Math 5707: Graph Theory, Spring 2017 Homework 5 Nicholas Rancourt (edited by Darij Grinberg) January 10, 2019 # 1 Exercise 1 ## 1.1 Problem Fix a loopless multidigraph $D=(V,A,\phi)$. Let $f:V\to\mathbb{N}$ be a configuration. Let $h=\sum f$. Let n=|V|. Assume that n>0. Let $$\ell = (\ell_1, \ell_2, \dots, \ell_k)$$ be a legal sequence for f having length $k \ge \binom{n+h-1}{n-1}$. Prove the following: - (a) There exist legal sequences (for f) of arbitrary length. - (b) Let q be a vertex of D such that for each vertex $u \in V$, there exists a path from u to q. Then, q must appear at least once in the sequence ℓ . #### 1.2 SOLUTION Proof of part (a): For i = 0, 1, ..., k, let $f_i = f - \Delta \ell_1 - ... - \Delta \ell_i$. Thus, in particular, $f_0 = f$. Since h is unchanged by any legal sequence, $\sum_{v \in V} f_i(v) = h$ for all $i \in \{0, 1, \dots, k\}$. Now, per the fact referenced in the problem set, the total number of possible configurations f_i for which $\sum_{v \in V} f_i(v) = h$ is given by $\binom{n+h-1}{n-1}$ (because these configurations are in bijection with the n-tuples (a_1, a_2, \dots, a_n) of nonnegative integers satisfying $a_1 + a_2 + \dots + a_n = h$, but the number of the latter n-tuples is $\binom{n+h-1}{n-1}$). But in the course of firing the sequence ℓ on f, at least $\binom{n+h-1}{n-1} + 1$ configurations will appear (including f). Then by the pigeonhole principle, at least one pair of configurations must be identical; that is, for some $i, j \in \{0, 1, \dots, k\}$ with i < j, we have $f_i = f_j$. Since the sequence $(\ell_{i+1}, \ell_{i+2}, \dots, \ell_j)$ is legal on configuration f_i , it is also legal on configuration f_j . Thus, starting at f, we could fire the sequence $(\ell_1, \ell_2, \dots, \ell_i)$, followed by arbitrarily many repetitions of the sequence $(\ell_{i+1}, \ell_{i+2}, \dots, \ell_j)$. *Proof of part (b):* Assume the contrary. Thus, q never appears in ℓ . As we have seen in our proof of part (a), there exist legal sequences (for f) of arbitrary length, and fur- thermore, there exist such sequences having the form $\left(\ell_1,\ell_2,\ldots,\ell_i,\underbrace{\ell_{i+1},\ell_{i+2},\ldots,\ell_j}_{\text{periodically repeated}}\right)$. These latter sequences do not contain q (since q never appears in ℓ), and therefore are q-legal. Hence, q-legal sequences of arbitrary length exist. By Theorem 0.20 on the homework set, there exists a sequence s that is q-legal and q-stabilizing for f. Furthermore, all q-legal sequences (for f) are at most as long as s. This contradicts the fact that q-legal sequences of arbitrary length exist. This contradiction shows that our assumption was false; hence, part (b) is proven. # 3 Exercise 3 ## 3.1 Problem Assume that the multidigraph D is strongly connected. Let $f:V\to\mathbb{N}$ be an infinitary configuration. - (a) Prove that D cannot have more than $\sum f$ vertex-disjoint cycles. (A set of cycles is said to be *vertex-disjoint* if no two distinct cycles in the set have a vertex in common.) - (b) Prove that D cannot have more than $\sum f$ arc-disjoint cycles. (A set of cycles is said to be arc-disjoint if no two distinct cycles in the set have an arc in common.) ## 3.2 SOLUTION TO PART (A) Proof of part (a): Let $h = \sum f$. A cycle will be called non-void in a configuration g if at least one vertex on the cycle