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0.1. Reminders

See the lecture notes and also the handwritten notes for relevant material. See also
the solutions to homework set 2 for various conventions and notations that are in
use here.

If G = (V, E, ϕ) is a multigraph, and if v ∈ V and e ∈ E, then the edge e is said
to be incident to the vertex v (in the multigraph G) if and only if v ∈ ϕ (e) (in other
words, if and only if v is an endpoint of e).

0.2. Exercise 1: Centers of trees lie on longest paths

If v is a vertex of a simple graph G = (V, E), then the eccentricity of v is defined to
be max {d (v, u) | u ∈ V} (where d (v, u) is the distance between v and u, as usual).
A center of a simple graph G means a vertex whose eccentricity is minimum (among
the eccentricities of all vertices).

Exercise 1. Let T be a tree. Let (v0, v1, . . . , vk) be a longest path of T. Prove that
each center of T belongs to this path (i.e., is one of the vertices v0, v1, . . . , vk).

In preparation for the solution of this exercise, we cite a result from lecture 10:

http://www.cip.ifi.lmu.de/~grinberg/t/17s/nogra.pdf
http://www.cip.ifi.lmu.de/~grinberg/t/17s/
http://www.cip.ifi.lmu.de/~grinberg/t/17s/hw2s.pdf
http://www.cip.ifi.lmu.de/~grinberg/t/17s/5707lec10.pdf
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Proposition 0.1. Let T be a tree with ≥ 3 vertices. Let L be the set of all leaves
of T. Let T \ L be the multigraph obtained from T by removing the vertices in L
and all edges incident to them.

The eccentricity of a vertex v of a graph G will be denoted by eccG v.
(a) The graph T \ L is a tree.
(b) Each vertex v of T \ L satisfies eccT v = eccT\L v + 1.
(c) Each v ∈ L satisfies eccT v = eccT w + 1, where w is the unique neighbor of

v in T.
(d) The centers of T are precisely the centers of T \ L.

We contrast this with the following simple fact:

Proposition 0.2. Let T be a tree with ≥ 3 vertices. Let L be the set of all leaves
of T. Let T \ L be the multigraph obtained from T by removing the vertices in L
and all edges incident to them.

Let (v0, v1, . . . , vk) be a longest path of T. Then, (v1, v2, . . . , vk−1) is a longest
path of T \ L.

Proof of Proposition 0.2 (sketched). For each i ∈ {1, 2, . . . , k − 1}, the vertex vi is a
vertex of T \ L 1. Hence, (v1, v2, . . . , vk−1) is a path of T \ L. It remains to prove
that it is a longest path.

Indeed, assume the contrary. Hence, there exists a longest path (w1, w2, . . . , wm)
of T \ L whose length m− 1 is greater than the length k− 2 of the path (v1, v2, . . . , vk−1).
Consider such a path. From m − 1 > k − 2, we obtain m > k − 1. Hence, m ≥ k.

The vertex w1 must be a leaf of T \ L (since otherwise, it would have a neighbor
distinct from w2, which would then allow us to extend the path (w1, w2, . . . , wm)
by attaching this neighbor to its front; but this would contradict the fact that this
path (w1, w2, . . . , wm) is a longest path of T \ L). But the vertex w1 cannot be a leaf
of T (since in this case, it would belong to L, and hence could not be a vertex of
T \ L). Hence, the vertex w1 has at least one more neighbor in T than it has in T \ L
(because it is a leaf of T \ L but not of T). Therefore, the vertex w1 has at least one
neighbor in T that is not a vertex of T \ L. Fix such a neighbor, and denote it by w0.
This neighbor w0 must lie in L (since it is not a vertex of T \ L).

Similarly, the vertex wm has at least one neighbor in T that is not a vertex of
T \ L. Fix such a neighbor, and denote it by wm+1. This neighbor wm+1 must lie in
L (since it is not a vertex of T \ L).

Now, (w0, w1, . . . , wm+1) is a walk in T. Furthermore, all the m + 2 vertices of
this walk are distinct2. Hence, this walk is a path. This path has length m + 1 >
m ≥ k, and thus is longer than the path (v0, v1, . . . , vk). But this is absurd, since the

1Proof. Let i ∈ {1, 2, . . . , k − 1}. Then, vi−1vi and vivi+1 are two distinct edges of T (since
(v0, v1, . . . , vk) is a path of T). Hence, the vertex vi of T belongs to at least two distinct edges
(namely, vi−1vi and vivi+1), and thus is not a leaf of T. In other words, vi is not an element of L.
Hence, vi is a vertex of T \ L.

