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Exercise 3. Let (G; X,Y) and (H;U,V) be bipartite graphs. Assume that G
is a simple graph and has an X-complete matching. Assume that H is a simple
graph and has a U-complete matching. Consider the Cartesian product G x H
of G and H defined in Exercise 1 of homework set 2.

(a) Show that (G x H; (X x V)U (Y xU),(X x U)U (Y x V)) is a bipartite
graph.

Proof: The vertex set of G is X UY, while the vertex set of H is U UV. Hence,
the vertex set of G x H is

(XUY)x (UUYV)
=X xUUV) Uy x(UUV))

(by distributivity for set union and Cartesian product)
=(XxUD)U(X xV)HU((Y xU)U(Y xV))

(by distributivity for set union and Cartesian product)
=(XxV)U xU))U((X xU)U((Y xV)).

Moreover, the two sets (X x V)U(Y x U) and (X x U)U (Y x V) are disjoint,
because the four sets X x U, X x V, Y x U and Y x V are disjoint (which, in
turn, follows from the disjointness of X and Y and the disjointness of U and
V).

Hence, in order to show that (Gx H; (X xV)U(Y xU), (X xU)U(Y xV)) is a
bipartite graph, we only need to prove that each edge of G x H has an endpoint
in (X xV)U (Y xU) and an endpoint in (X x U)U (Y x V). So let e be an
edge of G x H. By the definition of G x H, this means that we are in one of
the following two cases:

Case 1: The edge e connects the vertex (p, a) with the vertex (p, b),
where p is some vertex of G and where a and b are two vertices of
H such that ab is an edge of H.



Case 2: The edge e connects the vertex (a, q) with the vertex (b, q),
where ¢ is some vertex of H and where a and b are two vertices of
G such that ab is an edge of G.

Let us only study Case 1 (as Case 2 is similar). In this case, consider the edge
ab. Since H is bipartite, one of its endpoints a and b belongs to U, while the
other belongs to V. Thus, depending on whether p belongs to X or to Y, the
edge e either has an endpoint in X x U and an endpoint in X x V| or has an
endpoint in Y x U and an endpoint in Y x V. In either case, the edge e thus
has an endpoint in (X x V) U (Y x U) and an endpoint in (X x U) U (Y x V).
This proves what we wanted to prove in Case 1. (As we said, Case 2 is similar.)
|

(b) Prove that the graph G x H has an (X x V) U (Y x U)-complete matching.

Proof: The graph G has an X-complete matching. Fix such a matching and
denote it by M. For each vertex p of G that is matched in M, we denote the M-
partner of p by p’. Note that each x € X is matched in M (since the matching
M is X-complete) and satisfies ' € Y (since zz’ is an edge of G, but (G; X,Y)
is a bipartite graph).

The graph H has a U-complete matching. Fix such a matching and denote it
by N. For each vertex p of H that is matched in N, we denote the N-partner
of p by p’. Note that each u € U is matched in N (since the matching N is
U-complete) and satisfies v’ € V (since (H;U, V) is a bipartite graph). Also,
each v € V that is matched in N must satisfy v € U (since (H;U,V) is a
bipartite graph).

Now, it is straightforward to verify that

{{(z,v),(x,v")} | v € V is matched in N, and z € X}
U {{(z,v),(z',v)} | v € V is not matched in N, and z € X}
U{{(y,u), (y,u)} |lueUand y € Y}

is an (X x V) U (Y x U)-complete matching of G x H. Thus, such a matching
exists. W

Exercise 4. Let S be a finite set. Let k& € N be such that |S| > 2k + 1.
Prove that there exists an injective map f : Pr(S) = Pr4+1(S) such that each
X € Pi(9) satisfies f(X) D X.

(In other words, prove that we can add to each k-element subset X of S an
additional element from S\ X such that the resulting (k + 1)-element subsets



are distinct.)

Proof: Define the bipartite graph (G; P (S), Pr+1(S)) as follows:

V(G) = Pr(S) UPrs1(S),
E(G) = {{X,Y}| X € Pe(S), Y € Pira(S), X C Y).

