First, let us consider Case 1. In this case, we have p = w. Recall that w is active in f . Thus,

f (w) ≥ deg+ w.
But there is no c ∈ K \ Cw satisfying p = vc. (In fact, if such a c would exist, then it would

satisfy w = p = vc ∈ V (c), which (in view of c ∈ K \ Cw ⊆ K ⊆ C) would yield c ∈ Cw (by the
definition of Cw), which would contradict c ∈ K \ Cw.)

Now, Q = {c ∈ K \ Cw | p = vc} = ∅ (since there is no c ∈ K \ Cw satisfying p = vc). Hence,
|Q| = |∅| = 0. Now,

f

 p︸︷︷︸
=w

− [p = w]︸ ︷︷ ︸
=1

(since p=w)

deg+ w = f (w)− deg+ w ≥ 0
(
since f (w) ≥ deg+ w

)

= |Q| .

Thus, (13) is proven in Case 1.

Let us now consider Case 2. In this case, we have p ̸= w. But Q =

c ∈ K \ Cw︸ ︷︷ ︸
⊆K

| p = vc

 ⊆

{c ∈ K | p = vc}, so that |Q| ≤ |{c ∈ K | p = vc}|.
Recall that f ≥ ∑

c∈K
δvc . Hence,

f (p) ≥
(

∑
c∈K

δvc

)
(p) = ∑

c∈K
δvc (p)︸ ︷︷ ︸

=

1, if p = vc;
0, if p ̸= vc

= ∑
c∈K

{
1, if p = vc;
0, if p ̸= vc

= |{c ∈ K | p = vc}| ≥ |Q| (since |Q| ≤ |{c ∈ K | p = vc}|) .
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On the other hand, let R = {c ∈ K ∪ Cw | p = uc} \ Q. Then, the sets Q and R
are disjoint, and satisfy {c ∈ K ∪ Cw | p = uc} ⊆ Q ∪ R. Hence,

|{c ∈ K ∪ Cw | p = uc}| ≤ |Q ∪ R| = |Q|+ |R| (14)

(since Q and R are disjoint). Moreover, R ⊆ C 22. Thus, any two cycles in R are
arc-disjoint23.

But if c is an element of R, then the arc with source w that belongs to the cycle c
is a well-defined element of {arcs of D having source w and target p} 24. Hence,
the map

R → {arcs of D having source w and target p} ,
c 7→ (the arc with source w that belongs to the cycle c)

is well-defined. This map is furthermore injective25. Hence,

|R| ≤ |{arcs of D having source w and target p}| = aw,p

Now,
f (p)− [p = w]︸ ︷︷ ︸

=0
(since p ̸=w)

deg+ w = f (p) ≥ |Q| .

Thus, (13) is proven in Case 2.
Hence, we have proven (13) in both possible cases 1 and 2. This completes the proof of (13).

22Proof. We have R = {c ∈ K ∪ Cw | p = uc} \ Q ⊆ {c ∈ K ∪ Cw | p = uc} ⊆ K ∪ Cw ⊆ C.
23Proof. We have R ⊆ C. Hence, any two cycles in R are arc-disjoint (since C is a set of arc-disjoint

cycles).
24Proof. Recall that

R = {c ∈ K ∪ Cw | p = uc} \ Q = {c ∈ K ∪ Cw | p = uc and c /∈ Q} . (15)

Now, let c be an element of R. Thus, c is an element of K ∪ Cw satisfying p = uc and c /∈ Q (by
(15)).

Assume (for the sake of contradiction) that w /∈ V (c). Hence, c /∈ Cw (by the definition of Cw,
since c ∈ K ∪ Cw ⊆ C). Combining this with c ∈ K ∪ Cw, we obtain c ∈ (K ∪ Cw) \ Cw = K \ Cw.

But the definition of uc yields uc = vc (since w /∈ V (c)). Thus, p = uc = vc. Thus, c ∈ K \ Cw
and p = vc. Hence, c ∈ Q (by the definition of Q). This contradicts c /∈ Q. This contradiction
shows that our assumption (that w /∈ V (c)) was false. Hence, we must have w ∈ V (c). In other
words, the vertex w lies on the cycle c. Thus, the arc with source w that belongs to the cycle c is
well-defined.

It remains to prove that this arc is an element of {arcs of D having source w and target p}. In
other words, it remains to prove that this arc has source w and target p. Since it clearly has
source w, we thus only need to show that it has target p.

We have w ∈ V (c). The definition of uc thus yields uc =
(the vertex succeeding w on the cycle c).

Hence, p = uc = (the vertex succeeding w on the cycle c). Therefore, the arc with source w
that belongs to the cycle c has target p. This completes our proof.

25Proof. This is because any two cycles in R are arc-disjoint.
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(by the definition of aw,p). Thus, (14) becomes

|{c ∈ K ∪ Cw | p = uc}| ≤ |Q|︸︷︷︸
≤ f (p)−[p=w]deg+ w

(by (13))

+ |R|︸︷︷︸
≤aw,p

≤ f (p)− [p = w]deg+ w + aw,p

= f (p)−
(
[p = w]deg+ w − aw,p

)︸ ︷︷ ︸
=(∆w)(p)
(by (12))

= f (p)− (∆w) (p)

= ( f − ∆w) (p) .

Hence,

( f − ∆w) (p) ≥ |{c ∈ K ∪ Cw | p = uc}| =
(

∑
c∈K∪Cw

δuc

)
(p)

(by (11)). Hence, (10) is proven.]
From (10), we obtain f − ∆w ≥ ∑

c∈K∪Cw

δuc .

Thus, the Z-configuration f − ∆w is K ∪ Cw-captured (since uc ∈ V (c) for each
c ∈ K ∪ Cw). This proves Lemma 0.51.

Corollary 0.52. Let f : V → Z be a Z-configuration on a multidigraph D =
(V, A, ϕ). Let (ℓ1, ℓ2, . . . , ℓk) be a legal sequence for f . Let C be a set of arc-
disjoint cycles of D. Let Cw = {c ∈ C | w ∈ V (c)} for each w ∈ V. Let K ⊆ C
be such that f is K-captured. Then, the Z-configuration f −∆ℓ1 −∆ℓ2 − · · ·−∆ℓk
is K ∪ Cℓ1 ∪ Cℓ2 ∪ · · · ∪ Cℓk

-captured.

