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Math 5707 Spring 2017 (Darij Grinberg): homework set 4
Please hand in solutions to FIVE of the 7 problems.

0.1. Reminders

See the lecture notes and also the handwritten notes for relevant material. See also
the solutions to homework set 2 for various conventions and notations that are in
use here.

0.2. Exercise [1} Directed arc-disjoint version of Menger’s
theorem

In class, you have seen the following two theorems:

Theorem 0.1 (Menger’s theorem, DVE (directed vertex-disjoint version)). Let
D = (V, A) be a digraph. Let S and T be two subsets of V.

An S-T-path in D means a path in D whose starting point belongs to S and
whose ending point belongs to T.

Several paths are said to be vertex-disjoint if no two have a vertex in common.

A subset C of V is said to be S-T-disconnecting if each S-T-path contains at
least one vertex in C.

The maximum number of vertex-disjoint S-T-paths equals the minimum size
of an S-T-disconnecting subset of V.

Theorem 0.2 (Menger’s theorem, DVI (directed internally vertex-disjoint ver-
sion)). Let D = (V, A) be a digraph. Let s and t be two vertices of D such that
(s, t) & A.

An s-t-path in D means a path from s to t in D.

Several s-t-paths are said to be internally vertex-disjoint if no two have a vertex
in common except for the vertices s and ¢.

A subset C of V is said to be an s-t-vertex-cut if it contains neither s nor t, and
if each s-t-path contains at least one vertex in C.

The maximum number of internally vertex-disjoint s-t-paths equals the mini-
mum size of an s-t-vertex-cut.

Here are two other versions of Menger’s theorem:

Theorem 0.3 (Menger’s theorem, DA (directed arc-disjoint version)). Let D =
(V, A, ¢) be a multidigraph. Let s and ¢ be two distinct vertices of D.
An s-t-path in D means a path from s to t in D.
Several paths in D are said to be arc-disjoint if no two have an arc in common.
A subset C of A is said to be an s-t-cut if it has the form

C = {a € A | the source of a belongs to U, but the target of a does not}
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for some subset U of V satisfying s € U and t ¢ U.
The maximum number of arc-disjoint s-t-paths equals the minimum size of an
s-t-cut.

Remark 0.4. The assumption in Theorem [0.3| that s and ¢ be distinct is not really
necessary — you can omit it if you are willing to put up with the idea that the
maximum number of arc-disjoint s-t-paths is co (because you can count the trivial
path (s) infinitely often, thanks to it being arc-disjoint from itself), and that the
minimum size of an s-t-cut is co as well (since there exists no s-t-cut, and thus
you are taking the minimum of an empty set of integers, which according to one
possible convention is c0). Feel free to ignore these kinds of hairsplitting.

Theorem 0.5 (Menger’s theorem, DAS (directed arc-disjoint set version)). Let
D = (V, A, ¢) be a multidigraph. Let S and T be two disjoint subsets of V.

An S-T-path in D means a path in D whose starting point belongs to S and
whose ending point belongs to T.

Several paths in D are said to be arc-disjoint if no two have an arc in common.

A subset C of A is said to be an S-T-cut if it has the form

C = {a € A | the source of a belongs to U, but the target of a does not}

for some subset U of V satisfying S C Uand TNU = @.
The maximum number of arc-disjoint S-T-paths equals the minimum size of
an S-T-cut.

Exercise 1. Prove Theorem [0.3) and Theorem (You are allowed to use Theo-
rem [0.1]and Theorem [0.2])

0.3. Exercise 2} Undirected Menger’s theorems

Exercise 2. State and prove analogues of Theorem [0.1) Theorem 0.2} Theorem
and Theorem for undirected graphs (simple graphs in the case of the first
two theorems; multigraphs for the last two). (You can use the directed-graph
versions in the proofs.)

0.4. Exercise [3} matchings in a Cartesian product

Recall that each simple graph G = (V,E) can be viewed as a multigraph in a
natural way (namely, as the multigraph (V,E, ), where : is the map from E to
P> (V) sending each edge e to ¢). Thus, everything we say about multigraphs can
be applied to simple graphs.

Let me recall a definition from class in slightly greater generality:
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Definition 0.6. Let G = (V,E,¢$) be a multigraph. A matching in G means a
subset M of E such that no two distinct edges in M have a vertex in common.

In class, we have been discussing matchings in simple graphs; of course, this
is a particular case of matchings in multigraphs. The difference between simple
graphs and multigraphs does not really matter for the purpose of the existence or
nonexistence of matchings (after all, a matching cannot use more than one edge
through each vertex, so it cannot include two parallel edges); but it matters if you
want to, e.g., count matchings.