2Proof. First, we notice that the m vertices w1, w2, . . . , wm are distinct (since (w1, w2, . . . , wm) is a
path of T \ L). Second, we observe that the two vertices w0 and wm+1 are distinct from the m
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latter path is a longest path of T. Hence, we have found a contradiction, which is
precisely what we wanted to find. The proof is thus complete.

Hints to Exercise 1. Proceed by strong induction on |V (T)|. Thus, fix N ∈ N, and
assume (as the induction hypothesis) that Exercise 1 has already been solved for all
trees T satisfying |V (T)| < N. Now, fix a tree T satisfying |V (T)| = N. We must
prove that Exercise 1 holds for this particular tree T.

If |V (T)| < 3, then this is obvious (because in this case, each vertex of T lies on
the longest path (v0, v1, . . . , vk)). Thus, we WLOG assume that |V (T)| ≥ 3.

Let L be the set of all leaves of T. Thus, |L| ≥ 2 (since T has at least two leaves
(since T is a tree with at least 2 vertices)).

Let T \ L be the multigraph obtained from T by removing the vertices in L and
all edges incident to them.

Proposition 0.1 (a) shows that the graph T \ L is a tree. Proposition 0.1 (d) shows
that the centers of T are precisely the centers of T \ L.

Let (v0, v1, . . . , vk) be a longest path of T. Proposition 0.2 shows that (v1, v2, . . . , vk−1)
is a longest path of T \ L.

Clearly, V (T \ L) = V (T) \ L, so that |V (T \ L)| = |V (T) \ L| = |V (T)|︸ ︷︷ ︸
=N

− |L|︸︷︷︸
≥2>0

<

N. Hence, the induction hypothesis shows that Exercise 1 holds for T \ L instead
of T. Thus, we can apply Exercise 1 to T \ L and (v1, v2, . . . , vk−1) instead of T
and (v0, v1, . . . , vk). We thus conclude that each center of T \ L belongs to the
path (v1, v2, . . . , vk−1). Since the centers of T are precisely the centers of T \ L, we
can rewrite this as follows: Each center of T belongs to the path (v1, v2, . . . , vk−1).
Thus, each center of T belongs to the path (v0, v1, . . . , vk) as well (since the latter
path contains the former path). In other words, Exercise 1 holds for our particular
tree T. This completes the induction; thus, Exercise 1 is solved.

vertices w1, w2, . . . , wm (since the former lie in L, whereas the latter are vertices of T \ L). Thus,
it only remains to prove that the vertices w0 and wm+1 are distinct. But this is easy: If they were
not, then the walk (w0, w1, . . . , wm+1) would be a cycle; but this would contradict the fact that
T has no cycles (since T is a tree). Thus, we have shown that all the m + 2 vertices of the walk
(w0, w1, . . . , wm+1) are distinct.
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0.3. Exercise 2: Counting spanning trees in some cases

Exercise 2. (a) Consider the cycle graph Cn for some n ≥ 2. Its vertices are
1, 2, . . . , n, and its edges are 12, 23, . . . , (n − 1) n, n1. (Here is how it looks for
n = 5:

1

5 2

4 3
) Find the number of spanning trees of Cn.

(b) Consider the directed cycle graph
−→
C n for some n ≥ 2. It is a digraph; its

vertices are 1, 2, . . . , n, and its arcs are 12, 23, . . . , (n − 1) n, n1. (Here is how it
looks for n = 5:

1

&&5

88

2

��

4

^^

3oo

) Find the number of oriented spanning trees of
−→
C n with root 1.

(c) Fix m ≥ 1. Let G be the simple graph with 3m + 2 vertices

a, b, x1, x2, . . . , xm, y1, y2, . . . , ym, z1, z2, . . . , zm

and the following 3m + 3 edges:

ax1, ay1, az1,
xixi+1, yiyi+1, zizi+1 for all i ∈ {1, 2, . . . , m − 1} ,
xmb, ymb, zmb.