Proof of Corollary 0.52. We will show that for each i ∈ {0, 1, . . . , k},

the Z-configuration f − ∆ℓ1 − ∆ℓ2 − · · · − ∆ℓi is K ∪ Cℓ1 ∪ Cℓ2 ∪ · · · ∪ Cℓi-captured.
(16)

[Proof of (16): We shall prove (16) by induction over i:
Induction base: If i = 0, then (16) simply states that the Z-configuration f is K-

captured. This is true, because it was an assumption. This completes the induction
base.

Induction step: Let j ∈ {0, 1, . . . , k} be positive. Assume that (16) holds for i =
j − 1. We must show that (16) holds for i = j.

We have assumed that (16) holds for i = j − 1. In other words,

the Z-configuration f −∆ℓ1 −∆ℓ2 −· · ·−∆ℓj−1 is K∪Cℓ1 ∪Cℓ2 ∪ · · · ∪Cℓj−1
-captured.

But the vertex ℓj is active in the Z-configuration f − ∆ℓ1 − ∆ℓ2 − · · · − ∆ℓj−1 (since
the sequence (ℓ1, ℓ2, . . . , ℓk) is legal for f ). Hence, Lemma 0.51 (applied to f −∆ℓ1 −
∆ℓ2 − · · · −∆ℓj−1, ℓj and K ∪Cℓ1 ∪Cℓ2 ∪ · · · ∪Cℓj−1

instead of f , w and K) shows that

the Z-configuration
(

f − ∆ℓ1 − ∆ℓ2 − · · · − ∆ℓj−1
)
−∆ℓj is

(
K ∪ Cℓ1 ∪ Cℓ2 ∪ · · · ∪ Cℓj−1

)
∪
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Cℓj-captured26. In other words, the Z-configuration f − ∆ℓ1 − ∆ℓ2 − · · · − ∆ℓj is
K ∪ Cℓ1 ∪ Cℓ2 ∪ · · · ∪ Cℓj-captured. In other words, (16) holds for i = j. This com-
pletes the induction step. Thus, (16) is proven by induction.]

Now, applying (16) to i = k, we obtain the claim of Corollary 0.52.

Solution to Exercise 3 (b) (sketched). Assume the contrary. Thus, D has more than
∑ f arc-disjoint cycles. In other words, there exists a set C of arc-disjoint cycles of
D such that |C| > ∑ f . Consider this C.

Set h = ∑ f . Thus, |C| > ∑ f = h.
Set n = |V|. From |C| > h ≥ 0, we conclude that the set C is nonempty, so that

D has at least one cycle. Thus, D has at least one vertex. In other words, n > 0.
Let Cw = {c ∈ C | w ∈ V (c)} for each w ∈ V.
The configuration f is infinitary. Hence, there exist legal sequences (for f ) of

arbitrary length. In particular, this shows that there exists a legal sequence ℓ =

(ℓ1, ℓ2, . . . , ℓk) for f having length k ≥
(

n + h − 1
n − 1

)
. Consider such an ℓ.

Each vertex q of D must appear at least once in the sequence ℓ 27. Thus,
Cℓ1 ∪ Cℓ2 ∪ · · · ∪ Cℓk

= C 28.
But the configuration f is ∅-captured (since any configuration is ∅-captured).

Hence, Corollary 0.52 (applied to K = ∅) shows that the Z-configuration f −
∆ℓ1 − ∆ℓ2 − · · · − ∆ℓk is ∅ ∪ Cℓ1 ∪ Cℓ2 ∪ · · · ∪ Cℓk

-captured. In other words, the Z-
configuration f − ∆ℓ1 − ∆ℓ2 − · · · − ∆ℓk is C-captured (since ∅ ∪ Cℓ1 ∪ Cℓ2 ∪ · · · ∪
Cℓk

= Cℓ1 ∪ Cℓ2 ∪ · · · ∪ Cℓk
= C). Hence, Lemma 0.50 (applied to f − ∆ℓ1 − ∆ℓ2 −

· · · − ∆ℓk and C instead of f and K) yields

∑ ( f − ∆ℓ1 − ∆ℓ2 − · · · − ∆ℓk) ≥ |C| > h.

26since K ∪ Cℓ1 ∪ Cℓ2 ∪ · · · ∪ Cℓj−1
⊆ C (since both K and each Cw are subsets of C)

27Proof. Let q be a vertex of D. Then, for each vertex u ∈ V, there exists a path from u to q (since
the multidigraph D is strongly connected). Hence, Exercise 1 (b) shows that q must appear at
least once in the sequence ℓ. Qed.

28Proof. Clearly, Cw ⊆ C for each w ∈ V. Thus, Cℓ1 ∪ Cℓ2 ∪ · · · ∪ Cℓk
⊆ C.

On the other hand, let c ∈ C. Thus, c is a cycle of D. Hence, there exists some v ∈ V (c).
Consider this v. Then, v must appear at least once in the sequence ℓ (since each vertex q of D
must appear at least once in the sequence ℓ). In other words, there exists some i ∈ {1, 2, . . . , k}
such that v = ℓi. Consider this i. Now, from ℓi = v ∈ V (c), we obtain c ∈ Cℓi

(by the definition
of Cℓi

). Therefore, c ∈ Cℓi
⊆ Cℓ1 ∪ Cℓ2 ∪ · · · ∪ Cℓk

.
Now, forget that we fixed c. We thus have proven that c ∈ Cℓ1 ∪ Cℓ2 ∪ · · · ∪ Cℓk

for each c ∈ C.
In other words, C ⊆ Cℓ1 ∪ Cℓ2 ∪ · · · ∪ Cℓk

. Combining this with Cℓ1 ∪ Cℓ2 ∪ · · · ∪ Cℓk
⊆ C, we

obtain Cℓ1 ∪ Cℓ2 ∪ · · · ∪ Cℓk
= C.
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Since

∑ ( f − ∆ℓ1 − ∆ℓ2 − · · · − ∆ℓk)︸ ︷︷ ︸
= f−

k
∑

i=1
∆ℓi

= ∑
(

f −
k

∑
i=1

∆ℓi

)
= ∑ f −

k

∑
i=1

∑ ∆ℓi︸ ︷︷ ︸
=0

(since ∑ ∆v=0 for each v∈V)

= ∑ f −
k

∑
i=1

0︸︷︷︸
=0

= ∑ f ,

this rewrites as ∑ f > h. This contradicts h = ∑ f . This contradiction completes
the solution of Exercise 3 (b).

