
Math 5707 Spring 2017 (Darij Grinberg): homework set 5 page 1

Math 5707 Spring 2017 (Darij Grinberg): homework set 5
Please hand in solutions to FOUR of the 7 problems.

[Warning: You are reading a rather obsolete version of this homework set. For
an updated version, in which the basic properties of chip-firing are stated more
generally and proven, see the solutions to this problem set.]

0.1. Reminders

See the lecture notes and also the handwritten notes for relevant material. See also
the solutions to homework set 2 for various conventions and notations that are in
use here.

0.2. Sandpiles: recapitulating definitions and results

Let me recall the definitions of the basic concepts on chipfiring done in class.
Various sources on this material are [BjoLov92] (and, less directly, [BjLoSh91]),
[HLMPPW13], [Musike09, Lectures 29–31] and [CorPet16]. (None of these is as
readable as I would like to have it, but the whole subject is about 30 years old, with
most activity very recent... Also, be aware of incompatible notations, as well as of
the fact that some of the sources only consider undirected graphs.) The particu-
lar case of the “integer lattice” graph has attracted particular attention due to the
mysterious pictures it generates; see http://www.math.cmu.edu/~wes/sand.html#
next-page for some of these pictures, as well as http://www.math.cornell.edu/
~levine/apollonian-slides.pdf for a talk with various illustrations.

Let me give a brief (proof-less) survey of what we did in class (and a bit of what
we should have done).

Fix a loopless multidigraph D = (V, A, ϕ).

Definition 0.1. A configuration (on D) means a map f : V → N. (Recall that
N = {0, 1, 2, . . .}.)

A configuration is also called a chip configuration or sandpile.
We like to think of a configuration as a way to place a finite number of game

chips on the vertices of D: Namely, the configuration f corresponds to placing
f (v) chips on the vertex v for each v ∈ V. The chips are understood to be
undistinguishable, so the only thing that matters is how many of them are placed
on each given vertex. Sometimes, we speak of grains of sand instead of chips.

Definition 0.2. A Z-configuration (on D) means a map f : V → Z. We shall
regard each configuration as a Z-configuration (since N ⊆ Z).

Definition 0.3. Let f : V → Z be a Z-configuration.
(a) A vertex v ∈ V is said to be active in f if and only if f (v) ≥ deg+ v. (Recall

that deg+ v is the outdegree of v.)
(b) The Z-configuration f is said to be stable if no vertex v ∈ V is active in f .

http://www.cip.ifi.lmu.de/~grinberg/t/17s/hw5s.pdf
http://www.cip.ifi.lmu.de/~grinberg/t/17s/nogra.pdf
http://www.cip.ifi.lmu.de/~grinberg/t/17s/
http://www.cip.ifi.lmu.de/~grinberg/t/17s/hw2s.pdf
http://www.math.cmu.edu/~wes/sand.html#next-page
http://www.math.cmu.edu/~wes/sand.html#next-page
http://www.math.cornell.edu/~levine/apollonian-slides.pdf
http://www.math.cornell.edu/~levine/apollonian-slides.pdf
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Notice that there are only finitely many stable configurations (because if f is
a stable configuration, then, for each v ∈ V, the stability of f implies f (v) ≤
deg+ v, whereas the fact that f is a configuration implies f (v) ≥ 0; but these two
inequalities combined leave only finitely many possible values for f (v)).

Definition 0.4. The set ZV of all Z-configurations can be equipped with opera-
tions of addition and subtraction, defined as follows:

• For any two Z-configurations f : V → Z and g : V → Z, we define a
Z-configuration f + g : V → Z by setting

( f + g) (v) = f (v) + g (v) for each v ∈ V.

• For any two Z-configurations f : V → Z and g : V → Z, we define a
Z-configuration f − g : V → Z by setting

( f − g) (v) = f (v)− g (v) for each v ∈ V.

