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1 EXERCISE 1

1.1 PROBLEM

Fix a loopless multidigraph D = (V,; A, ¢). Let f : V — N be a configuration. Let
h=>"f. Let n=|V|. Assume that n > 0.

h—1
Let ¢ = (01, 0s,...,4;) be a legal sequence for f having length k& > <n + ) >
n —_—
Prove the following:
(a) There exist legal sequences (for f) of arbitrary length.
(b) Let ¢ be a vertex of D such that for each vertex u € V| there exists a path from

u to q. Then, ¢ must appear at least once in the sequence ¢.

1.2 SOLUTION

Proof of part (a): For i =0,1,...,k, let f; = f — Al; — ... — Af;. Thus, in particular,
fo=1T1.
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Since h is unchanged by any legal sequence, > f;(v) = h for all i € {0,1,...,k}.
veV
Now, per the fact referenced in the problem set, the total number of possible config-

. . - n+h—1
urations f; for which > f;(v) = h is given by ( |
veV n—
tions are in bijection with the n-tuples (a1, as, . .., a,) of nonnegative integers satisfying

h—1
i )) But in the
n—1

) (because these configura-

ai+as+---+a, = h, but the number of the latter n-tuples is (n
n+h-—1

course of firing the sequence ¢ on f, at least ( ) + 1 configurations will appear

(including f). Then by the pigeonhole principle, at least one pair of configurations must
be identical; that is, for some 7, € {0,1,...,k} with ¢ < j, we have f; = f;. Since the

sequence ({iy1,0it2,...,¢;) is legal on configuration f;, it is also legal on configuration
fj- Thus, starting at f, we could fire the sequence (¢, (s, ..., ¢;), followed by arbitrarily
many repetitions of the sequence (¢;11,;12, ..., ¢;). ]

Proof of part (b): Assume the contrary. Thus, ¢ never appears in ¢. As we have seen
in our proof of part (a), there exist legal sequences (for f) of arbitrary length, and fur-

thermore, there exist such sequences having the form | ¢1,4s,...,0;, liz1,iya, ..., {;

periodicaﬁ; repeated
These latter sequences do not contain ¢ (since g never appears in £), and therefore are
g-legal. Hence, ¢-legal sequences of arbitrary length exist.

By Theorem 0.20 on the homework set, there exists a sequence s that is g¢-legal
and g¢-stabilizing for f. Furthermore, all ¢g-legal sequences (for f) are at most as long
as s. This contradicts the fact that g-legal sequences of arbitrary length exist. This
contradiction shows that our assumption was false; hence, part (b) is proven. O]

3 EXERCISE 3

3.1 PROBLEM

Assume that the multidigraph D is strongly connected. Let f : V' — N be an infinitary
configuration.
(a) Prove that D cannot have more than > f vertex-disjoint cycles. (A set of cycles
is said to be vertez-disjoint if no two distinct cycles in the set have a vertex in common.)
(b) Prove that D cannot have more than ) f arc-disjoint cycles. (A set of cycles is
said to be arc-disjoint if no two distinct cycles in the set have an arc in common.)
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3.2 SOLUTION TO PART (A)

Proof of part (a): Let h = > f. A cycle will be called non-void in a configuration g
if at least one vertex on the cycle contains a chip in g. Given a configuration g and a
sequence of vertices ¢ = (v, v9,...,vx), the configuration g — Avy — Avg — -+ — Awy,
shall be denoted g — ¢. I begin with a claim:

Clazm 1: If a cycle in D is non-void in a configuration g, it will remain
non-void after firing any legal sequence of vertices.

Proof of Claim 1. Let ¢ = (vg, e1,v1,€2,V2, ...,V 1,€k, Uk = vg) be a cycle in D.
Suppose c¢ is non-void in a configuration g. Consider the outcome of firing a vertex
w € V that is active in g. There are two cases to consider:

o Case 1: w = v; for some i € {0,1,...,k— 1}. In this case, there is at least
one arc from w to v;y1, s0 (¢ — Aw)(vi11) > g(viz1) + 1 > 1. That is, vertex
v;+1 contains at least one chip in configuration (¢ — Aw). Hence ¢ is non-void
in (g — Aw).

e Case 2: w ¢ {vg,v1,...,v_1}. In this case, since ¢ is non-void in g, we know
that g(v;) > 0 for some i € {0,1,...,k—1}. Firing the vertex w cannot
decrease the number of chips on v; (since w # v;), so (9—Aw)(v;) > g(v;) > 0.
That is, vertex v; contains at least one chip in configuration (¢ — Aw). Hence
¢ is non-void in (g — Aw).