Now that we have solved Exercise 3 (b), we can obtain a second solution to
Exercise 3 (a):

Second solution to Exercise 3 (a) (sketched). Assume the contrary. Thus, D has more
than ∑ f vertex-disjoint cycles. Hence, D has more than ∑ f arc-disjoint cycles
(since vertex-disjoint cycles are automatically arc-disjoint). But this contradicts Ex-
ercise 3 (b). This contradiction completes the solution of Exercise 3 (a).

0.6. Exercise 4: an associativity law for stabilizations

Recall Definition 0.33.

Exercise 4. Let f : V → N, g : V → N and h : V → N be three configura-
tions such that both configurations f and g + h are finitary, and such that the
configuration f + (g + h)◦ is also finitary.

Prove the following:
(a) The configurations f + g and h are also finitary.
(b) The configurations f + g + h and ( f + g)◦ + h are also finitary, and satisfy

( f + g + h)◦ =
(

f + (g + h)◦
)◦

=
(
( f + g)◦ + h

)◦ .

In order to solve Exercise 4, we shall use the notations from Definition 0.41. We
also state a few simple lemmas:

Lemma 0.53. Let c : V → N and d : V → N be two configurations such that
c + d is finitary. Then, c and d are finitary.

Proof of Lemma 0.53 (sketched). The configuration c + d is finitary. Thus, there exists
a stabilizing sequence s for c + d. Consider this s.

Firing the vertices in s (one after the other) transforms the configuration c + d
into a stable Z-configuration z (since s is stabilizing). Consider this z.
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The Z-configuration z is stable. In other words, no vertex of V is active in z. In
other words, z (v) < deg+ v for each v ∈ V. Hence,

(z − d) (v) = z (v)− d (v)︸︷︷︸
≥0

≤ z (v) < deg+ v

for each v ∈ V. In other words, no vertex of V is active in z − d. In other words,
the Z-configuration z − d is stable.

But firing the vertices in s (one after the other) transforms the configuration c
into the Z-configuration z − d (since firing the vertices in s (one after the other)
transforms the configuration c + d into the Z-configuration z). Thus, the sequence
s is stabilizing for c (since the Z-configuration z − d is stable). Hence, there exists a
stabilizing sequence for c. In other words, c is finitary. Similarly, d is finitary. This
proves Lemma 0.53.

Lemma 0.54. Let c : V → N and d : V → N be two configurations such that
c ∗→ d.

(a) If c is finitary, then d is finitary and satisfies c◦ = d◦.
(b) If d is finitary, then c is finitary and satisfies c◦ = d◦.

Proof of Lemma 0.54 (sketched). From c ∗→ d, we conclude that there exists a legal
sequence ℓ1 for c such that firing all vertices in ℓ1 transforms c into d. Consider this
ℓ1.

(b) Assume that d is finitary. Hence, the stabilization d◦ is well-defined, and is
a stable configuration (by the definition of stabilization). Also, d◦ is obtained from
d by firing vertices from a legal sequence (by the definition of d◦). Hence, d ∗→ d◦.
From c ∗→ d ∗→ d◦, we obtain c ∗→ d◦ (since the relation ∗→ is transitive). Since d◦ is
stable, this shows that c is finitary, and that d◦ is the stabilization of c.

Now, c◦ is well-defined (since c is finitary) and satisfies d◦ = c◦ (since d◦ is the
stabilization of c). In other words, c◦ = d◦. This proves Lemma 0.54 (b).

(a) Assume that c is finitary.
Let us first show that d is finitary.
Indeed, assume the contrary. Thus, d is infinitary. Hence, there exist arbitrarily

long legal sequences for d. In other words, for each N ∈ N, there exists a legal
sequence for d having length ≥ N.

Fix N ∈ N. Then, there exists a legal sequence for d having length ≥ N (as we
have just seen). Fix such a legal sequence, and denote it by ℓ2.

Write the sequences ℓ1 and ℓ2 as ℓ1 =
(
v1, v2, . . . , vp

)
and ℓ2 =

(
w1, w2, . . . , wq

)
.

Let ℓ be the sequence ℓ1 ∗ ℓ2 =
(
v1, v2, . . . , vp, w1, w2, . . . , wq

)
. (We are using the

notation from Definition 0.19 here.) This sequence ℓ = ℓ1 ∗ ℓ2 is legal for c (by
Lemma 0.20, applied to c, ℓ1, d and ℓ2 instead of f , u, g and v). Moreover, the
length of ℓ is p︸︷︷︸

≥0

+q ≥ q = (the length of ℓ2) ≥ N (since ℓ2 has length ≥ N).

Thus, there exists a legal sequence for c having length ≥ N (namely, ℓ).



Math 5707 Spring 2017 (Darij Grinberg): homework set 5 page 40

Now, forget that we fixed N. We thus have showed that for each N ∈ N, there
exists a legal sequence for c having length ≥ N (namely, ℓ). In other words, there
exist arbitrarily long legal sequences for c. In other words, c is infinitary. This
contradicts the fact that c is finitary. This contradiction shows that our assumption
was false. Thus, we have proven that d is finitary.

Lemma 0.54 (b) thus yields c◦ = d◦. This proves Lemma 0.54 (a).