These operations of addition and subtraction satisfy the standard rules (e.g.,
we always have ( f + g) + h = f + (g + h) and ( f − g)− h = f − (g + h)). Hence,
we can write terms like f + g + h or f − g − h without having to explicitly place
parentheses.

Also, we can define a “zero configuration” 0 : V → Z, which is the configu-
ration that sends each v ∈ V to the number 0. (Hopefully, the dual use of the
symbol 0 for both the number 0 and this zero configuration is not too confusing.)

Also, for each Z-configuration f : V → Z and each integer N, we define a
Z-configuration N f : V → Z by

(N f ) (v) = N f (v) for each v ∈ V.

Definition 0.5. Let f : V → Z be any Z-configuration. Then, ∑ f shall denote
the integer ∑

v∈V
f (v).

This integer ∑ f is called the degree of f .

If f is a configuration, then ∑ f is the total number of chips in f .

Definition 0.6. Let v ∈ V be a vertex. Then, a Z-configuration ∆v is defined by
setting

(∆v) (w) =

{
deg+ v, if w = v;
−av,w, if w ̸= v

for all w ∈ V,

where av,w denotes the number of all arcs of D having source v and target w.
(Note that av,w might be > 1, since D is a multidigraph.)
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Definition 0.7. Let v ∈ V be a vertex. Then, firing v is the operation on Z-
configurations (i.e., formally speaking, the mapping from ZV to ZV) that sends
each Z-configuration f : V → Z to f − ∆v.

We sometimes say “toppling v” instead of “firing v”.

If f : V → N is a configuration, then the Z-configuration f − ∆v obtained by
firing v can be described as follows: The vertex v “donates” deg+ v of its chips to
its neighbors, by sending one chip along each of its outgoing arcs (i.e., for each
arc having source v, the vertex v sends one chip along this arc to the target of this
arc). Thus, the number of chips on v (weakly) decreases, while the number of chips
on each other vertex (weakly) increases. Of course, the resulting Z-configuration
f − ∆v is not necessarily a configuration. (In fact, it is a configuration if and only
if the vertex v is active in f .)

Notice that ∑ (∆v) = 0 for each vertex v. Thus, ∑ ( f − ∆v) = ∑ f − ∑ (∆v)︸ ︷︷ ︸
=0

=

∑ f for each Z-configuration f : V → Z and each vertex v. In other words, firing a
vertex v does not change the degree of a Z-configuration.

Definition 0.8. Let f : V → N be a configuration.
Let (v1, v2, . . . , vk) be a sequence of vertices of D.
(a) The sequence (v1, v2, . . . , vk) is said to be legal for f if for each i ∈

{1, 2, . . . , k}, the vertex vi is active in the Z-configuration f − ∆v1 − ∆v2 − · · · −
∆vi−1.

(b) The sequence (v1, v2, . . . , vk) is said to be stabilizing for f if the Z-
configuration f − ∆v1 − ∆v2 − · · · − ∆vk is stable.

What is the rationale behind the notions of “legal” and “stabilizing”? A sequence
of vertices provides a way to modify a configuration by first firing the first vertex
in the sequence, then firing the second, and so on. The sequence is said to be legal
(for f ) if the configuration remains a configuration throughout this ordeal (i.e., at
no point does a vertex have a negative number of chips). The sequence is said to be
stabilizing (for f ) if the Z-configuration resulting from it at the very end is stable.

We notice some obvious consequences of the definitions:

• If a sequence (v1, v2, . . . , vk) is legal for a configuration f , then all of the Z-
configurations f − ∆v1 − ∆v2 − · · · − ∆vi for i ∈ {0, 1, . . . , k} are actually con-
figurations.

• If a sequence (v1, v2, . . . , vk) is legal for a configuration f , then each prefix
of this sequence (i.e., each sequence of the form (v1, v2, . . . , vi) for some i ∈
{0, 1, . . . , k}) is legal for f as well.