In either case, ¢ remains non-void after firing any active vertex. Then by induction,
¢ will remain non-void after firing any legal sequence of vertices. This proves Claim

1. O
Now, suppose (for the sake of contradiction) that D has at least h+ 1 vertex-disjoint
cycles. Name these cycles ¢1,¢9,...,¢cpe1. Fori=1,2,... h+1, pick a vertex ¢; that is

on the cycle c¢;.

Now, we shall define h+1 sequences {1, {5, . .., {51 of vertices of D with the property
that each ¢; is legal for the configuration f—¢; —fy—---—¢;_; (so that the concatenation
of all the h + 1 sequences is legal for f) and that each vertex ¢; has at least one chip in
f—4¥01 — 4Ly —---— ;. These sequences are defined by recursion over :

e Fix ani € {1,2,...,h+ 1}, and assume that the sequences (1,05, ..., ¢;_; are al-
ready constructed. Since D is strongly connected, Theorem 0.20 on the homework
set tells us that there is a legal sequence ¢; that is g;-stabilizing for configuration

f—4¥—---—1¥;_1. The sequence ¢; cannot be stabilizing for f —¥¢; —--- — {;_4
(since f is infinitary), so the vertex ¢; is active in configuration f —¢; —--- — ;.
Thus ¢; is non-void in configuration f —¥¢; —---—¢;, and by Claim 1 it will remain

non-void after firing any further legal sequence of vertices.

Hence there is a legal sequence (namely, the concatenation of 1,05, ..., ¢, 1) that
will render each of the h + 1 cycles non-void. But this implies that there is at least one
vertex in each cycle with at least one chip on it. Since the cycles are vertex-disjoint,
there must be at least h+ 1 chips, a contradiction. Therefore, D cannot have more than
h vertex-disjoint cycles. O
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6 EXERCISE 6

6.1 PROBLEM

Let G = (V, E, %) be a multigraph.

Prove the following;:

(a) If ¢ is any acyclic orientation of G, and if |V| > 0, then there exists a v € V
such that no arc of the multidigraph (V| £, ¢) has target v.

(b) If ¢1 and ¢, are two acyclic orientations of G such that each v € V' satisfies

deg?v,mpl) V= degZLME7¢2) v,

then qf)l = qbg.

6.2 SOLUTION

Proof of part (a): Suppose the contrary: ¢ is an acyclic orientation of G such that for
each v € V, there exist u € V and e € E such that ¢(e) = (u,v). Fix a longest path
p = (vo,€1,v1, €9, ..., 6k v) in the multidigraph (V, E, ¢). By supposition, there exists
an edge eg € F such that ¢(eq) = (u,v) for some u € V. If u were distinct from each
v; in p, then p would not be a longest path. Hence u = v; for some i € {0,1,...,k}.
But then (u, eg, v, €1, v1,...,6€;,v; = u) is a cycle in (V) E, ¢), a contradiction (since ¢ is
acyclic). Therefore, there exists a v € V such that no arc of (V, E, ¢) has target v. O

Proof of part (b): Let ¢ and ¢9 be two acyclic orientations of G such that each v € V'
satisfies
deg?_V,E,qﬁl) v= degzrv,E,@) v. (1)
Suppose (for the sake of contradiction) there is an edge e; € E such that ¢;(ey) #
¢a(e1), that is, ¢1(e1) = (u,v) and ¢2(e1) = (v,u) for some distinct u,v € V. Then
there must be a distinct es € E such that ¢q(e3) = (v, w) and ¢o(es) = (w, v) for some
w € V distinct from v. (If not, we would have degzrw B U < deg& F.45) ¥, Which would
contradict (I).) By induction then, we can construct a walk in (V, E, ¢;) by following
an arbitrarily long sequence of these edges (i.e. (u,eq,v, ez, w,...)). Since |V] is finite,
this walk must eventually return to a previously visited vertex, implying that there is
a cycle in (V, E, ¢1), a contradiction (since ¢; is acyclic). Therefore, there is no edge

e € F such that ¢;(e) # ¢a(e). Then ¢ = ¢o. O

[Remark: In our above proof of part (b), we only used that the assumption that ¢;
is acyclic, but not that ¢o is acyclic. So the problem can be generalized.|
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7 EXERCISE 7

7.1 PROBLEM

Consider a network consisting of a digraph (V, A), a source s € V and a sink ¢t € V', and
a capacity function ¢: A — Q, such that s # t.