(Thus, the graph consists of two vertices a and b connected by three paths, each
of length m + 1, with no overlaps between the paths except for their starting and
ending points. Here is a picture for m = 3:

x1 x2 x3

a y1 y2 y3 b

z1 z2 z3

) Compute the number of spanning trees of G.
[To argue why your number is correct, a sketch of the argument in 1-2 sen-

tences should be enough; a fully rigorous proof is not required.]
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Hints to Exercise 2. (a) The number is n. Indeed, any graph obtained from Cn by
removing a single edge is a spanning tree of Cn.

[Proof: Recall that a tree with n vertices must have exactly n − 1 edges. Thus,
a spanning subgraph of Cn can be a tree only if it has n − 1 edges, i.e., only if it
is obtained from Cn by removing a single edge. It only remains to check that any
subgraph obtained from Cn by removing a single edge is indeed a spanning tree.
But this is easy, since all such subgraphs are isomorphic to the path graph Pn.]

(b) The number is 1. Indeed, the only oriented spanning tree of
−→
C n with root 1

is the subdigraph of
−→
C n obtained by removing the arc 12.

[Proof: How can an oriented spanning tree of
−→
C n with root 1 look like? It must

have no arc with source 1 (since 1 is its root), so it must not contain the arc 12.
But it must contain a walk from i to 1 for each vertex i ∈ {2, 3, . . . , n}. Thus,

it must contain at least one arc with source i for each i ∈ {2, 3, . . . , n} (because
otherwise, we would have no way to get out of i, and this would render a walk
from i to 1 impossible). This arc clearly must be i (i + 1), where we set n + 1 = 1
(because the only arc with source i in

−→
C n is the arc i (i + 1)).

Hence, our oriented spanning tree must not contain the arc 12, but it must con-
tain the arc i (i + 1) for each i ∈ {2, 3, . . . , n}. This uniquely defines this oriented
spanning tree. Conversely, it is trivial that the subdigraph of

−→
C n obtained by re-

moving the arc 12 is indeed an oriented spanning tree.]
(c) The number is 3 (m + 1)2. Indeed, let x, y and z be the three paths (a, x1, x2, . . . , xm, b),

(a, y1, y2, . . . , ym, b) and (a, z1, z2, . . . , zm, b). Then, the spanning trees of G are the
subgraphs of G obtained

• either by removing an edge from x and an edge from y (there are (m + 1)2

ways to do that);

• or by removing an edge from x and an edge from z (there are (m + 1)2 ways
to do that);

• or by removing an edge from y and an edge from z (there are (m + 1)2 ways
to do that).

[Proof: The graph G has 3m + 2 vertices. Hence, any spanning tree of G must
have (3m + 2)− 1 = 3m + 1 edges. This means that any spanning tree of G can be
obtained from G by removing two edges (since G has 3m + 3 edges). But not each
pair of edges yields a spanning tree when removed. Which ones do, and which
ones do not?

• If we remove two edges from x, then the subgraph is not connected (indeed, at
least one vertex on the path x lies between these two edges, and this vertex is
disconnected from a in this subgraph), and thus not a tree. The same problem
happens if we remove two edges from y or two edges from z.
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• If we remove an edge from x and an edge from y, then the subgraph is con-
nected (because any vertex is still connected to at least one of a and b, but a
and b are also still connected to each other via the undamaged path z), and
thus is a spanning tree of G (since it is connected and has the “right” number
of edges). The same happens if we remove an edge from x and an edge from
z, or if we remove an edge from y and an edge from z.

There are no other cases. Thus, tallying these possibilities, we obtain the charac-
terization of spanning trees given above, and thus there are (m + 1)2 + (m + 1)2 +

(m + 1)2 = 3 (m + 1)2 spanning trees.]

[Remark: I guess that parts (a) and (c) of Exercise 2 can also be solved using the
Matrix-Tree Theorem. But the solutions given above are definitely easier!]

0.4. Exercise 3: The number of connected components is
supermodular

0.4.1. Statement of the problem

We first recall how the connected components of a multigraph were defined:

Definition 0.3. Let G = (V, E, ϕ) be a multigraph.
(a) We define a binary relation ≃G on the set V as follows: For two vertices u

and v in V, we set u ≃G v if and only if there exists a walk from u to v in G.
(b) The binary relation ≃G is an equivalence relation on V. Its equivalence

classes are called the connected components of G.

Definition 0.4. If G is a multigraph, then conn G shall denote the number of
connected components of G. (We have previously called this number b0 (G)
in lecture notes. Note that it equals 0 when G has no vertices, and 1 if G is
connected.)