• If a sequence (v1, v2, . . . , vk) is stabilizing for a configuration f , then each per-
mutation of this sequence (i.e., each sequence of the form

(
vσ(1), vσ(2), . . . , vσ(k)

)
for a permutation σ of {1, 2, . . . , k}) is stabilizing for f as well.
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• If (v1, v2, . . . , vk) is a legal sequence for a configuration f , then (v1, v2, . . . , vk)
is stabilizing if and only if there exist no v ∈ V such that the sequence
(v1, v2, . . . , vk, v) is legal.

An important property of chipfiring is the following result (sometimes called the
“least action principle”):

Theorem 0.9. Let f : V → N be any configuration. Let ℓ and s be two sequences
of vertices of D such that ℓ is legal for f while s is stabilizing for f . Then, ℓ is a
subpermutation of s.

Here, we are using the following notation:

Definition 0.10. Let (p1, p2, . . . , pu) and (q1, q2, . . . , qv) be two finite sequences.
Then, we say that (p1, p2, . . . , pu) is a subpermutation of (q1, q2, . . . , qv) if and only
if, for each object t, the following holds: The number of i ∈ {1, 2, . . . , u} satisfying
pi = t is less or equal to the number of j ∈ {1, 2, . . . , v} satisfying qj = t.

Equivalently, the sequence (p1, p2, . . . , pu) is a subpermutation of the sequence
(q1, q2, . . . , qv) if and only if you can obtain the former from the latter by remov-
ing some entries and permuting the remaining entries. (“Some” allows for the
possibility of “zero”.)

Corollary 0.11. Let f : V → N be any configuration. Let ℓ and ℓ′ be two se-
quences of vertices of D that are both legal and stabilizing for f . Then:

(a) The sequence ℓ′ is a permutation of ℓ.
In particular:
(b) The sequences ℓ and ℓ′ have the same length.
(c) For each t ∈ V, the number of times t appears in ℓ′ equals the number of

times t appears in ℓ.
(d) The configuration obtained from f by firing all vertices in ℓ (one after the

other) equals the configuration obtained from f by firing all vertices in ℓ′ (one
after the other).

Next we state some facts about legal sequences:

Lemma 0.12. Let f : V → N be a configuration. Let h = ∑ f . Let ℓ be a legal
sequence for f .

Let a be an arc of D. Let u be the source of a, and let v be the target of a.
(a) If u appears more than h times in the sequence ℓ, then v must appear at

least once in the sequence ℓ.
(b) Fix k ∈ N. If u appears more than kh times in the sequence ℓ, then v must

appear at least k times in the sequence ℓ.
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Lemma 0.13. Let f : V → N be a configuration. Let h = ∑ f . Let ℓ be a legal
sequence for f .

Let u and v be two vertices of D such that there exists a path of length d from
u to v.

If u appears at least
hd+1 − 1

h − 1
times in the sequence ℓ, then v must appear at

least once in the sequence ℓ.

(The fraction
hd+1 − 1

h − 1
should be interpreted as d + 1 when h = 1.)

Proposition 0.14. Let f : V → N be a configuration. Let h = ∑ f . Let ℓ be a legal
sequence for f . Let n = |V|.

Let q be a vertex of D such that for each vertex u ∈ V, there exists a path from
u to q.

If the length of ℓ is > (n − 1)
(

hn − 1
h − 1

− 1
)

, then q must appear at least once

in the sequence ℓ.

(The fraction
hn − 1
h − 1

should be interpreted as n when h = 1.)

Proposition 0.15. Let f : V → N be a configuration. Let h = ∑ f . Let ℓ =
(ℓ1, ℓ2, . . . , ℓk) be a legal sequence for f . Let g = f − ∆ℓ1 − ∆ℓ2 − · · · − ∆ℓk be the
configuration obtained from f by firing the vertices in ℓ (one after the other).

(a) We have g ∈ {0, 1, . . . , h}V . (In other words, g (v) ∈ {0, 1, . . . , h} for each
v ∈ V.)