Hints to Exercise 4. For each finitary configuration k, we have

k ∗→ k◦ (17)

(because k◦ is obtained from k by firing vertices from a legal sequence). Hence,
g + h ∗→ (g + h)◦. Thus, Proposition 0.42 (b) (applied to c = f and k = g + h and
k′ = (g + h)◦) yields f + g + h ∗→ f + (g + h)◦.

But the configuration f + (g + h)◦ is also finitary. Thus, (17) (applied to k =

f + (g + h)◦) yields f + (g + h)◦ ∗→
(

f + (g + h)◦
)◦. Thus,

f + g + h ∗→ f + (g + h)◦ ∗→
(

f + (g + h)◦
)◦ .

Since the configuration
(

f + (g + h)◦
)◦ is stable, we thus conclude that f + g + h is

finitary, and furthermore that the configuration
(

f + (g + h)◦
)◦ is the stabilization

of f + g + h. Thus,
( f + g + h)◦ =

(
f + (g + h)◦

)◦ . (18)

The configuration f + g + h is finitary. Hence, Lemma 0.53 (applied to c = f + g
and d = h) shows that the configurations f + g and h are also finitary. This solves
Exercise 4 (a).

(b) Applying (17) to k = f + g, we obtain f + g ∗→ ( f + g)◦. Thus, Proposition
0.42 (b) (applied to c = h and k = f + g and k′ = ( f + g)◦) yields h + f + g ∗→
h + ( f + g)◦. Thus, f + g + h = h + f + g ∗→ h + ( f + g)◦ = ( f + g)◦ + h. Hence,
Lemma 0.54 (a) (applied to c = f + g + h and d = ( f + g)◦ + h) shows that the
configuration ( f + g)◦ + h is finitary and satisfies

( f + g + h)◦ =
(
( f + g)◦ + h

)◦ (19)

(since the configuration f + g + h is finitary). Combining (18) and (19), we obtain

( f + g + h)◦ =
(

f + (g + h)◦
)◦

=
(
( f + g)◦ + h

)◦ .

This completes the solution of Exercise 4 (b).

0.7. Exercise 5: chip-firing on the integer lattice

Now, we shall briefly discuss chip-firing on the integer lattice Z2; this is one of
the most famous cases of chip-firing, leading to some of the pretty pictures. For
examples and illustrations, check out [Ellenb15] as well as some of the links above.



Math 5707 Spring 2017 (Darij Grinberg): homework set 5 page 41

We have not defined infinite graphs in class; the theory of infinite graphs involves
some subtleties that would take us too far. However, for this particular exercise, we
need only a specific infinite graph, which is fairly simple.

Definition 0.55. (a) A locally finite multigraph means a triple (V, E, ϕ), where V
and E are sets and ϕ : E → P2 (V) is a map having the following property:

(*) For each v ∈ V, there exist only finitely many e ∈ E satisfying v ∈ ϕ (e).

Most of the concepts defined for (usual) multigraphs still make sense for lo-
cally finite multigraphs. In particular, the elements of V are called the vertices,
and the elements of E are called the edges. The property (*) says that each vertex
is contained in only finitely many edges; this allows us to define the degree of a
vertex.

(b) The integer lattice shall mean the locally finite multigraph defined as fol-
lows:

• The vertices of the integer lattice are the pairs (i, j) of two integers i
and j. In other words, the vertex set of the integer lattice is Z2 =
{(i, j) | i ∈ Z and j ∈ Z}. We view these vertices as points in the plane,
and draw the multigraph accordingly.

• Two vertices of the integer lattice are adjacent if and only if they have
distance 1 (as points in the plane). In other words, a vertex (i, j) is adjacent
to the four vertices (i + 1, j) , (i, j + 1) , (i − 1, j) , (i, j − 1) and no others.

(c) You can guess how locally finite multidigraphs are defined. Each locally
finite multigraph can be regarded as a locally finite multidigraph by replacing
each edge by a pair of two arcs (directed in both possible directions).

Let us show a piece of the integer lattice, viewed as a locally finite multigraph:

(−1, 1) (0, 1) (1, 1)

(−1, 0) (0, 0) (1, 0)

(−1,−1) (0,−1) (1,−1)
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And here is it again, viewed as a locally finite multidigraph:
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Exercise 5. Let f be a configuration on the integer lattice (where we view the
integer lattice as a locally finite multidigraph). (The notion of a configuration and
related notions are defined in the same way as for usual, finite multidigraphs.)

Assume that only finitely many vertices v ∈ Z2 satisfy f (v) ̸= 0. (Thus, the
total number of chips ∑ f is finite.)

An edge e of the integer lattice is said to be non-void in f if and only if at least
one of the endpoints of e has at least one chip in f .

Prove the following:
(a) If an edge of the integer lattice is non-void in f , then this edge remains

non-void after firing any legal sequence of vertices. (“Firing a sequence” means
firing all the vertices in the sequence, one after the other.)

(b) The total number of configurations that can be obtained from f by firing a
legal sequence of vertices is finite.

(c) If we fire any vertex, then the sum ∑
(i,j)∈Z2

f ((i, j)) · (i + j)2 increases.

(d) The configuration f is finitary (so its stabilization is well-defined).

This exercise gives the reason why pictures such as the ones in [Ellenb15] exist
(although it does not explain their shapes and patterns).

Hints to Exercise 5. (a) Recall that we view the integer lattice as a locally finite mul-
tidigraph. Thus, each edge e of the integer lattice is not an actual edge, but really is
two arcs (u, v) and (v, u) (where u and v are its endpoints). These two arcs form a
cycle, which we denote by ce (we choose arbitrarily which vertex to begin this cycle
at). Clearly, e is non-void in a configuration f if and only if the cycle ce is non-void
in f (where the notion of “non-void” for a cycle is understood as in Definition 0.45).
Thus, Exercise 5 (a) follows from Lemma 0.46 (at least if we extend the latter lemma
to locally finite multidigraphs).