Definition 0.7. A bipartite graph is a triple (G, X,Y), where G is a multigraph,
and where X and Y are two subsets of V (G) satisfying the following conditions:

e Wehave XNY =@ and XUY = V(G). (In other words, each vertex of G
lies in exactly one of the two sets X and Y.)

e Each edge of G has exactly one endpoint in X and exactly one endpoint in
Y.

We shall usually write (G;X,Y) instead of (G,X,Y) for a bipartite graph,
putting a semicolon between the G and the X in order to stress the different
roles that G plays and that X and Y play.

In class, we used simple graphs instead of multigraphs in the above definition
(if I remember correctly). Again, the difference is not important, as far as the
things done in class are concerned (i.e., comparing the sizes of matchings and
vertex covers). Again, the difference starts creeping up when you start counting
(matchings, cycles, paths, etc.), but this is not a class about counting.

Definition 0.8. Let M be a matching in a multigraph G.

(a) A vertex v of G is said to be matched in M if there exists an edge e € M
such that v is an endpoint of e. In this case, this edge is unique (since M is a
matching), and the other endpoint of this edge (i.e., the one distinct from v) is
called the M-partner of v.

(b) Let S be a subset of V (G). The matching M is said to be S-complete if each
vertex v € S is matched in M.

Exercise 3. Let (G; X,Y) and (H; U, V) be bipartite graphs.

Assume that G is a simple graph and has an X-complete matching.

Assume that H is a simple graph and has a U-complete matching.

Consider the Cartesian product G x H of G and H defined in Exercise 1 of
homework set 2.

(@) Show that (Gx H; (X x V)U(Y xU),(XxU)U(Y xV)) is a bipartite
graph.

(b) Prove that the graph G x H has an (X x V) U (Y x U)-complete matching.
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(We required that G and H be simple graphs just in order to not have to define
G x H for multigraphs.)

0.5. Exercise [4} extending subsets

Exercise 4. Let S be a finite set. Let k € IN be such that |S| > 2k 4 1. Prove that
there exists an injective map f : Pk (S) — Pyi1(S) such that each X € Py (S)
satisfies f (X) D X.

(In other words, prove that we can add to each k-element subset X of S an
additional element from S\ X such that the resulting (k + 1)-element subsets are
distinct.)

[Hint: First, reduce the problem to the case when |S| = 2k + 1. Then, in that
case, restate it as a claim about matchings in a certain bipartite graph.]

0.6. Exercise [5} the self-grading problem

Exercise 5. Let S be a finite set, and let k € IN. Let Ay, Ay, ..., A be k subsets
of S such that each element of S lies in exactly one of these k subsets. Prove that
the following statements are equivalent:

e Statement 1: There exists a bijection o : S — S such thateachi € {1,2,...,k}
satisfies 0 (A;) N A; = @.

e Statement 2: Eachi € {1,2,...,k} satisfies |A;| < |S]| /2.

(A restatement of Exercise [5; Let S be a finite set of students who have submitted
homework. The students have been collaborating on the homework, forming k
disjoint collaboration groups. A lazy professor wants the students to grade each
other’s homework, but he wants to avoid having a student grading the homework
of a student from the same collaboration group. Prove that he can organize this
(i.e., find a grader for each student) if and only if each collaboration group has size
<|5[/2)

0.7. Exercise [6} unions and intersections of neighbor-critical
sets

then N (S) (or, to be more precise, Ng(S)) shall denote the subset

Definition 0.9. Let G be a multigraph. If S is a subset of V(G),
{u € V(G) | at least one neighbor of u belongs to S} of V (G).

IN (S)| > |S|. (Thus, Hall’s theorem shows that G has an X-complete matching.)

Exercise 6. Let (G;X,Y) be a bipartite graph. Assume that each S C X satisfies
A subset S of X will be called neighbor-critical if |[N (S)| = |S].
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Let A and B be two neighbor-critical subsets of X. Prove that the subsets A UB
and A N B are also neighbor-critical.

0.8. Exercise [7} systems of common representatives

Exercise 7. Let S be a finite set. Let k € IN.

Let A1, Ay, ..., Ay be k subsets of S.

Let By, By, ..., By be k subsets of S.

A system of common representatives shall mean a choice of k distinct elements
t1,ta, ..., tx of S as well as two bijections f : {1,2,...,k} — {1,2,...,k} and
g:{1,2,...,k} =+ {1,2,...,k} such thateach i € {1,2,...,k} satisfies

ti € Af(i) and t; € Bg(i)'

Prove that a system of common representatives exists if and only if each two
subsets [ and | of {1,2,...,k} satisfy

(ieUIA’) : (J.EU]BJ') > |1] + || — k.

[You are free to use any of Theorem [0.1, Theorem [0.2] Theorem [0.3|and Theo-
rem [0.5 here.]
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