(b) Let n = |V|. If the sequence ℓ has length ≥ (h + 1)n, then there exist legal
sequences (for f ) of arbitrary length.

Definition 0.16. Let f : V → N be a configuration.
We say that f is finitary if there exists a sequence of vertices that is stabilizing

for f . Otherwise, we say that f is infinitary.

Theorem 0.17. Let f : V → N be a configuration. Then, exactly one of the
following two statements holds:

• Statement 1: The configuration f is finitary.

There exists a sequence s of vertices that is both legal and stabilizing for f .

All such sequences are permutations of s.

All legal sequences (for f ) are subpermutations of s, and in particular are
at most as long as s.

• Statement 2: The configuration f is infinitary.

There exists no stabilizing sequence for f .
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There exist legal sequences for f of arbitrary length. More precisely, each
legal sequence for f can be extended to a longer legal sequence.

Definition 0.18. Let f : V → N be a finitary configuration. Then, Statement 1
in Theorem 0.17 must hold. Therefore, there exists a sequence s of vertices that
is both legal and stabilizing for f . The stabilization of f means the configuration
obtained from f by firing all vertices in s (one after the other). (This does not
depend on the choice of s, because of Corollary 0.11 (d).)

The stabilization of f is denoted by f ◦.

Something similar holds if we forbid firing a specific vertex:

Definition 0.19. Let q ∈ V.
Let f : V → N be a configuration.
Let (v1, v2, . . . , vk) be a sequence of vertices of D.
(a) The sequence (v1, v2, . . . , vk) is said to be q-legal for f if it is legal and does

not contain the vertex q.
(b) The sequence (v1, v2, . . . , vk) is said to be q-stabilizing for f if the Z-

configuration f − ∆v1 − ∆v2 − · · · − ∆vk has no active vertices except (possibly)
q.

We can now define “q-finitary” and “q-infinitary” and obtain an analogue of
Theorem 0.17. But the most commonly considered case is that when q is a “global
sink” (a vertex with no outgoing arcs, and which is reachable from any vertex), and
in this case every configuration is q-finitary. Let us state this as its own result:

Theorem 0.20. Let f : V → N be a configuration. Let q ∈ V. Assume that for
each vertex u ∈ V, there exists a path u → q. Then, there exists a sequence s
of vertices that is both q-legal and q-stabilizing for f . All such sequences are
permutations of s. All q-legal sequences (for f ) are subpermutations of s, and in
particular are at most as long as s.

Definition 0.21. Let f : V → N be a configuration. Let q ∈ V. Assume that for
each vertex u ∈ V, there exists a path u → q. Then, Theorem 0.20 shows that
there exists a sequence s of vertices that is both q-legal and q-stabilizing for f . The
q-stabilization of f means the configuration obtained from f by firing all vertices
in s (one after the other). (This does not depend on the choice of s, because of
the analogue of Corollary 0.11 (d) for q-legal and q-stabilizing sequences.)
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0.3. Exercise 1: better bounds for legal sequences

The following exercise improves on the bound given in Proposition 0.15 (b) and
also on the one given in Proposition 0.141. I don’t know whether the improved
bounds can be further improved.

Exercise 1. Fix a loopless multidigraph D = (V, A, ϕ). Let f : V → N be a
configuration. Let h = ∑ f . Let n = |V|. Assume that n > 0.

Let ℓ = (ℓ1, ℓ2, . . . , ℓk) be a legal sequence for f having length k ≥
(

n + h − 1
n − 1

)
.

Prove the following:
(a) There exist legal sequences (for f ) of arbitrary length.
(b) Let q be a vertex of D such that for each vertex u ∈ V, there exists a path

from u to q. Then, q must appear at least once in the sequence ℓ.
[Hint: For (a), apply the same pigeonhole-principle argument as for Proposi-

tion 0.15 (b).]

In the above exercise, you are allowed to use the fact2 that the number of n-
tuples (a1, a2, . . . , an) of nonnegative integers satisfying a1 + a2 + · · · + an = h is(

n + h − 1
n − 1

)
.