Exercise 3. Let (V, H, ϕ) be a multigraph. Let E and F be two subsets of H.
(a) Prove that

conn (V, E, ϕ |E) + conn (V, F, ϕ |F)
≤ conn (V, E ∪ F, ϕ |E∪F) + conn (V, E ∩ F, ϕ |E∩F) . (1)

(b) Give an example where the inequality (1) does not become an equality.

0.4.2. Hints

Remark 0.5. The following two hints are helpful for solving Exercise 3 (a):
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• Feel free to restrict yourself to the case of a simple graph; in this case, E
and F are two subsets of P2 (V), and you have to show that

conn (V, E) + conn (V, F) ≤ conn (V, E ∪ F) + conn (V, E ∩ F) .

This isn’t any easier than the general case, but saves you the hassle of
carrying the map ϕ around.

• Also, feel free to take inspiration from the proof of the classical fact that
dim X + dim Y = dim (X + Y) + dim (X ∩ Y) when X and Y are two sub-
spaces of a finite-dimensional vector space U. That proof relies on choosing
a basis of X ∩ Y and extending it to bases of X and Y, then merging the
extended bases to a basis of X + Y. A “basis” of a multigraph G is a span-
ning forest: a spanning subgraph that is a forest and has the same number
of connected components as G. More precisely, it is the set of the edges of
a spanning forest.

Actually, the second solution to Exercise 3 sketched below follows
this idea (of imitating the proof of dim X + dim Y = dim (X + Y) +
dim (X ∩ Y)), whereas the third solution uses the identity dim X +dim Y =
dim (X + Y) + dim (X ∩ Y) itself.

0.4.3. First solution

The following solution to Exercise 3 is probably the most conventional one. It
is rather long due to the fact that certain properties of connected components,
while being obvious to the eye and easy to explain with some handwaving, are
painstakingly difficult to rigorously formulate. Despite its length, a few details are
left to the reader (but they should be easy to fill in).

We prepare for the solution of Exercise 3 with a definition and two simple lem-
mas:

Definition 0.6. Let G = (V, E, ϕ) be a multigraph. Let e be an edge of G. Then,
G − e will denote the multigraph obained from G by removing the edge e. (For-
mally speaking, G − e is the multigraph

(
V, E \ {e} , ϕ |E\{e}

)
.)

Similar notations are used for simple graphs, for digraphs, and for multidi-
graphs.

Lemma 0.7. Let G = (V, E, ϕ) be a multigraph. Let e be an edge of G. Let u ∈ V
and v ∈ V be such that u ≃G v. Assume that we do not have u ≃G−e v. Then,
there exist x ∈ V and y ∈ V such that ϕ (e) = {x, y} and u ≃G−e x and v ≃G−e y.

Proof of Lemma 0.7. We do not have u ≃G−e v. In other words, there exists no walk
from u to v in G − e.

http://math.stackexchange.com/questions/500511/dimension-of-the-sum-of-two-vector-subspaces
http://math.stackexchange.com/questions/500511/dimension-of-the-sum-of-two-vector-subspaces
http://math.stackexchange.com/questions/500511/dimension-of-the-sum-of-two-vector-subspaces
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But u ≃G v. Thus, there exists a walk from u to v in G. Hence, there ex-
ists a path from u to v in G. Fix such a path. Write this path in the form
(p0, e1, p1, e2, p2, . . . , ek, pk) with p0 = u and pk = v. This path must contain the
edge e (since otherwise, it would be a path in G − e, thus also a walk in G − e; but
this would contradict the fact that there exists no walk from u to v in G − e). In
other words, ei = e for some i ∈ {1, 2, . . . , k}. Consider this i.

The edges e1, e2, . . . , ek are the edges of the path (p0, e1, p1, e2, p2, . . . , ek, pk), and
thus are distinct (since the edges of a path are always distinct). Hence, none of the
edges e1, e2, . . . , ei−1, ei+1, ei+2, . . . , ek equals ei. Since ei = e, this rewrites as follows:
None of the edges e1, e2, . . . , ei−1, ei+1, ei+2, . . . , ek equals e. Thus, all of the edges
e1, e2, . . . , ei−1, ei+1, ei+2, . . . , ek are edges of the multigraph G − e. Hence, the two
subwalks3 (p0, e1, p1, e2, p2, . . . , ei−1, pi−1) and (pi, ei+1, pi+1, ei+2, pi+2, . . . , ek, pk) of
the path (p0, e1, p1, e2, p2, . . . , ek, pk) are walks in G − e.

