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1 Exercise 1

1.1 Problem

Fix a loopless multidigraph D = (V,A, φ). Let f : V → N be a configuration. Let
h =

∑
f . Let n = |V |. Assume that n > 0.

Let ` = (`1, `2, . . . , `k) be a legal sequence for f having length k ≥
(
n+ h− 1

n− 1

)
.

Prove the following:
(a) There exist legal sequences (for f) of arbitrary length.
(b) Let q be a vertex of D such that for each vertex u ∈ V , there exists a path from

u to q. Then, q must appear at least once in the sequence `.

1.2 Solution

Proof of part (a): For i = 0, 1, . . . , k, let fi = f −∆`1 − . . .−∆`i. Thus, in particular,
f0 = f .
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Since h is unchanged by any legal sequence,
∑
v∈V

fi(v) = h for all i ∈ {0, 1, . . . , k}.

Now, per the fact referenced in the problem set, the total number of possible config-

urations fi for which
∑
v∈V

fi(v) = h is given by
(
n+ h− 1

n− 1

)
(because these configura-

tions are in bijection with the n-tuples (a1, a2, . . . , an) of nonnegative integers satisfying

a1 +a2 + · · ·+an = h, but the number of the latter n-tuples is
(
n+ h− 1

n− 1

)
). But in the

course of firing the sequence ` on f , at least
(
n+ h− 1

n− 1

)
+ 1 configurations will appear

(including f). Then by the pigeonhole principle, at least one pair of configurations must
be identical; that is, for some i, j ∈ {0, 1, . . . , k} with i < j, we have fi = fj. Since the
sequence (`i+1, `i+2, . . . , `j) is legal on configuration fi, it is also legal on configuration
fj. Thus, starting at f , we could fire the sequence (`1, `2, . . . , `i), followed by arbitrarily
many repetitions of the sequence (`i+1, `i+2, . . . , `j).

Proof of part (b): Assume the contrary. Thus, q never appears in `. As we have seen
in our proof of part (a), there exist legal sequences (for f) of arbitrary length, and fur-

thermore, there exist such sequences having the form

`1, `2, . . . , `i, `i+1, `i+2, . . . , `j︸ ︷︷ ︸
periodically repeated

.

These latter sequences do not contain q (since q never appears in `), and therefore are
q-legal. Hence, q-legal sequences of arbitrary length exist.

By Theorem 0.20 on the homework set, there exists a sequence s that is q-legal
and q-stabilizing for f . Furthermore, all q-legal sequences (for f) are at most as long
as s. This contradicts the fact that q-legal sequences of arbitrary length exist. This
contradiction shows that our assumption was false; hence, part (b) is proven.

3 Exercise 3

3.1 Problem

Assume that the multidigraph D is strongly connected. Let f : V → N be an infinitary
configuration.

(a) Prove that D cannot have more than
∑
f vertex-disjoint cycles. (A set of cycles

is said to be vertex-disjoint if no two distinct cycles in the set have a vertex in common.)
(b) Prove that D cannot have more than

∑
f arc-disjoint cycles. (A set of cycles is

said to be arc-disjoint if no two distinct cycles in the set have an arc in common.)
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3.2 Solution to part (a)

Proof of part (a): Let h =
∑
f . A cycle will be called non-void in a configuration g

if at least one vertex on the cycle contains a chip in g. Given a configuration g and a
sequence of vertices ` = (v1, v2, . . . , vk), the configuration g − ∆v1 − ∆v2 − · · · − ∆vk
shall be denoted g − `. I begin with a claim:

Claim 1: If a cycle in D is non-void in a configuration g, it will remain
non-void after firing any legal sequence of vertices.

Proof of Claim 1. Let c = (v0, e1, v1, e2, v2, . . . , vk−1, ek, vk = v0) be a cycle in D.
Suppose c is non-void in a configuration g. Consider the outcome of firing a vertex
w ∈ V that is active in g. There are two cases to consider:
• Case 1: w = vi for some i ∈ {0, 1, . . . , k − 1}. In this case, there is at least

one arc from w to vi+1, so (g −∆w)(vi+1) ≥ g(vi+1) + 1 ≥ 1. That is, vertex
vi+1 contains at least one chip in configuration (g−∆w). Hence c is non-void
in (g −∆w).
• Case 2: w /∈ {v0, v1, . . . , vk−1}. In this case, since c is non-void in g, we know

that g(vi) > 0 for some i ∈ {0, 1, . . . , k − 1}. Firing the vertex w cannot
decrease the number of chips on vi (since w 6= vi), so (g−∆w)(vi) ≥ g(vi) > 0.
That is, vertex vi contains at least one chip in configuration (g−∆w). Hence
c is non-void in (g −∆w).

In either case, c remains non-void after firing any active vertex. Then by induction,
c will remain non-void after firing any legal sequence of vertices. This proves Claim
1.