contains a chip in g. Given a configuration g and a sequence of vertices $\ell = (v_1, v_2, \dots, v_k)$, the configuration $g - \Delta v_1 - \Delta v_2 - \dots - \Delta v_k$ shall be denoted $g - \ell$. I begin with a claim: Claim 1: If a cycle in D is non-void in a configuration g, it will remain non-void after firing any legal sequence of vertices. Proof of Claim 1. Let $c = (v_0, e_1, v_1, e_2, v_2, \dots, v_{k-1}, e_k, v_k = v_0)$ be a cycle in D. Suppose c is non-void in a configuration g. Consider the outcome of firing a vertex $w \in V$ that is active in g. There are two cases to consider: - Case 1: $w = v_i$ for some $i \in \{0, 1, ..., k-1\}$. In this case, there is at least one arc from w to v_{i+1} , so $(g \Delta w)(v_{i+1}) \ge g(v_{i+1}) + 1 \ge 1$. That is, vertex v_{i+1} contains at least one chip in configuration $(g \Delta w)$. Hence c is non-void in $(g \Delta w)$. - Case 2: $w \notin \{v_0, v_1, \ldots, v_{k-1}\}$. In this case, since c is non-void in g, we know that $g(v_i) > 0$ for some $i \in \{0, 1, \ldots, k-1\}$. Firing the vertex w cannot decrease the number of chips on v_i (since $w \neq v_i$), so $(g \Delta w)(v_i) \geq g(v_i) > 0$. That is, vertex v_i contains at least one chip in configuration $(g \Delta w)$. Hence c is non-void in $(g \Delta w)$. In either case, c remains non-void after firing any active vertex. Then by induction, c will remain non-void after firing any legal sequence of vertices. This proves Claim 1. Now, suppose (for the sake of contradiction) that D has at least h+1 vertex-disjoint cycles. Name these cycles $c_1, c_2, \ldots, c_{h+1}$. For $i = 1, 2, \ldots, h+1$, pick a vertex q_i that is on the cycle c_i . Now, we shall define h+1 sequences $\ell_1, \ell_2, \ldots, \ell_{h+1}$ of vertices of D with the property that each ℓ_i is legal for the configuration $f-\ell_1-\ell_2-\cdots-\ell_{i-1}$ (so that the concatenation of all the h+1 sequences is legal for f) and that each vertex q_i has at least one chip in $f-\ell_1-\ell_2-\cdots-\ell_i$. These sequences are defined by recursion over i: • Fix an $i \in \{1, 2, ..., h+1\}$, and assume that the sequences $\ell_1, \ell_2, ..., \ell_{i-1}$ are already constructed. Since D is strongly connected, Theorem 0.20 on the homework set tells us that there is a legal sequence ℓ_i that is q_i -stabilizing for configuration $f - \ell_1 - \cdots - \ell_{i-1}$. The sequence ℓ_i cannot be stabilizing for $f - \ell_1 - \cdots - \ell_{i-1}$ (since f is infinitary), so the vertex q_i is active in configuration $f - \ell_1 - \cdots - \ell_i$. Thus c_i is non-void in configuration $f - \ell_1 - \cdots - \ell_i$, and by Claim 1 it will remain non-void after firing any further legal sequence of vertices. Hence there is a legal sequence (namely, the concatenation of $\ell_1, \ell_2, \dots, \ell_{h+1}$) that will render each of the h+1 cycles non-void. But this implies that there is at least one vertex in each cycle with at least one chip on it. Since the cycles are vertex-disjoint, there must be at least h+1 chips, a contradiction. Therefore, D cannot have more than h vertex-disjoint cycles. ## 6 Exercise 6 #### 6.1 Problem Let $G = (V, E, \psi)$ be a multigraph. Prove the following: - (a) If ϕ is any acyclic orientation of G, and if |V| > 0, then there exists a $v \in V$ such that no arc of the multidigraph (V, E, ϕ) has target