Now, there exists a walk from p0 to pi−1 in G − e (namely, the walk
(p0, e1, p1, e2, p2, . . . , ei−1, pi−1)). In other words, p0 ≃G−e pi−1. Since p0 = u, this
rewrites as u ≃G−e pi−1.

Also, there exists a walk from pi to pk in G − e (namely, the walk
(pi, ei+1, pi+1, ei+2, pi+2, . . . , ek, pk)). In other words, pi ≃G−e pk. Since ≃G−e is an
equivalence relation, this shows that pk ≃G−e pi. Since pk = v, this rewrites as
v ≃G−e pi.

We have ϕ (ei) = {pi−1, pi} (since (p0, e1, p1, e2, p2, . . . , ek, pk) is a path). Therefore,
{pi−1, pi} = ϕ (ei) = ϕ (e) (since ei = e). Hence, ϕ (e) = {pi−1, pi}. Thus, there exist
x ∈ V and y ∈ V such that ϕ (e) = {x, y} and u ≃G−e x and v ≃G−e y (namely,
x = pi−1 and y = pi). This proves Lemma 0.7.

Lemma 0.8. Let G = (V, E, ϕ) be a multigraph. Let e be an edge of G. Let us use
the Iverson bracket notation.

Then,
conn (G − e) = conn G + [e belongs to no cycle of G] .

Proof of Lemma 0.8 (sketched). Consider the two relations ≃G and ≃G−e. (Recall that
two vertices u and v of G satisfy u ≃G v if and only if there exists a walk from u to
v in G. The relation ≃G−e is defined similarly, but using G − e instead of G.)

The connected components of G are the equivalence classes of the relation ≃G.
The connected components of G− e are the equivalence classes of the relation ≃G−e.

Every two vertices u ∈ V and v ∈ V satisfying u ≃G−e v satisfy u ≃G v 4.
We shall use the notation conncompH w for the connected component of a multi-

graph H containing a given vertex w. Thus, for each vertex v ∈ V, we have a
3Here, a subwalk of a walk (w0, f1, w1, f2, w2, . . . , fm, wm) means a list of the form(

wI , f I+1, wI+1, f I+2, wI+2, . . . , f J , wJ
)

for two elements I and J of {0, 1, . . . , m} satisfying I ≤ J.
Such a list is always a walk.

4Proof. Let u ∈ V and v ∈ V be two vertices satisfying u ≃G−e v. We must show that u ≃G v.
We know that u ≃G−e v. In other words, there exists a walk from u to v in G − e. This walk is

clearly also a walk from u to v in G (since G − e is a submultigraph of G). Hence, there exists a
walk from u to v in G. In other words, u ≃G v.
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connected component conncompG−e v and a connected component conncompG v.
These two connected components satisfy

conncompG−e v ⊆ conncompG v

(because all vertices u ∈ conncompG−e v satisfy u ≃G−e v, thus u ≃G v, thus u ∈
conncompG v); but the reverse inclusion might not hold. Hence, each connected
component of G is a union of a nonzero number (possibly just one, but possibly
more) of connected components of G − e.

Write the set ϕ (e) ∈ P2 (V) in the form ϕ (e) = {a, b}.
We are in one of the following two cases:
Case 1: The edge e belongs to no cycle of G.
Case 2: The edge e belongs to at least one cycle of G.
We shall treat these two cases separately:

• Let us first consider Case 1. In this case, the edge e belongs to no cycle of G.
Then, we do not have a ≃G−e b 5. Hence, conncompG−e a ̸= conncompG−e b.
But we do have a ≃G b (because the edge e provides a walk (a, e, b) from a to
b in G).