Thus, a Py (S)-complete matching of G corresponds to an injective map f :
Pr(S) = Prr1(S) such that each X € Pg(S) satisfies f(X) DO X, where each
edge in the matching is of the form {X, f(X)}. We must show that such a
matching exists. By Hall’s theorem, we have such a matching if for every subset
A C Pr(S), IN(A)| > |A|]. Observe that every vertex in Pi(S) has degree
|S| — k > k + 1. Thus, any subset A has |A|(|S| — k) edges leaving it, so N(A)
has at least |A|(]S| — k) edges incident upon it. But, each vertex in N(A) has
degree k + 1, so |[N(A)|(k + 1) > |A|(]S] — k) > |A|(k + 1). This implies that
|N(A)| > |A] for all subsets A. Therefore, we have a Py (S)-complete matching
of G, which implies that there exists an injective map f : Pg(S) = Pr11(S)
such that each X € Py (S) satisfies f(X) 2 X. W

Exercise 5. Let S be a finite set, and let £ € N. Let Ay, As,..., A be k
subsets of S such that each element of S lies in exactly one of these k subsets.
Prove that the following statements are equivalent:

Statement 1: There exists a bijection o : S — S such that eachi € {1,2,...,k}
satisfies 0(4;) N A; = 0.

Statement 2: Each i € {1,2,...,k} satisfies |4;] < @
Proof: To prove Statement 1 implies Statement 2, suppose a bijection o : .S —
S such that each i € 1,2,...,k satisfies 0(4;) N A; = () exists and that there
exists an ¢ € {1,2,...,k} such that |4;| > % Then, |o(A;)] < |S\ 4] < %, S0
|o(A;)| # |A;| which contradicts the assumption that o is a bijection. Therefore
Statement 1 implies Statement 2.

To prove the converse, define the bipartite graph (G;S,P1(S)) where V(G) =
SUPl(S) and E(G) = {{81,{82}} ‘ S1,82 € S, if 517 € Ai7 then sg ¢ Al}
Thus, an S-complete matching of G corresponds to a bijection o : S — S such
that each ¢ € 1,2,...,k satisfies 6(A4;) N A; = 0. Such a matching exists if for
every subset B C S, |[N(B)| > |B|. Clearly, this is the case, since if B C A;,
then |B| < Bl and [N(B)| = [{{s} |s € S\ A;}| = |S\ 4] > 5 and if B
contains elements from more than one of the A;, then N(B) = P;1(S), which
has as many elements as S itself. Therefore, Hall’'s theorem implies that there
exists an S-complete matching of G, and from such a matching we can construct



a bijection o : S — S such that each i € 1,2,...,k satisfies o(A4;) N 4; = 0.
Hence, Statement 1 and Statement 2 are equivalent. W

Exercise 6. Let (G;X,Y) be a bipartite graph. Assume that each S C X
satisfies |V (S)| > |S|. (Thus, Hall’s theorem shows that G has an X-complete
matching.)

A subset S of X will be called neighbor-critical if [N (S)| = |S].

Let A and B be two neighbor-critical subsets of X. Prove that the subsets AUB
and AN B are also neighbor-critical.

Proof: Let M be an X-complete matching of G. (This exists, according to the
parenthetical statement in the exercise.) Consider the following lemma:

Lemma: S is a neighbor-critical subset of X if and only if N(S) = {y €
Y | there exists x € S such that xy € M}.

Proof of Lemma: Suppose S is a neighbor critical subset of X. Then,
IN(S)| = |S], and M matches |S| elements of ¥ to the elements of S. There-
fore, these elements can be the only elements of N(S), so N(S) = {y €
Y | there exists € S such that xy € M}. Now, let S be an arbitrary sub-
set of X such that N(S) = {y € Y | there exists € S such that zy € M}.
Clearly, since M matches each element of N(S) to an element of S, [N(S)| = |5].
O

Let A and B be neighbor-critical subsets of X. Then,

N(AUB)=N(A)UN(B)
= {y € Y| there exists € A such that xy € M} U{y € Y|
there exists € B such that zy € M}
= {y € Y| there exists x € AU B such that zy € M }.

Therefore, the lemma implies that A U B is neighbor-critical. Now, since G
has an X-complete matching, |[N(A N B)| > |AN B|. By way of contradiction,
suppose this inequality is strict. Then, N(A N B) contains a vertex v that is
not matched to a vertex in A N B by M. Now, since A and B are neighbor-
critical, v is matched to either a vertex in A\ B or B\ A. Assume without
loss of generality that v is matched to a vertex in A\ B. Then, N(B) includes
the |B| vertices that are matched to vertices in B and v, so |[N(B)| > |B|, a
contradiction. Therefore, A N B is neighbor-critical. W