0.4. Exercise 2: examples of chip-firing

1To see that Exercise 1 (b) improves on the bound given in Proposition 0.14, we need to check

that (n − 1)
(

hn − 1
h − 1

− 1
)
+ 1 ≥

(
n + h − 1

n − 1

)
. This is easy for n ≤ 1 (in fact, the case n = 0

is impossible due to the existence of a q ∈ V, and the case n = 1 is an equality case). In the

remaining case n ≥ 2, the stronger inequality
hn − 1
h − 1

− 1 + 1 ≥
(

n + h − 1
n − 1

)
can be proven by a

simple induction over n.
2See, for example, https://math.stackexchange.com/questions/36250/
number-of-monomials-of-certain-degree for a proof of this fact (in the language of
monomials). Or see [Stanle11, §1.2] (search for “weak composition” and read the first paragraph
that comes up).

https://math.stackexchange.com/questions/36250/number-of-monomials-of-certain-degree
https://math.stackexchange.com/questions/36250/number-of-monomials-of-certain-degree
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Exercise 2. (a) Let D be the following digraph:

u // v // q

(i.e., the digraph D with three vertices u, v, q and two arcs uv, vq).
Let k be a positive integer. Consider the configuration gk on D which has k

chips at u and 0 chips at each other vertex.
Find the q-stabilization of gk.
(b) Let D be the following digraph:

u v // q

where a curve without an arrow stands for one arc in each direction. (Thus, for-
mally speaking, the digraph D has three vertices u, v, q and three arcs uv, vu, vq.)

Let k be a positive integer. Consider the configuration gk on D which has k
chips at u and 0 chips at each other vertex.

Find the q-stabilization of gk.
(c) Let D be the following digraph:

v

��

u

��

w

��

q

where a curve without an arrow stands for one arc in each direction. (Thus,
formally speaking, the digraph D has four vertices u, v, w, q and nine arcs
uv, vu, vw, wv, wu, uw, uq, vq, wq.)

Let k ≥ 2 be an integer. Consider the configuration fk on D which has k chips
at each vertex (i.e., which has fk (v′) = k for each v′ ∈ {u, v, w, q}).

Find the q-stabilization of fk.

0.5. Exercise 3: a lower bound on the degree of an infinitary
configuration

Exercise 3. Assume that the multidigraph D is strongly connected. Let f : V →
N be an infinitary configuration.

(a) Prove that D cannot have more than ∑ f vertex-disjoint cycles. (A set of
cycles is said to be vertex-disjoint if no two distinct cycles in the set have a vertex
in common.)

(b) Prove that D cannot have more than ∑ f arc-disjoint cycles. (A set of cycles
is said to be arc-disjoint if no two distinct cycles in the set have an arc in common.)
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Exercise 3 (b) is [BjoLov92, Theorem 2.2], but the proof given there is vague and
unrigorous.

0.6. Exercise 4: an associativity law for stabilizations

Recall Definition 0.18.

Exercise 4. Let f : V → N, g : V → N and h : V → N be three configura-
tions such that both configurations f and g + h are finitary, and such that the
configuration f + (g + h)◦ is also finitary.

Prove the following:
(a) The configurations f + g and h are also finitary.
(b) The configurations f + g + h and ( f + g)◦ + h are also finitary, and satisfy

( f + g + h)◦ =
(

f + (g + h)◦
)◦

=
(
( f + g)◦ + h

)◦ .

[Hint: The following piece of notation is useful: If k and k′ are two configu-
rations, then k → k′ shall mean that there exists a legal sequence ℓ for k such
that firing all vertices in ℓ (one after the other) transforms k into k′. This relation
→ is reflexive and transitive. Show that if c, k and k′ are three configurations
satisfying k → k′, then c + k → c + k′.]