Now, recall that each connected component of G is a union of a nonzero
number (possibly just one, but possibly more) of connected components of
G − e. In other words, the connected components of G are obtained by merg-
ing some of the connected components of G − e. Which connected com-
ponents get merged? On the one hand, we know that the two connected
components conncompG−e a and conncompG−e b of G − e get merged in G
(since a ≃G b); and these two components were indeed distinct in G − e
(since conncompG−e a ̸= conncompG−e b). On the other hand, we know that
these are the only two connected components that get merged6. Altogether,
we thus see that only two connected components are merged when passing

5Proof. Assume the contrary. Thus, we have a ≃G−e b. In other words, there exists a walk from
a to b in G − e. Hence, there exists a path from a to b in G − e. Combining this path with the
edge e, we obtain a cycle of G that contains the edge e. Thus, the edge e belongs to at least one
cycle of G (namely, to the cycle we have just constructed). This contradicts the fact that the edge
e belongs to no cycle of G.

6Proof. Let P and Q be two distinct connected components of G − e that get merged in G (possibly
together with other connected components). We must show that P and Q are the two connected
components conncompG−e a and conncompG−e b (in some order).

We know that P and Q are two connected components of G − e. Hence, P = conncompG−e u
and Q = conncompG−e v for some u ∈ V and v ∈ V. Consider these u and v. Clearly, u ∈
conncompG−e u = P and v ∈ conncompG−e v = Q.

Since P and Q are distinct, we have P ̸= Q, so that conncompG−e u = P ̸= Q =
conncompG−e v. In other words, we do not have u ≃G−e v. But the connected components
P and Q get merged in G (possibly together with other connected components). The resulting
connected component of G contains both P and Q as subsets, and therefore contains both u and
v as elements (because u ∈ P and v ∈ Q). Hence, u and v lie in the same connected component
of G (namely, in the connected component we have just mentioned). In other words, u ≃G v.
Hence, Lemma 0.7 shows that there exist x ∈ V and y ∈ V such that ϕ (e) = {x, y} and u ≃G−e x
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from G − e to G (namely, the two connected components conncompG−e a and
conncompG−e b). Hence, the number of connected components of G equals
the number of connected components of G − e minus 1. In other words,
conn G = conn (G − e)− 1. But recall that e belongs to no cycle of G. Hence,
[e belongs to no cycle of G] = 1. Thus,

conn G︸ ︷︷ ︸
=conn(G−e)−1

+ [e belongs to no cycle of G]︸ ︷︷ ︸
=1

= (conn (G − e)− 1) + 1

= conn (G − e) .

Hence, Lemma 0.8 is proven in Case 1.

• Let us now consider Case 2. In this case, the edge e belongs to at least one
cycle of G. Fix such a cycle, and write it in the form (v0, e1, v1, e2, v2, . . . , ek, vk),
with vk = v0. Thus, e is one of the edges e1, e2, . . . , ek (since e belongs to
this cycle). We WLOG assume that e = e1 (since otherwise, we can achieve
e = e1 by rotating the cycle). The edges e1, e2, . . . , ek are the edges of the cycle
(v0, e1, v1, e2, v2, . . . , ek, vk), and thus are distinct (since the edges of a cycle are
always distinct). Thus, in particular, the edges e2, e3, . . . , ek are all different
from e1. Since e = e1, this rewrites as follows: The edges e2, e3, . . . , ek are all
different from e. Hence, e2, e3, . . . , ek are edges of the multigraph G − e. Thus,
(v1, e2, v2, e3, v3, . . . , ek, vk) is a walk in G − e. This is clearly a walk from v1
to v0 (since v1 = v1 and vk = v0). Hence, there exists a walk from v1 to v0
in G − e. In other words, v1 ≃G−e v0. Thus, v0 ≃G−e v1 (since ≃G−e is an
equivalence relation).

Every two vertices u ∈ V and v ∈ V satisfying u ≃G v satisfy u ≃G−e v 7.
Conversely, every two vertices u ∈ V and v ∈ V satisfying u ≃G−e v satisfy

and v ≃G−e y. Consider these x and y. We have P = conncompG−e u = conncompG−e x
(since u ≃G−e x) and Q = conncompG−e v = conncompG−e y (since v ≃G−e y). Hence,
conncompG−e x = P ̸= Q = conncompG−e y. Therefore, x ̸= y. But {x, y} = ϕ (e) = {a, b}.
Hence, x ∈ {x, y} = {a, b} and y ∈ {x, y} = {a, b}. Thus, x and y are two elements of {a, b}.
Since x ̸= y, we can hence conclude that x and y are two distinct elements of {a, b}. Thus, we
have either (x = a and y = b) or (x = b and y = a). But each of these two options quickly leads
us to our desired conclusion (namely, to the conclusion that P and Q are the two connected
components conncompG−e a and conncompG−e b (in some order)):

– If (x = a and y = b), then we have P = conncompG−e x = conncompG−e a (since x = a) and
Q = conncompG−e y = conncompG−e b (since y = b), and therefore we conclude that P and Q
are the two connected components conncompG−e a and conncompG−e b (in some order).