An s-t-cutting subset shall mean a subset S of V satisfying s € S and ¢ ¢ S.

Let m denote the minimum possible value of ¢ (S, ?) where S ranges over the s-
t-cutting subsets. (Recall that this is the maximum value of a flow, according to the
maximum-flow-minimum-cut theorem.)

An s-t-cutting subset S is said to be cut-minimal if it satisfies ¢ (S, §) =m.

Let X and Y be two cut-minimal s-t-cutting subsets. Prove that X NY and X UY
also are cut-minimal s-t-cutting subsets.

7.2 SOLUTION

Proof. T will use the notation s(a) to denote the source of an arc a, and the notation
t(a) to denote the target of an arc a. To begin, note that since X and Y are s-t-cutting
subsets, we know s € X, s € Y, t ¢ X, and ¢t ¢ Y. Thus it follows that s € X UY,
seXNY,t¢ XUY, andt¢ XNY. Hence X UY and X NY are s-t-cutting subsets.
We want to prove that X UY and X NY are both also cut-minimal. We shall achieve
this by showing that ¢( X UY, X UY)+c¢(X NY, X NY) < 2m.

We begin with the following tedious set definitions (illustrated by the perhaps not
so helpful figure):

Axy ={a € A|s(a) € X\Y and t(a) € Y\X},

Axy ={a€ Als(a) € X\Y and t(a) € V\(X UY)},
Axyy ={a€ A|s(a) € XNY and t(a) € Y\X},
Axyy ={a€ Als(a) e XNY and t(a) € V\(XUY)},

Ayx ={a € A|s(a) € Y\X and t(a) € X\Y},

Ayy ={a€ A|s(a) € Y\X and t(a) e V\(XUY)},
Axyx ={a€ A|s(a) € XNY and t(a) € X\Y}.

Note that the above sets are pairwise disjoint. Using these sets, we can express the
following sets (which are clearly not disjoint in general):

[X,X] = Axy UAxy UAxyy U Axyy,

[V,Y]=Ayx UAyy UAxyx UAxyy,
(XUY, XUY]|=Axy UAyy UAxyy,
(XNY, XNY]=AxyxUAxyy UAxyy.
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Figure 1: Schematic representation of set definitions

Set

P:=[X,X|UlY,Y],
Q:=[XUY, XUuYJulXnY, XnY].

From the above we see that () C P, and specifically we have
P:QUAXQ/UAY’)(. (2)
Since (), Axy and Ay x are disjoint, this yields
Y ela) =) cla)+ Y ca)+ > cla). (3)
a€eP a€eqQ a€Axy a€Ay,x

Using these set definitions, we have

2m = c(X, X) + (YY) = Z c(a) + Z cla) = Zc(a) + Z cla), (4)

a€[X,X| a€ly,Y] aepP a€Axy,v
with the last equality holding because the arcs in Axyy (and only these arcs) appear in

both [X, X] and [Y, Y], but of course appear only once in P. Similarly,
(XUY,XUY)+c(XNY,XNY)= > ca)+ Y  ca)

a€[XUY,XUY] a€[XNY,XNY]
= ca)+ Y cla), (5)
aeqQ a€Axy,v

again with the last equality holding because the arcs in Axy y appear twice in the original
sum, but appear only once in Q. Now, combining (3)), (4), and (), we get

2m:Zc(a)+ Z cla) + Z cla) + Z c(a)

aEQ aGAX,Y aeAy’X G‘EAXY,V
=(XUY,XUY)+c(XNY,XNY)+ > ca)+ Y. ca).
CLEAXYY CLEAyyX
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Since c(a) is nonnegative for each a € A, it follows that ¢(X UY, X UY) + ¢(X N
Y, XNY) < 2m. But since m is the minimum possible value of ¢ (S, ?) where S is
an s-t-cutting subset, we also have ¢(X UY, X UY) > mand ¢(X NY, XNY) > m.
Hence (X UY, XUY)=¢(XNY,XNY)=m. Both XUY and X NY are therefore
cut-minimal s-t-cutting subsets. O
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