Now, suppose (for the sake of contradiction) that D has at least h+1 vertex-disjoint
cycles. Name these cycles c1, c2, . . . , ch+1. For i = 1, 2, . . . , h+ 1, pick a vertex qi that is
on the cycle ci.

Now, we shall define h+1 sequences `1, `2, . . . , `h+1 of vertices of D with the property
that each `i is legal for the configuration f−`1−`2−· · ·−`i−1 (so that the concatenation
of all the h+ 1 sequences is legal for f) and that each vertex qi has at least one chip in
f − `1 − `2 − · · · − `i. These sequences are defined by recursion over i:

• Fix an i ∈ {1, 2, . . . , h+ 1}, and assume that the sequences `1, `2, . . . , `i−1 are al-
ready constructed. Since D is strongly connected, Theorem 0.20 on the homework
set tells us that there is a legal sequence `i that is qi-stabilizing for configuration
f − `1 − · · · − `i−1. The sequence `i cannot be stabilizing for f − `1 − · · · − `i−1
(since f is infinitary), so the vertex qi is active in configuration f − `1 − · · · − `i.
Thus ci is non-void in configuration f − `1−· · ·− `i, and by Claim 1 it will remain
non-void after firing any further legal sequence of vertices.

Hence there is a legal sequence (namely, the concatenation of `1, `2, . . . , `h+1) that
will render each of the h+ 1 cycles non-void. But this implies that there is at least one
vertex in each cycle with at least one chip on it. Since the cycles are vertex-disjoint,
there must be at least h+ 1 chips, a contradiction. Therefore, D cannot have more than
h vertex-disjoint cycles.
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6 Exercise 6

6.1 Problem

Let G = (V,E, ψ) be a multigraph.
Prove the following:
(a) If φ is any acyclic orientation of G, and if |V | > 0, then there exists a v ∈ V

such that no arc of the multidigraph (V,E, φ) has target v.
(b) If φ1 and φ2 are two acyclic orientations of G such that each v ∈ V satisfies

deg+
(V,E,φ1)

v = deg+
(V,E,φ2)

v,

then φ1 = φ2.

6.2 Solution

Proof of part (a): Suppose the contrary: φ is an acyclic orientation of G such that for
each v ∈ V , there exist u ∈ V and e ∈ E such that φ(e) = (u, v). Fix a longest path
ρ = (v0, e1, v1, e2, . . . , ek, vk) in the multidigraph (V,E, φ). By supposition, there exists
an edge e0 ∈ E such that φ(e0) = (u, v0) for some u ∈ V . If u were distinct from each
vi in ρ, then ρ would not be a longest path. Hence u = vi for some i ∈ {0, 1, . . . , k}.
But then (u, e0, v0, e1, v1, . . . , ei, vi = u) is a cycle in (V,E, φ), a contradiction (since φ is
acyclic). Therefore, there exists a v ∈ V such that no arc of (V,E, φ) has target v.

Proof of part (b): Let φ1 and φ2 be two acyclic orientations of G such that each v ∈ V
satisfies

deg+
(V,E,φ1)

v = deg+
(V,E,φ2)

v. (1)

Suppose (for the sake of contradiction) there is an edge e1 ∈ E such that φ1(e1) 6=
φ2(e1), that is, φ1(e1) = (u, v) and φ2(e1) = (v, u) for some distinct u, v ∈ V . Then
there must be a distinct e2 ∈ E such that φ1(e2) = (v, w) and φ2(e2) = (w, v) for some
w ∈ V distinct from v. (If not, we would have deg+

(V,E,φ1)
v < deg+

(V,E,φ2)
v, which would

contradict (1).) By induction then, we can construct a walk in (V,E, φ1) by following
an arbitrarily long sequence of these edges (i.e. (u, e1, v, e2, w, . . .)). Since |V | is finite,
this walk must eventually return to a previously visited vertex, implying that there is
a cycle in (V,E, φ1), a contradiction (since φ1 is acyclic). Therefore, there is no edge
e ∈ E such that φ1(e) 6= φ2(e). Then φ1 = φ2.

[Remark: In our above proof of part (b), we only used that the assumption that φ1

is acyclic, but not that φ2 is acyclic. So the problem can be generalized.]

Nicholas Rancourt (edited by Darij Grinberg),4



Solutions to homework set #5 page 5 of 7

7 Exercise 7

7.1 Problem

Consider a network consisting of a digraph (V,A), a source s ∈ V and a sink t ∈ V , and
a capacity function c : A→ Q+ such that s 6= t.

An s-t-cutting subset shall mean a subset S of V satisfying s ∈ S and t /∈ S.
Let m denote the minimum possible value of c

(
S, S

)
where S ranges over the s-

t-cutting subsets. (Recall that this is the maximum value of a flow, according to the
maximum-flow-minimum-cut theorem.)