(b) For each configuration g, we shall denote by Sg the set
{

v ∈ Z2 | g (v) ̸= 0
}

.
Clearly, if ∑ g is finite, then the set Sg is finite. Thus, in particular, the set Sg is finite
whenever the configuration g is obtained from f by repeatedly firing vertices.
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Now, we make the following observation:

Observation 1: If a configuration g′ is obtained from a configuration g by
firing an active vertex, then each v ∈ Sg′ either belongs to Sg or has at
least one neighbor in Sg.

Observation 1 is easy to check.
Using Observation 1, Exercise 5 (a), and straightforward induction (over the

length of the legal sequence), we can argue the following observation:

Observation 2: If a configuration g′ is obtained from a configuration g
by firing a legal sequence of vertices, then for each v ∈ Sg′ , there exists
a vertex w ∈ Sg and a walk p from w to v such that each edge of p is
non-void in g′.

Now, let h = ∑ f . Define a subset T of Z2 by

T =
{

v ∈ Z2 | there exists some w ∈ S f such that d (w, v) ≤ 4h
}

.

We call this set T the 4h-neighborhood of S f . This set T is finite (since S f is finite).
Let f ′ be a configuration obtained from the configuration f by firing a legal

sequence of vertices. Let v ∈ S f ′ . Then, Observation 2 (applied to g = f and
g′ = f ′) shows that there exists a vertex w ∈ S f and a walk p from w to v such that
each edge of p is non-void in f ′. Consider these w and p. We WLOG assume that
the walk p is a path (since otherwise, we can simply remove cycles from p until p
becomes a path). Since ∑ f ′ = ∑ f = h, there cannot be more than 4h edges that
are non-void in f ′ (since each chip makes only 4 edges non-void, and there can be
overlap). Thus, the path p cannot have more than 4h edges (since each edge of p
is non-void in f ′). In other words, the length of the path p is ≤ 4h. Thus, there
exists a path of length ≤ 4h from w to v (namely, the path p). Hence, d (w, v) ≤ 4h.
Hence, v ∈ T (by the definition of T, because w ∈ S f ).

Now, forget that we fixed v. We thus have shown that v ∈ T for each v ∈ S f ′ .
In other words, S f ′ ⊆ T. Hence, f ′ (v) = 0 for each v ∈ Z2 \ T (because of the
definition of S f ′). Moreover, f ′ (v) ∈ {0, 1, . . . , h} for each v ∈ T (since f ′ (v) ≤
∑ f ′ = h).

Now, forget that we fixed f ′. We thus have proven that each configuration f ′

obtained from the configuration f by firing a legal sequence of vertices satisfies

f ′ (v) = 0 for each v ∈ Z2 \ T, and

f ′ (v) ∈ {0, 1, . . . , h} for each v ∈ T.

Thus, all the configurations f ′ obtained from the configuration f by firing a legal
sequence of vertices can be regarded as maps from T to {0, 1, . . . , h}. Of course,
there are only finitely many such maps; thus, there are only finitely many config-
urations that can be obtained from f by firing a legal sequence of vertices. This
solves Exercise 5 (b).
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(c) Firing a given vertex (p, q) results in four chips disappearing from this vertex
and reappearing on its four adjacent vertices (p + 1, q) , (p − 1, q) , (p, q + 1) , (p, q − 1).
Thus, the value of ∑

(i,j)∈Z2
f ((i, j)) · (i + j)2 increases by

((p + 1) + q)2 + ((p − 1) + q)2 + (p + (q + 1))2 + (p + (q − 1))2 − 4 (p + q)2 = 4.

In particular, it increases. This solves Exercise 5 (c).
(d) Let ℓ = (ℓ1, ℓ2, . . . , ℓk) be a legal sequence for f . Then, for each i ∈ {0, 1, . . . , k},

the Z-configuration f − ∆ℓ1 − ∆ℓ2 − · · · − ∆ℓi is a configuration; denote this con-
figuration by fi. For each i ∈ {0, 1, . . . , k}, the configuration fi is obtained from f
by firing a legal sequence of vertices.

But each p ∈ {1, 2, . . . , k} satisfies

∑
(i,j)∈Z2

fp−1 ((i, j)) · (i + j)2 < ∑
(i,j)∈Z2

fp ((i, j)) · (i + j)2

(by Exercise 5 (c), because the configuration fp is obtained from fp−1 by firing the
vertex ℓp). Thus, the sequence ∑

(i,j)∈Z2

fp ((i, j)) · (i + j)2


p∈{0,1,...,k}

is strictly increasing. Hence, its entries are distinct. Thus, the configurations
f0, f1, . . . , fk are distinct.

Recall that for each i ∈ {0, 1, . . . , k}, the configuration fi is obtained from f by
firing a legal sequence of vertices. But Exercise 5 (b) shows that the total number
of such configurations is finite. Hence, if k is large enough, then two of the con-
figurations f0, f1, . . . , fk are equal. This contradicts the fact that the configurations
f0, f1, . . . , fk are distinct. Hence, k cannot be large enough.

Now, forget that we fixed k. We thus have shown that if ℓ = (ℓ1, ℓ2, . . . , ℓk) is
a legal sequence for f , then k cannot be arbitrarily large. In other words, f does
not have arbitrarily long legal sequences. In other words, f is finitary. This solves
Exercise 5 (d).

0.8. Exercise 6: acyclic orientations are determined by their
score vectors

Now, we leave the chip-firing setting.
Roughly speaking, an orientation of a multigraph G is a way to assign to each

edge of G a direction (thus making it an arc). If the resulting digraph has no cycles,
then this orientation will be called acyclic. A rigorous way to state this definition is
the following:
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Definition 0.56. Let G = (V, E, ψ) be a multigraph.
(a) An orientation of G is a map ϕ : E → V × V such that each e ∈ E has the

following property: If we write ϕ (e) in the form ϕ (e) = (u, v), then ψ (e) =
{u, v}.

(b) An orientation ϕ of G is said to be acyclic if and only if the multidigraph
(V, E, ϕ) has no cycles.

