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Exercise 3. Let (G;X,Y ) and (H;U, V ) be bipartite graphs. Assume that G
is a simple graph and has an X-complete matching. Assume that H is a simple
graph and has a U -complete matching. Consider the Cartesian product G×H
of G and H defined in Exercise 1 of homework set 2.

(a) Show that (G ×H; (X × V ) ∪ (Y × U), (X × U) ∪ (Y × V )) is a bipartite
graph.

Proof: The vertex set of G is X ∪Y , while the vertex set of H is U ∪V . Hence,
the vertex set of G×H is

(X ∪ Y )× (U ∪ V )

= (X × (U ∪ V )) ∪ (Y × (U ∪ V ))

(by distributivity for set union and Cartesian product)

= ((X × U) ∪ (X × V )) ∪ ((Y × U) ∪ (Y × V ))

(by distributivity for set union and Cartesian product)

= ((X × V ) ∪ (Y × U)) ∪ ((X × U) ∪ (Y × V )) .

Moreover, the two sets (X × V )∪ (Y × U) and (X × U)∪ (Y × V ) are disjoint,
because the four sets X × U , X × V , Y × U and Y × V are disjoint (which, in
turn, follows from the disjointness of X and Y and the disjointness of U and
V ).

Hence, in order to show that (G×H; (X×V )∪ (Y ×U), (X×U)∪ (Y ×V )) is a
bipartite graph, we only need to prove that each edge of G×H has an endpoint
in (X × V ) ∪ (Y × U) and an endpoint in (X × U) ∪ (Y × V ). So let e be an
edge of G × H. By the definition of G × H, this means that we are in one of
the following two cases:

Case 1: The edge e connects the vertex (p, a) with the vertex (p, b),
where p is some vertex of G and where a and b are two vertices of
H such that ab is an edge of H.
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Case 2: The edge e connects the vertex (a, q) with the vertex (b, q),
where q is some vertex of H and where a and b are two vertices of
G such that ab is an edge of G.

Let us only study Case 1 (as Case 2 is similar). In this case, consider the edge
ab. Since H is bipartite, one of its endpoints a and b belongs to U , while the
other belongs to V . Thus, depending on whether p belongs to X or to Y , the
edge e either has an endpoint in X × U and an endpoint in X × V , or has an
endpoint in Y × U and an endpoint in Y × V . In either case, the edge e thus
has an endpoint in (X × V ) ∪ (Y × U) and an endpoint in (X × U) ∪ (Y × V ).
This proves what we wanted to prove in Case 1. (As we said, Case 2 is similar.)
�

(b) Prove that the graph G×H has an (X ×V )∪ (Y ×U)-complete matching.

Proof: The graph G has an X-complete matching. Fix such a matching and
denote it by M . For each vertex p of G that is matched in M , we denote the M -
partner of p by p′. Note that each x ∈ X is matched in M (since the matching
M is X-complete) and satisfies x′ ∈ Y (since xx′ is an edge of G, but (G;X,Y )
is a bipartite graph).

The graph H has a U -complete matching. Fix such a matching and denote it
by N . For each vertex p of H that is matched in N , we denote the N -partner
of p by p′. Note that each u ∈ U is matched in N (since the matching N is
U -complete) and satisfies u′ ∈ V (since (H;U, V ) is a bipartite graph). Also,
each v ∈ V that is matched in N must satisfy v′ ∈ U (since (H;U, V ) is a
bipartite graph).

Now, it is straightforward to verify that

{{(x, v) , (x, v′)} | v ∈ V is matched in N , and x ∈ X}
∪ {{(x, v) , (x′, v)} | v ∈ V is not matched in N , and x ∈ X}
∪ {{(y, u) , (y, u′)} | u ∈ U and y ∈ Y }

is an (X × V ) ∪ (Y × U)-complete matching of G×H. Thus, such a matching
exists. �

Exercise 4. Let S be a finite set. Let k ∈ N be such that |S| ≥ 2k + 1.
Prove that there exists an injective map f : Pk(S) → Pk+1(S) such that each
X ∈ Pk(S) satisfies f(X) ⊇ X.

(In other words, prove that we can add to each k-element subset X of S an
additional element from S \X such that the resulting (k + 1)-element subsets
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are distinct.)

Proof: Define the bipartite graph (G;Pk(S),Pk+1(S)) as follows:

V(G) = Pk(S) ∪ Pk+1(S),

E(G) = {{X,Y } |X ∈ Pk(S), Y ∈ Pk+1(S), X ⊂ Y }.