– If (x = b and y = a), then we have P = conncompG−e x = conncompG−e b (since x = b) and
Q = conncompG−e y = conncompG−e a (since y = a), and therefore we conclude that P and Q
are the two connected components conncompG−e a and conncompG−e b (in some order).

Thus, we have shown that P and Q are the two connected components conncompG−e a and
conncompG−e b (in some order). This is what we wanted to prove.

7Proof. Let u ∈ V and v ∈ V be two vertices satisfying u ≃G v. We must show that u ≃G−e v.
Indeed, assume the contrary. Thus, we do not have u ≃G−e v. Lemma 0.7 thus shows that

there exist x ∈ V and y ∈ V such that ϕ (e) = {x, y} and u ≃G−e x and v ≃G−e y. Consider these
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u ≃G v 8. Combining the preceding two sentences, we conclude that for any
two vertices u ∈ V and v ∈ V, we have u ≃G−e v if and only if we have u ≃G
v. In other words, the equivalence relations ≃G−e and ≃G on the set V are
identical. Hence, the connected components of G − e (being the equivalence
classes of the relation ≃G−e) are precisely the connected components of G
(which are the equivalence classes of the relation ≃G). Therefore, the number
of the connected components of G − e equals the number of the connected
components of G. In other words, conn G = conn (G − e). But recall that e
belongs to at least one cycle of G. Hence, [e belongs to no cycle of G] = 0.
Thus,

conn G︸ ︷︷ ︸
=conn(G−e)

+ [e belongs to no cycle of G]︸ ︷︷ ︸
=0

= conn (G − e) + 0 = conn (G − e) .

Hence, Lemma 0.8 is proven in Case 2.

We thus have proven Lemma 0.8 in each of the two Cases 1 and 2. This completes
its proof.

A further lemma that I shall use has nothing to do with graphs; it is a simple
(but important) property of sums of numbers:

Lemma 0.9 (telescope principle for sums). Let k ∈ N. Let r0, r1, . . . , rk be k + 1
integers. Then,

k

∑
i=1

(ri − ri−1) = rk − r0.

Of course, the r0, r1, . . . , rk in Lemma 0.9 can just as well be rational numbers or
real numbers or complex numbers or elements of any abelian group (if you know
what this means).

x and y.
From v ≃G−e y, we obtain y ≃G−e v (since ≃G−e is an equivalence relation). If we had

x ≃G−e y, then (using the fact that ≃G−e is an equivalence relation) we would obtain u ≃G−e
x ≃G−e y ≃G−e v, which would contradict the fact that we do not have u ≃G−e v. Hence, we
cannot have x ≃G−e y. Consequently, we cannot have x = y. Thus, x and y are distinct.

We have ϕ (e1) = {v0, v1} (since (v0, e1, v1, e2, v2, . . . , ek, vk) is a cycle in G). Hence,
{x, y} = ϕ (e) = {v0, v1}. Since x and y are distinct, this yields that we must have either
(x = v0 and y = v1) or (x = v1 and y = v0). But the first of these two options cannot happen
(because if we had (x = v0 and y = v1), then the we would have x = v0 ≃G−e v1 = y, which
would contradict the fact that we cannot have x ≃G−e y). Hence, the second of these two options
must be the case. In other words, we have (x = v1 and y = v0). Thus, x = v1 ≃G−e v0 = y. This
contradicts the fact that we cannot have x ≃G−e y. This contradiction proves that our assumption
was wrong. Hence, u ≃G−e v is proven.

8This was proven above.
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Proof of Lemma 0.9. If k = 0, then Lemma 0.9 holds (because both sides of the equal-
ity in question equal 0 in this case). Hence, for the rest of this proof, we WLOG
assume that we don’t have k = 0. Thus, k ≥ 1.