Example 0.57. Let G = (V, E, ψ) be the following multigraph:

2

a

b

c

1
d

3

Then, the following four maps ϕ are orientations of G:

• the map sending a to (1, 2), sending b to (1, 2), sending c to (3, 2), and
sending d to (1, 3);

• the map sending a to (2, 1), sending b to (1, 2), sending c to (3, 2), and
sending d to (3, 1);

• the map sending a to (1, 2), sending b to (1, 2), sending c to (2, 3), and
sending d to (1, 3);

• the map sending a to (1, 2), sending b to (1, 2), sending c to (2, 3), and
sending d to (3, 1).

Here are the multidigraphs (V, E, ϕ) corresponding to these four maps (in the
order mentioned):
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Only the first and the third of these orientations ϕ are acyclic (since only the first
and the third of these multidigraphs have no cycles).

Exercise 6. Let G = (V, E, ψ) be a multigraph.
Prove the following:
(a) If ϕ is any acyclic orientation of G, and if V ̸= ∅, then there exists a v ∈ V

such that no arc of the multidigraph (V, E, ϕ) has target v.
(b) If ϕ1 and ϕ2 are two acyclic orientations of G such that each v ∈ V satisfies

deg+
(V,E,ϕ1)

v = deg+
(V,E,ϕ2)

v,
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then ϕ1 = ϕ2.

Our solution to Exercise 6 uses the following fact:

Proposition 0.58. Let D = (V, A, ϕ) be a multidigraph with |V| > 0. Assume
that each vertex v ∈ V satisfies deg− v > 0. Then, D has at least one cycle.

Proof of Proposition 0.58. Proposition 0.58 is simply the obvious generalization of
Exercise 3 on Midterm 1 to multidigraphs; it is proven in precisely the same way.

Hints to Exercise 6. (a) Let ϕ be any acyclic orientation of G. Thus, the multidigraph
(V, E, ϕ) has no cycles.

Assume that V ̸= ∅. Then, |V| > 0.
If each vertex v ∈ V satisfies deg−

(V,E,ϕ) v > 0, then the multidigraph (V, E, ϕ)

has at least one cycle29. Therefore, not each vertex v ∈ V satisfies deg−
(V,E,ϕ) v > 0

(because the multidigraph (V, E, ϕ) has no cycles). In other words, there exists a
vertex v ∈ V satisfying deg−

(V,E,ϕ) v = 0. In other words, there exists a v ∈ V such
that no arc of the multidigraph (V, E, ϕ) has target v. This solves Exercise 6 (a).

(b) We shall solve Exercise 6 (b) by induction over |V|.
The induction base (the case when |V| = 0) is obvious (because in this case there

are no edges, and thus there is only one possible orientation).
Now, we come to the induction step: Let N ∈ N be positive. Assume (as the

induction hypothesis) that Exercise 6 (b) holds whenever |V| = N − 1. We must
now prove that Exercise 6 (b) also holds whenever |V| = N.

So let G, V, E and ψ be as in Exercise 6 (b), and assume that |V| = N. Let ϕ1 and
ϕ2 be two acyclic orientations of G such that each v ∈ V satisfies

deg+
(V,E,ϕ1)

v = deg+
(V,E,ϕ2)

v. (20)

We must then prove that ϕ1 = ϕ2.
We have |V| = N > 0, thus V ̸= ∅. Hence, Exercise 6 (a) (applied to ϕ = ϕ1)

shows that there exists a v ∈ V such that no arc of the multidigraph (V, E, ϕ1)
has target v. Fix such a v, and denote it by w. Thus, no arc of the multidigraph
(V, E, ϕ1) has target w. Hence, deg−

(V,E,ϕ1)
w = 0.

But ϕ1 is an orientation of G. Hence, some of the edges of G that contain w
become arcs with source w in ϕ1, whereas the remaining edges of G that contain w
become arcs with target w in ϕ1. Therefore,

deg−
(V,E,ϕ1)

w + deg+
(V,E,ϕ1)

w = degG w. (21)

Similarly,
deg−

(V,E,ϕ2)
w + deg+

(V,E,ϕ2)
w = degG w. (22)

29This follows from Proposition 0.58 (applied to (V, E, ϕ) and E instead of D and A).

http://www.cip.ifi.lmu.de/~grinberg/t/17s/mt1s.pdf
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Now, (21) yields

degG w = deg−
(V,E,ϕ1)

w︸ ︷︷ ︸
=0

+deg+
(V,E,ϕ1)

w = deg+
(V,E,ϕ1)

w = deg+
(V,E,ϕ2)

w

(by (20), applied to v = w). Hence,

deg+
(V,E,ϕ2)

w = degG w = deg−
(V,E,ϕ2)

w + deg+
(V,E,ϕ2)

w (by (22)) .

Subtracting deg+
(V,E,ϕ2)

w from both sides of this equality, we find 0 = deg−
(V,E,ϕ2)

w.
Hence, no arc of the multidigraph (V, E, ϕ2) has target w.

Now, we see that

each edge e of G satisfying w ∈ ψ (e) satisfies ϕ1 (e) = ϕ2 (e) (23)
30.

On the other hand, let G′ = (V′, E′, ψ′) be the multigraph obtained from G by
removing the vertex w and all edges containing w. (Thus, V′ = V \ {w}, E′ =
{e ∈ E | w /∈ ψ (e)} and ψ′ = ψ |E′ .) Notice that |V′| = |V \ {w}| = |V|︸︷︷︸

=N

−1 =

N − 1.
Let ϕ′

1 and ϕ′
2 be the two orientations of the multigraph G′ obtained by restricting

ϕ1 and ϕ2. (Thus, ϕ′
1 = ϕ1 |E′ and ϕ′

2 = ϕ2 |E′ .) Clearly, the orientation ϕ′
1 is acyclic

(since each cycle of the multidigraph (V′, E′, ϕ′
1) would be a cycle of the multi-

digraph (V, E, ϕ1), but the latter multidigraph has no cycles since ϕ1 is acyclic).
Similarly, the orientation ϕ′

2 is acyclic.
Each v ∈ V′ satisfies

deg+

(V′,E′,ϕ′
1)

v = deg+

(V′,E′,ϕ′
2)

v

31. Hence, the induction hypothesis (applied to G′, V′, E′, ψ′, ϕ′
1 and ϕ′

2 instead of
G, V, E, ψ, ϕ1 and ϕ2) shows that ϕ′

1 = ϕ′
2 (since |V′| = N − 1).