v. - (b) If ϕ_1 and ϕ_2 are two acyclic orientations of G such that each $v \in V$ satisfies $$\deg^+_{(V,E,\phi_1)} v = \deg^+_{(V,E,\phi_2)} v,$$ then $\phi_1 = \phi_2$. ## 6.2 SOLUTION Proof of part (a): Suppose the contrary: ϕ is an acyclic orientation of G such that for each $v \in V$, there exist $u \in V$ and $e \in E$ such that $\phi(e) = (u, v)$. Fix a longest path $\rho = (v_0, e_1, v_1, e_2, \ldots, e_k, v_k)$ in the multidigraph (V, E, ϕ) . By supposition, there exists an edge $e_0 \in E$ such that $\phi(e_0) = (u, v_0)$ for some $u \in V$. If u were distinct from each v_i in ρ , then ρ would not be a longest path. Hence $u = v_i$ for some $i \in \{0, 1, \ldots, k\}$. But then $(u, e_0, v_0, e_1, v_1, \ldots, e_i, v_i = u)$ is a cycle in (V, E, ϕ) , a contradiction (since ϕ is acyclic). Therefore, there exists a $v \in V$ such that no arc of (V, E, ϕ) has target v. \square Proof of part (b): Let ϕ_1 and ϕ_2 be two acyclic orientations of G such that each $v \in V$ satisfies $$\deg_{(V,E,\phi_1)}^+ v = \deg_{(V,E,\phi_2)}^+ v. \tag{1}$$ Suppose (for the sake of contradiction) there is an edge $e_1 \in E$ such that $\phi_1(e_1) \neq \phi_2(e_1)$, that is, $\phi_1(e_1) = (u, v)$ and $\phi_2(e_1) = (v, u)$ for some distinct $u, v \in V$. Then there must be a distinct $e_2 \in E$ such that $\phi_1(e_2) = (v, w)$ and $\phi_2(e_2) = (w, v)$ for some $w \in V$ distinct from v. (If not, we would have $\deg^+_{(V,E,\phi_1)} v < \deg^+_{(V,E,\phi_2)} v$, which would contradict (1).) By induction then, we can construct a walk in (V, E, ϕ_1) by following an arbitrarily long sequence of these edges (i.e. $(u, e_1, v, e_2, w, \ldots)$). Since |V| is finite, this walk must eventually return to a previously visited vertex, implying that there is a cycle in (V, E, ϕ_1) , a contradiction (since ϕ_1 is acyclic). Therefore, there is no edge $e \in E$ such that $\phi_1(e) \neq \phi_2(e)$. Then $\phi_1 = \phi_2$. [Remark: In our above proof of part (b), we only used that the assumption that ϕ_1 is acyclic, but not that ϕ_2 is acyclic. So the problem can be generalized.] ## 7 Exercise 7 #### 7.1 Problem Consider a network consisting of a digraph (V, A), a source $s \in V$ and a sink $t \in V$, and a capacity function $c : A \to \mathbb{Q}_+$ such that $s \neq t$. An s-t-cutting subset shall mean a subset S of V satisfying $s \in S$ and $t \notin S$. Let m denote the minimum possible value of $c(S, \overline{S})$ where S ranges over the s-t-cutting subsets. (Recall that this is the maximum value of a flow, according to the maximum-flow-minimum-cut theorem.) An s-t-cutting subset S is said to be cut-minimal if it satisfies $c(S, \overline{S}) = m$. Let X and Y be two cut-minimal s-t-cutting subsets. Prove that $X \cap Y$ and $X \cup Y$ also are cut-minimal s-t-cutting subsets. ## 7.2 SOLUTION *Proof.* I will use the notation s(a) to denote the source of an arc a, and the notation t(a) to denote the target of an arc a. To begin, note that since X and Y are s-t-cutting subsets, we know $s \in X$, $s \in Y$, $t \notin X$, and $t \notin Y$. Thus it follows that $s \in X \cup Y$, $s \in X \cap Y$, $t \notin X \cup Y$, and $t \notin X \cap Y$. Hence $X \cup Y$ and $X \cap Y$ are s-t-cutting subsets. We want to prove that $X \cup Y$ and $X \cap Y$ are both also cut-minimal. We shall achieve this by showing that $c(X \cup