Thus, a Pk(S)-complete matching of G corresponds to an injective map f :
Pk(S) → Pk+1(S) such that each X ∈ Pk(S) satisfies f(X) ⊇ X, where each
edge in the matching is of the form {X, f(X)}. We must show that such a
matching exists. By Hall’s theorem, we have such a matching if for every subset
A ⊆ Pk(S), |N(A)| ≥ |A|. Observe that every vertex in Pk(S) has degree
|S| − k ≥ k + 1. Thus, any subset A has |A|(|S| − k) edges leaving it, so N(A)
has at least |A|(|S| − k) edges incident upon it. But, each vertex in N(A) has
degree k + 1, so |N(A)|(k + 1) ≥ |A|(|S| − k) ≥ |A|(k + 1). This implies that
|N(A)| ≥ |A| for all subsets A. Therefore, we have a Pk(S)-complete matching
of G, which implies that there exists an injective map f : Pk(S) → Pk+1(S)
such that each X ∈ Pk(S) satisfies f(X) ⊇ X. �

Exercise 5. Let S be a finite set, and let k ∈ N. Let A1, A2, . . . , Ak be k
subsets of S such that each element of S lies in exactly one of these k subsets.
Prove that the following statements are equivalent:

Statement 1: There exists a bijection σ : S → S such that each i ∈ {1, 2, . . . , k}
satisfies σ(Ai) ∩Ai = ∅.

Statement 2: Each i ∈ {1, 2, . . . , k} satisfies |Ai| ≤ |S|
2 .

Proof: To prove Statement 1 implies Statement 2, suppose a bijection σ : S →
S such that each i ∈ 1, 2, . . . , k satisfies σ(Ai) ∩ Ai = ∅ exists and that there

exists an i ∈ {1, 2, . . . , k} such that |Ai| > |S|
2 . Then, |σ(Ai)| ≤ |S\Ai| < |S|

2 , so
|σ(Ai)| 6= |Ai| which contradicts the assumption that σ is a bijection. Therefore
Statement 1 implies Statement 2.

To prove the converse, define the bipartite graph (G;S,P1(S)) where V(G) =
S ∪ P1(S) and E(G) = {{s1, {s2}} | s1, s2 ∈ S, if s1 ∈ Ai, then s2 /∈ Ai}.
Thus, an S-complete matching of G corresponds to a bijection σ : S → S such
that each i ∈ 1, 2, . . . , k satisfies σ(Ai) ∩ Ai = ∅. Such a matching exists if for
every subset B ⊂ S, |N(B)| ≥ |B|. Clearly, this is the case, since if B ⊆ Ai,

then |B| ≤ |S|
2 and |N(B)| = |{{s} | s ∈ S \ Ai}| = |S \ Ai| ≥ |S|

2 , and if B
contains elements from more than one of the Ai, then N(B) = P1(S), which
has as many elements as S itself. Therefore, Hall’s theorem implies that there
exists an S-complete matching of G, and from such a matching we can construct
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a bijection σ : S → S such that each i ∈ 1, 2, . . . , k satisfies σ(Ai) ∩ Ai = ∅.
Hence, Statement 1 and Statement 2 are equivalent. �

Exercise 6. Let (G;X,Y ) be a bipartite graph. Assume that each S ⊆ X
satisfies |N(S)| ≥ |S|. (Thus, Hall’s theorem shows that G has an X-complete
matching.)

A subset S of X will be called neighbor-critical if |N(S)| = |S|.

Let A and B be two neighbor-critical subsets of X. Prove that the subsets A∪B
and A ∩B are also neighbor-critical.

Proof: Let M be an X-complete matching of G. (This exists, according to the
parenthetical statement in the exercise.) Consider the following lemma:

Lemma: S is a neighbor-critical subset of X if and only if N(S) = {y ∈
Y | there exists x ∈ S such that xy ∈M}.

Proof of Lemma: Suppose S is a neighbor critical subset of X. Then,
|N(S)| = |S|, and M matches |S| elements of Y to the elements of S. There-
fore, these elements can be the only elements of N(S), so N(S) = {y ∈
Y | there exists x ∈ S such that xy ∈ M}. Now, let S be an arbitrary sub-
set of X such that N(S) = {y ∈ Y | there exists x ∈ S such that xy ∈ M}.
Clearly, since M matches each element of N(S) to an element of S, |N(S)| = |S|.
�

Let A and B be neighbor-critical subsets of X. Then,

N(A ∪B) = N(A) ∪N(B)

= {y ∈ Y | there exists x ∈ A such that xy ∈M} ∪ {y ∈ Y |
there exists x ∈ B such that xy ∈M}

= {y ∈ Y | there exists x ∈ A ∪B such that xy ∈M}.

Therefore, the lemma implies that A ∪ B is neighbor-critical. Now, since G
has an X-complete matching, |N(A ∩ B)| ≥ |A ∩ B|. By way of contradiction,
suppose this inequality is strict. Then, N(A ∩ B) contains a vertex v that is
not matched to a vertex in A ∩ B by M . Now, since A and B are neighbor-
critical, v is matched to either a vertex in A \ B or B \ A. Assume without
loss of generality that v is matched to a vertex in A \B. Then, N(B) includes
the |B| vertices that are matched to vertices in B and v, so |N(B)| > |B|, a
contradiction. Therefore, A ∩B is neighbor-critical. �
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