30Proof of (23): Let e be an edge of G satisfying w ∈ ψ (e). Write ψ (e) in the form ψ (e) = {u, w} for
some u ∈ V. Then, ϕ1 (e) is either (u, w) or (w, u). But since no arc of the multidigraph (V, E, ϕ1)
has target w, we cannot have ϕ1 (e) = (u, w). Hence, we have ϕ1 (e) = (w, u). Similarly, ϕ2 (e) =
(w, u) (since no arc of the multidigraph (V, E, ϕ2) has target w). Hence, ϕ1 (e) = (w, u) = ϕ2 (e).
This proves (23).

31Proof. Let v ∈ V′. Thus, v ∈ V′ = V \ {w}, so that v ∈ V and v ̸= w.
Now, recall that no arc of the multidigraph (V, E, ϕ1) has target w. Hence, each arc of the

multidigraph (V, E, ϕ1) having source v is also an arc of the multidigraph
(
V′, E′, ϕ′

1
)
. Therefore,

the arcs of the multidigraph (V, E, ϕ1) having source v are precisely the arcs of the multidigraph(
V′, E′, ϕ′

1
)

having source v. Therefore, deg+

(V′ ,E′ ,ϕ′
1)

v = deg+
(V,E,ϕ1)

v. Similarly, deg+

(V′ ,E′ ,ϕ′
2)

v =

deg+
(V,E,ϕ2)

v. Now,

deg+

(V′ ,E′ ,ϕ′
1)

v = deg+
(V,E,ϕ1)

v = deg+
(V,E,ϕ2)

v (by (20))

= deg+

(V′ ,E′ ,ϕ′
2)

v,

qed.
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Thus,

each edge e of G satisfying w /∈ ψ (e) satisfies ϕ1 (e) = ϕ2 (e) (24)

32. Combining this with (23), we conclude that each edge e of G satisfies ϕ1 (e) =
ϕ2 (e). In other words, we have ϕ1 = ϕ2.

Thus, we have proven that Exercise 6 (b) also holds whenever |V| = N. This
completes the induction step. Hence, Exercise 6 (b) is solved.

[Remark: Exercise 6 (b) remains valid even if we don’t require the orientation
ϕ2 to be acyclic. The above solution to this exercise still works in this generality
(mutatis mutandis).]

0.9. Exercise 7: the lattice structure on minimum cuts

Let us recall some terminology from [Grinbe17b]:

• A network consists of:

– a simple digraph (V, A);

– two distinct vertices s ∈ V and t ∈ V, called the source and the sink,
respectively (although we do not require s to have indegree 0 or t to
have outdegree 0);

– a function c : A → Q+, called the capacity function. (Here, Q+ means the
set {x ∈ Q | x ≥ 0}.)

• Given a network consisting of a digraph (V, A), a source s ∈ V and a sink
t ∈ V, and a capacity function c : A → Q+, we define the following notations:

– For any subset S of V, we let S denote the subset V \ S of V.

– If P and Q are two subsets of V, then [P, Q] shall mean the set of all arcs
a ∈ A whose source belongs to P and whose target belongs to Q. (In
other words, [P, Q] = A ∩ (P × Q).)

– If P and Q are two subsets of V, then the number c (P, Q) ∈ Q+ is
defined by

c (P, Q) = ∑
a∈[P,Q]

c (a) .

We also refer to lecture 16 [Grinbe17b] for the definition of a flow (which is not
necessary for the following problem, but may be helpful).

32Proof of (24): Let e be an edge of G satisfying w /∈ ψ (e). Then, e is an edge of the multigraph G′

(by the definition of G′). Hence, ϕ′
1 (e) and ϕ′

2 (e) are well-defined. Moreover, ϕ′
1 is a restriction

of ϕ1; hence, ϕ′
1 (e) = ϕ1 (e). Similarly, ϕ′

2 (e) = ϕ2 (e). Now, ϕ1 (e) = ϕ′
1︸︷︷︸

=ϕ′
2

(e) = ϕ′
2 (e) = ϕ2 (e).

This proves (24).
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Exercise 7. Consider a network consisting of a simple digraph (V, A), a source
s ∈ V and a sink t ∈ V, and a capacity function c : A → Q+ such that s ̸= t.

An s-t-cutting subset shall mean a subset S of V satisfying s ∈ S and t /∈ S.
Let m denote the minimum possible value of c

(
S, S
)

where S ranges over the
s-t-cutting subsets. (Recall that this is the maximum value of a flow, according
to the maximum-flow-minimum-cut theorem.)

An s-t-cutting subset S is said to be cut-minimal if it satisfies c
(
S, S
)
= m.

Let X and Y be two cut-minimal s-t-cutting subsets. Prove that X ∩ Y and
X ∪ Y also are cut-minimal s-t-cutting subsets.

Exercise 7 is not new; it appears, e.g., in [PicQue80, Corollary 3]33.
In our solution of Exercise 7, we shall use some further material from [Grinbe17b].

Namely, we shall use the concept of flows, and the following fact:

Lemma 0.59. Consider a network consisting of a simple digraph (V, A), a source
s ∈ V and a sink t ∈ V, and a capacity function c : A → Q+ such that s ̸= t. Let
f be a flow on this network.

Let S be a subset of V satisfying s ∈ S and t /∈ S.
(a) We have | f | ≤ c

(
S, S
)
.

(b) We have | f | = c
(
S, S
)

if and only if(
each a ∈

[
S, S
]

satisfies f (a) = 0
)

(25)

and (
each a ∈

[
S, S
]

satisfies f (a) = c (a)
)

. (26)

Proof of Lemma 0.59 (sketched). (a) This is precisely [Grinbe17b, Proposition 1.7 (c)].
(b) This is precisely [Grinbe17b, Proposition 1.7 (d)].