Y, \overline{X \cup Y}) + c(X \cap Y, \overline{X \cap Y}) \leq 2m$. We begin with the following tedious set definitions (illustrated by the perhaps not so helpful figure): $$A_{X,Y} = \{ a \in A \mid s(a) \in X \setminus Y \text{ and } t(a) \in Y \setminus X \},$$ $$A_{X,V} = \{ a \in A \mid s(a) \in X \setminus Y \text{ and } t(a) \in V \setminus (X \cup Y) \},$$ $$A_{XY,Y} = \{ a \in A \mid s(a) \in X \cap Y \text{ and } t(a) \in Y \setminus X \},$$ $$A_{XY,V} = \{ a \in A \mid s(a) \in X \cap Y \text{ and } t(a) \in V \setminus (X \cup Y) \},$$ $$A_{Y,X} = \{ a \in A \mid s(a) \in Y \setminus X \text{ and } t(a) \in X \setminus Y \},$$ $$A_{Y,V} = \{ a \in A \mid s(a) \in Y \setminus X \text{ and } t(a) \in V \setminus (X \cup Y) \},$$ $$A_{XY,X} = \{ a \in A \mid s(a) \in X \cap Y \text{ and } t(a) \in X \setminus Y \}.$$ Note that the above sets are pairwise disjoint. Using these sets, we can express the following sets (which are clearly not disjoint in general): $$[X, \overline{X}] = A_{X,Y} \cup A_{X,V} \cup A_{XY,Y} \cup A_{XY,V},$$ $$[Y, \overline{Y}] = A_{Y,X} \cup A_{Y,V} \cup A_{XY,X} \cup A_{XY,V},$$ $$[X \cup Y, \overline{X \cup Y}] = A_{X,V} \cup A_{Y,V} \cup A_{XY,V},$$ $$[X \cap Y, \overline{X \cap Y}] = A_{XY,X} \cup A_{XY,Y} \cup A_{XY,V}.$$ Figure 1: Schematic representation of set definitions Set $$\begin{split} P &:= [X, \overline{X}] \cup [Y, \overline{Y}], \\ Q &:= [X \cup Y, \overline{X \cup Y}] \cup [X \cap Y, \overline{X \cap Y}]. \end{split}$$ From the above we see that $Q \subseteq P$, and specifically we have $$P = Q \cup A_{X,Y} \cup A_{Y,X}. (2)$$ Since Q, $A_{X,Y}$ and $A_{Y,X}$ are disjoint, this yields $$\sum_{a \in P} c(a) = \sum_{a \in Q} c(a) + \sum_{a \in A_{X,Y}} c(a) + \sum_{a \in A_{Y,X}} c(a).$$ (3) Using these set definitions, we have $$2m = c(X, \overline{X}) + c(Y, \overline{Y}) = \sum_{a \in [X, \overline{X}]} c(a) + \sum_{a \in [Y, \overline{Y}]} c(a) = \sum_{a \in P} c(a) + \sum_{a \in A_{XY, V}} c(a), \qquad (4)$$ with the last equality holding because the arcs in $A_{XY,V}$ (and only these arcs) appear in both $[X, \overline{X}]$ and $[Y, \overline{Y}]$, but of course appear only once in P. Similarly, $$c(X \cup Y, \overline{X \cup Y}) + c(X \cap Y, \overline{X \cap Y}) = \sum_{a \in [X \cup Y, \overline{X \cup Y}]} c(a) + \sum_{a \in [X \cap Y, \overline{X \cap Y}]} c(a)$$ $$= \sum_{a \in Q} c(a) + \sum_{a \in A_{XY,V}} c(a), \tag{5}$$ again with the last equality holding because the arcs in $A_{XY,V}$ appear twice in the original sum, but appear only once in Q. Now, combining (3), (4), and (5), we get $$\begin{split} 2m &= \sum_{a \in Q} c(a) + \sum_{a \in A_{X,Y}} c(a) + \sum_{a \in A_{Y,X}} c(a) + \sum_{a \in A_{XY,V}} c(a) \\ &= c(X \cup Y, \overline{X \cup Y}) + c(X \cap Y, \overline{X \cap Y}) + \sum_{a \in A_{X,Y}} c(a) + \sum_{a \in A_{Y,X}} c(a). \end{split}$$ Since c(a) is nonnegative for each $a \in A$, it follows that $c(X \cup Y, \overline{X \cup Y}) + c(X \cap Y, \overline{X \cap Y}) \leq 2m$. But since m is the minimum possible value of $c(S, \overline{S})$ where S is an s-t-cutting subset, we also have $c(X \cup Y, \overline{X \cup Y}) \geq m$ and $c(X \cap Y, \overline{X \cap Y}) \geq m$. Hence $c(X \cup Y, \overline{X \cup Y}) = c(X \cap Y, \overline{X \cap Y}) = m$. Both $X \cup Y$ and $X \cap Y$ are therefore cut-minimal s-t-cutting subsets.