0.7. Exercise 5: chip-firing on the integer lattice

Now, we shall briefly discuss chip-firing on the integer lattice Z2; this is one of
the most famous cases of chip-firing, leading to some of the pretty pictures. For
examples and illustrations, check out [Ellenb15] as well as some of the links above.

We have not defined infinite graphs in class; the theory of infinite graphs involves
some subtleties that would take us too far. However, for this particular exercise, we
need only a specific infinite graph, which is fairly simple.

Definition 0.22. (a) A locally finite multigraph means a triple (V, E, ϕ), where V
and E are sets and ϕ : E → P2 (V) is a map having the following property:

(*) For each v ∈ V, there exist only finitely many e ∈ E satisfying v ∈ ϕ (e).

Most of the concepts defined for (usual) multigraphs still make sense for lo-
cally finite multigraphs. In particular, the elements of V are called the vertices,
and the elements of E are called the edges. The property (*) says that each vertex
is contained in only finitely many edges; this allows us to define the degree of a
vertex.

(b) The integer lattice shall mean the locally finite multigraph defined as fol-
lows:
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• The vertices of the integer lattice are the pairs (i, j) of two integers i
and j. In other words, the vertex set of the integer lattice is Z2 =
{(i, j) | i ∈ Z and j ∈ Z}. We view these vertices as points in the plane,
and draw the multigraph accordingly.

• Two vertices of the integer lattice are adjacent if and only if they have
distance 1 (as points in the plane). In other words, a vertex (i, j) is adjacent
to the four vertices (i + 1, j) , (i, j + 1) , (i − 1, j) , (i, j − 1) and no others.

(c) You can guess how locally finite multidigraphs are defined. Each locally
finite multigraph can be regarded as a locally finite multidigraph by replacing
each edge by a pair of two arcs (directed in both possible directions).

Let us show a piece of the integer lattice, viewed as a locally finite multigraph:

(−1, 1) (0, 1) (1, 1)

(−1, 0) (0, 0) (1, 0)

(−1,−1) (0,−1) (1,−1)

And here is it again, viewed as a locally finite multidigraph:

GG





GG





GG





ii
..

(−1, 1)
JJ





mm

,,
(0, 1)
JJ





ll

,,
(1, 1)
JJ





ll
((

ii
..

(−1, 0)
JJ





mm

,,
(0, 0)
JJ





ll

,,
(1, 0)
JJ





ll
((

ii
//

(−1,−1)
JJ

��

nn

--
(0,−1)
JJ

��

mm

--
(1,−1)
JJ

��

nn
((

Exercise 5. Let f be a configuration on the integer lattice (where we view the
integer lattice as a locally finite multidigraph). (The notion of a configuration and
related notions are defined in the same way as for usual, finite multidigraphs.)
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Assume that only finitely many vertices v ∈ Z2 satisfy f (v) ̸= 0. (Thus, the
total number of chips ∑ f is finite.)

An edge e of the integer lattice is said to be non-void in f if and only if at least
one of the endpoints of e has at least one chip in f .

Prove the following:
(a) If an edge of the integer lattice is non-void in f , then this edge remains

non-void after firing any legal sequence of vertices. (“Firing a sequence” means
firing all the vertices in the sequence, one after the other.)

(b) The total number of configurations that can be obtained from f by firing a
legal sequence of vertices is finite.

(c) If we fire any vertex, then the sum ∑
(i,j)∈Z2

f ((i, j)) · (i + j)2 increases.

(d) The configuration f is finitary (so its stabilization is well-defined).

This exercise gives the reason why pictures such as the ones in [Ellenb15] exist
(although it does not explain their shapes and patterns).

0.8. Exercise 6: acyclic orientations are determined by their
score vectors

Now, we leave the chip-firing setting.
Roughly speaking, an orientation of a multigraph G is a way to assign to each

edge of G a direction (thus making it an arc). If the resulting digraph has no cycles,
then this orientation will be called acyclic. A rigorous way to state this definition is
the following:

Definition 0.23. Let G = (V, E, ψ) be a multigraph.
(a) An orientation of G is a map ϕ : E → V × V such that each e ∈ E has the

following property: If we write ϕ (e) in the form ϕ (e) = (u, v), then ψ (e) =
{u, v}.