Hints to Exercise 7. From the max-flow-min-cut-theorem (specifically, [Grinbe17b,
Theorem 1.10]), we know that

max {| f | | f is a flow} = min

c
(
S, S
)

| S ⊆ V; s ∈ S; t /∈ S︸ ︷︷ ︸
⇐⇒ (S is an s-t-cutting subset of V)


= min

{
c
(
S, S
)

| S is an s-t-cutting subset of V
}

= m (by the definition of m) .

Hence, there exists a flow f with | f | = m. Consider such an f .
The subset X is s-t-cutting; thus, X is a subset of V satisfying s ∈ X and t /∈ X.
The subset Y is s-t-cutting; thus, Y is a subset of V satisfying s ∈ Y and t /∈ Y.

33To be fully precise, the version in [PicQue80, Corollary 3] differs by having c be a map A → R>0
(where R>0 is the set of all positive reals) instead of having c be a map A → Q+. But the
difference is unsubstantial, and roughly the same proofs work for both results.
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We have c
(
X, X

)
= m (since X is cut-minimal) and c

(
Y, Y

)
= m (since Y is

cut-minimal). Thus, | f | = m = c
(
X, X

)
and | f | = m = c

(
Y, Y

)
.

We have s ∈ X ∩ Y (since s ∈ X and s ∈ Y) and s ∈ X ∪ Y (likewise). We have
t /∈ X ∪ Y (since t /∈ X and t /∈ Y) and t /∈ X ∩ Y (likewise). The subset X ∩ Y of V
is s-t-cutting (since s ∈ X ∩ Y and t /∈ X ∩ Y). Similarly, the subset X ∪ Y of V is
s-t-cutting.

Lemma 0.59 (b) (applied to S = X) shows that | f | = c
(
X, X

)
if and only if(

each a ∈
[
X, X

]
satisfies f (a) = 0

)
(27)

and (
each a ∈

[
X, X

]
satisfies f (a) = c (a)

)
. (28)

Therefore, (27) and (28) hold (since | f | = c
(
X, X

)
).

Lemma 0.59 (b) (applied to S = Y) shows that | f | = c
(
Y, Y

)
if and only if(

each a ∈
[
Y, Y

]
satisfies f (a) = 0

)
(29)

and (
each a ∈

[
Y, Y

]
satisfies f (a) = c (a)

)
. (30)

Therefore, (29) and (30) hold (since | f | = c
(
Y, Y

)
).

Now, (
each a ∈

[
X ∩ Y, X ∩ Y

]
satisfies f (a) = 0

)
(31)

34 and (
each a ∈

[
X ∩ Y, X ∩ Y

]
satisfies f (a) = c (a)

)
(32)

35.
But Lemma 0.59 (b) (applied to S = X ∩ Y) shows that | f | = c

(
X ∩ Y, X ∩ Y

)
if

and only if (31) and (32) hold. Hence, | f | = c
(
X ∩ Y, X ∩ Y

)
(since (31) and (32)

34Proof of (31): Let a ∈
[
X ∩ Y, X ∩ Y

]
. We must prove that f (a) = 0.

We have a ∈
[
X ∩ Y, X ∩ Y

]
. Thus, a = (u, v) for some u /∈ X ∩ Y and v ∈ X ∩ Y. Consider

these u and v.
We have v ∈ X ∩ Y ⊆ Y. Hence, if u /∈ Y, then (u, v) ∈

[
Y, Y

]
. Thus, if u /∈ Y, then

a = (u, v) ∈
[
Y, Y

]
. Therefore, if u /∈ Y, then (29) shows that f (a) = 0. Thus, for the rest of this

proof, we WLOG assume that u /∈ Y does not hold. Hence, u ∈ Y. Now, u ∈ Y but u /∈ X ∩ Y.
Hence, u ∈ Y \ (X ∩ Y) = Y \ X, so that u /∈ X. But v ∈ X ∩ Y ⊆ X. Hence, (u, v) ∈

[
X, X

]
, so

that a = (u, v) ∈
[
X, X

]
. Thus, (27) shows that f (a) = 0. This proves (31).

35Proof of (32): Let a ∈
[
X ∩ Y, X ∩ Y

]
. We must prove that f (a) = c (a).

We have a ∈
[
X ∩ Y, X ∩ Y

]
. Thus, a = (u, v) for some u ∈ X ∩ Y and v /∈ X ∩ Y. Consider

these u and v.
We have u ∈ X ∩ Y ⊆ Y. Hence, if v /∈ Y, then (u, v) ∈

[
Y, Y

]
. Thus, if v /∈ Y, then

a = (u, v) ∈
[
Y, Y

]
. Therefore, if v /∈ Y, then f (a) = c (a) follows immediately from (30). Thus,

for the rest of this proof, we WLOG assume that v /∈ Y does not hold. Hence, v ∈ Y. Now, v ∈ Y
but v /∈ X ∩ Y. Hence, v ∈ Y \ (X ∩ Y) = Y \ X, so that v /∈ X. But u ∈ X ∩ Y ⊆ X. Hence,
(u, v) ∈

[
X, X

]
. Thus, a = (u, v) ∈

[
X, X

]
. Hence, (28) shows that f (a) = c (a). This proves (32).
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hold). Thus, c
(
X ∩ Y, X ∩ Y

)
= | f | = m. In other words, the s-t-cutting subset

X ∩ Y of V is cut-minimal.
Furthermore, (

each a ∈
[
X ∪ Y, X ∪ Y

]
satisfies f (a) = 0

)
(33)

36 and (
each a ∈

[
X ∪ Y, X ∪ Y

]
satisfies f (a) = c (a)

)
(34)

37.
But Lemma 0.59 (b) (applied to S = X ∪ Y) shows that | f | = c

(
X ∪ Y, X ∪ Y

)
if

and only if (33) and (34) hold. Hence, | f | = c
(
X ∪ Y, X ∪ Y

)
(since (33) and (34)

hold). Thus, c
(
X ∪ Y, X ∪ Y

)
= | f | = m. In other words, the s-t-cutting subset

X ∪ Y of V is cut-minimal. Exercise 7 is thus shown.
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