An s-t-cutting subset S is said to be cut-minimal if it satisfies c
(
S, S

)
= m.

Let X and Y be two cut-minimal s-t-cutting subsets. Prove that X ∩ Y and X ∪ Y
also are cut-minimal s-t-cutting subsets.

7.2 Solution

Proof. I will use the notation s(a) to denote the source of an arc a, and the notation
t(a) to denote the target of an arc a. To begin, note that since X and Y are s-t-cutting
subsets, we know s ∈ X, s ∈ Y , t /∈ X, and t /∈ Y . Thus it follows that s ∈ X ∪ Y ,
s ∈ X ∩ Y , t /∈ X ∪ Y , and t /∈ X ∩ Y . Hence X ∪ Y and X ∩ Y are s-t-cutting subsets.
We want to prove that X ∪ Y and X ∩ Y are both also cut-minimal. We shall achieve
this by showing that c(X ∪ Y,X ∪ Y ) + c(X ∩ Y,X ∩ Y ) ≤ 2m.

We begin with the following tedious set definitions (illustrated by the perhaps not
so helpful figure):

AX,Y = {a ∈ A | s(a) ∈ X\Y and t(a) ∈ Y \X},
AX,V = {a ∈ A | s(a) ∈ X\Y and t(a) ∈ V \(X ∪ Y )},
AXY,Y = {a ∈ A | s(a) ∈ X ∩ Y and t(a) ∈ Y \X},
AXY,V = {a ∈ A | s(a) ∈ X ∩ Y and t(a) ∈ V \(X ∪ Y )},
AY,X = {a ∈ A | s(a) ∈ Y \X and t(a) ∈ X\Y },
AY,V = {a ∈ A | s(a) ∈ Y \X and t(a) ∈ V \(X ∪ Y )},

AXY,X = {a ∈ A | s(a) ∈ X ∩ Y and t(a) ∈ X\Y }.

Note that the above sets are pairwise disjoint. Using these sets, we can express the
following sets (which are clearly not disjoint in general):

[X,X] = AX,Y ∪ AX,V ∪ AXY,Y ∪ AXY,V ,
[Y, Y ] = AY,X ∪ AY,V ∪ AXY,X ∪ AXY,V ,

[X ∪ Y,X ∪ Y ] = AX,V ∪ AY,V ∪ AXY,V ,
[X ∩ Y,X ∩ Y ] = AXY,X ∪ AXY,Y ∪ AXY,V .
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Figure 1: Schematic representation of set definitions

Set

P := [X,X] ∪ [Y, Y ],

Q := [X ∪ Y,X ∪ Y ] ∪ [X ∩ Y,X ∩ Y ].

From the above we see that Q ⊆ P , and specifically we have

P = Q ∪ AX,Y ∪ AY,X . (2)

Since Q, AX,Y and AY,X are disjoint, this yields∑
a∈P

c(a) =
∑
a∈Q

c(a) +
∑

a∈AX,Y

c(a) +
∑

a∈AY,X

c(a). (3)

Using these set definitions, we have

2m = c(X,X) + c(Y, Y ) =
∑

a∈[X,X]

c(a) +
∑

a∈[Y,Y ]

c(a) =
∑
a∈P

c(a) +
∑

a∈AXY,V

c(a), (4)

with the last equality holding because the arcs in AXY,V (and only these arcs) appear in
both [X,X] and [Y, Y ], but of course appear only once in P . Similarly,

c(X ∪ Y,X ∪ Y ) + c(X ∩ Y,X ∩ Y ) =
∑

a∈[X∪Y,X∪Y ]

c(a) +
∑

a∈[X∩Y,X∩Y ]

c(a)

=
∑
a∈Q

c(a) +
∑

a∈AXY,V

c(a), (5)

again with the last equality holding because the arcs in AXY,V appear twice in the original
sum, but appear only once in Q. Now, combining (3), (4), and (5), we get

2m =
∑
a∈Q

c(a) +
∑

a∈AX,Y

c(a) +
∑

a∈AY,X

c(a) +
∑

a∈AXY,V

c(a)

= c(X ∪ Y,X ∪ Y ) + c(X ∩ Y,X ∩ Y ) +
∑

a∈AX,Y

c(a) +
∑

a∈AY,X

c(a).
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Since c(a) is nonnegative for each a ∈ A, it follows that c(X ∪ Y,X ∪ Y ) + c(X ∩
Y,X ∩ Y ) ≤ 2m. But since m is the minimum possible value of c

(
S, S

)
where S is

an s-t-cutting subset, we also have c(X ∪ Y,X ∪ Y ) ≥ m and c(X ∩ Y,X ∩ Y ) ≥ m.
Hence c(X ∪ Y,X ∪ Y ) = c(X ∩ Y,X ∩ Y ) = m. Both X ∪ Y and X ∩ Y are therefore
cut-minimal s-t-cutting subsets.
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