(b) An orientation ϕ of G is said to be acyclic if and only if the multidigraph
(V, E, ϕ) has no cycles.

Example 0.24. Let G = (V, E, ψ) be the following multigraph:

2

a

b

c

1
d

3

Then, the following four maps ϕ are orientations of G:

• the map sending a to (1, 2), sending b to (1, 2), sending c to (3, 2), and
sending d to (1, 3);



Math 5707 Spring 2017 (Darij Grinberg): homework set 5 page 12

• the map sending a to (2, 1), sending b to (1, 2), sending c to (3, 2), and
sending d to (3, 1);

• the map sending a to (1, 2), sending b to (1, 2), sending c to (2, 3), and
sending d to (1, 3);

• the map sending a to (1, 2), sending b to (1, 2), sending c to (2, 3), and
sending d to (3, 1).

Here are the multidigraphs (V, E, ϕ) corresponding to these four maps (in the
order mentioned):

2@@

a

,,b
^^

c

1
d

// 3

2

a
��

,,b
^^

c

1 oo
d

3

2@@

a

,,b

c

��

1
d

// 3

2@@

a

,,b

c

��

1 oo
d

3

Only the first and the third of these orientations ϕ are acyclic (since only the first
and the third of these multidigraphs have no cycles).

Exercise 6. Let G = (V, E, ψ) be a multigraph.
Prove the following:
(a) If ϕ is any acyclic orientation of G, and if V ̸= ∅, then there exists a v ∈ V

such that no arc of the multidigraph (V, E, ϕ) has target v.
(b) If ϕ1 and ϕ2 are two acyclic orientations of G such that each v ∈ V satisfies

deg+
(V,E,ϕ1)

v = deg+
(V,E,ϕ2)

v,

then ϕ1 = ϕ2.

0.9. Exercise 7: the lattice structure on minimum cuts

Let us recall some terminology from lecture 16:

• A network consists of:

– a digraph (V, A);

– two distinct vertices s ∈ V and t ∈ V, called the source and the sink,
respectively (although we do not require s to have indegree 0 or t to
have outdegree 0);

– a function c : A → Q+, called the capacity function. (Here, Q+ means the
set {x ∈ Q | x ≥ 0}.)

• Given a network consisting of a digraph (V, A), a source s ∈ V and a sink
t ∈ V, and a capacity function c : A → Q+, we define the following notations:

http://www.cip.ifi.lmu.de/~grinberg/t/17s/5707lec16.pdf
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– For any subset S of V, we let S denote the subset V \ S of V.

– If P and Q are two subsets of V, then [P, Q] shall mean the set of all arcs
a ∈ A whose source belongs to P and whose target belongs to Q. (In
other words, [P, Q] = A ∩ (P × Q).)

– If P and Q are two subsets of V, then the number c (P, Q) ∈ Q+ is
defined by

c (P, Q) = ∑
a∈[P,Q]

c (a) .

We also refer to lecture 16 for the definition of a flow (which is not necessary for
the following problem, but may be helpful).

Exercise 7. Consider a network consisting of a digraph (V, A), a source s ∈ V
and a sink t ∈ V, and a capacity function c : A → Q+ such that s ̸= t.

An s-t-cutting subset shall mean a subset S of V satisfying s ∈ S and t /∈ S.
Let m denote the minimum possible value of c

(
S, S

)
where S ranges over the

s-t-cutting subsets. (Recall that this is the maximum value of a flow, according
to the maximum-flow-minimum-cut theorem.)

An s-t-cutting subset S is said to be cut-minimal if it satisfies c
(
S, S

)
= m.

Let X and Y be two cut-minimal s-t-cutting subsets. Prove that X ∩ Y and
X ∪ Y also are cut-minimal s-t-cutting subsets.
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