Now,

k

∑
i=1

(ri − ri−1) =
k

∑
i=1

ri −
k

∑
i=1

ri−1 =
k

∑
i=1

ri︸︷︷︸
=

k−1
∑

i=1
ri+rk

(since k≥1)

−
k−1

∑
i=0

ri︸ ︷︷ ︸
=r0+

k−1
∑

i=1
ri

(since k≥1)

(here, we have substituted i for i − 1 in the second sum)

=

(
k−1

∑
i=1

ri + rk

)
−
(

r0 +
k−1

∑
i=1

ri

)
= rk − r0.

This proves Lemma 0.9.

First solution to Exercise 3 (sketched). (a) Whenever K is a subset of H, we shall use
the notation c (K) for the nonnegative integer conn (V, K, ϕ |K). Using this notation,
we can rewrite the inequality (1) (which we must prove) as follows:

c (E) + c (F) ≤ c (E ∪ F) + c (E ∩ F) . (2)

We shall use the Iverson bracket notation. We observe that each subset K of H
and each f ∈ K satisfy

c (K \ { f })− c (K) = [ f belongs to no cycle of (V, K, ϕ |K)] (3)

9.

9Proof of (3). Let K be a subset of H. Let f ∈ K. Thus, f is an edge of the multigraph (V, K, ϕ |K).
Hence, Lemma 0.8 (applied to (V, K, ϕ |K) and f instead of G and e) yields

conn ((V, K, ϕ |K)− f ) = conn (V, K, ϕ |K) + [ f belongs to no cycle of (V, K, ϕ |K)] .

Since (V, K, ϕ |K)− f =
(

V, K \ { f } , ϕ |K\{ f }

)
, this rewrites as

conn
(

V, K \ { f } , ϕ |K\{ f }

)
= conn (V, K, ϕ |K) + [ f belongs to no cycle of (V, K, ϕ |K)] . (4)

Now, the definition of c (K) yields c (K) = conn (V, K, ϕ |K), whereas the definition of c (K \ { f })
yields c (K \ { f }) = conn

(
V, K \ { f } , ϕ |K\{ f }

)
. Subtracting the former equality from the latter,

we obtain

c (K \ { f })− c (K) = conn
(

V, K \ { f } , ϕ |K\{ f }

)
− conn (V, K, ϕ |K)

= [ f belongs to no cycle of (V, K, ϕ |K)]

(by (4)). This proves (3).
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If K and L are two subsets of H satisfying K ⊆ L, and if f is an element of K,
then

c (K \ { f })− c (K) ≥ c (L \ { f })− c (L) (5)
10.

Let ( f1, f2, . . . , fk) be a list of all elements of F \ E (with no element occur-
ring twice). Thus, the elements f1, f2, . . . , fk are distinct, and satisfy F \ E =
{ f1, f2, . . . , fk}.

Let F′ = E∪ F. Thus, F′ ⊆ H (since E and F are subsets of H) and F ⊆ E∪ F = F′.
We have

c (F \ { f1, f2, . . . , fi})− c (F \ { f1, f2, . . . , fi−1})
≥ c

(
F′ \ { f1, f2, . . . , fi}

)
− c

(
F′ \ { f1, f2, . . . , fi−1}

)
(7)

for each i ∈ {1, 2, . . . , k} 11.

10Proof of (5). Let K and L be two subsets of H satisfying K ⊆ L, and let f be an element of K.
We need to prove the inequality (5).
We have f ∈ K, so that f ∈ K ⊆ L. Hence, from (3) (applied to L instead of K), we obtain

c (L \ { f })− c (L) = [ f belongs to no cycle of (V, L, ϕ |L)] ≤ 1 (6)

(since the truth value of any statement is ≤ 1). Now, if f belongs to no cycle of (V, K, ϕ |K), then

c (K \ { f })− c (K) = [ f belongs to no cycle of (V, K, ϕ |K)] (by (3))
= 1 (since f belongs to no cycle of (V, K, ϕ |K))
≥ c (L \ { f })− c (L) (by (6)) .

Thus, if f belongs to no cycle of (V, K, ϕ |K), then (5) is proven. Hence, for the rest of this proof,
we WLOG assume that f belongs to at least one cycle of (V, K, ϕ |K). In other words, there
exists a cycle c of (V, K, ϕ |K) such that f belongs to c. Consider this c. But (V, K, ϕ |K) is a
sub-multigraph of (V, L, ϕ |L) (since K ⊆ L). Hence, c is a cycle of (V, L, ϕ |L) (because c is a
cycle of (V, K, ϕ |K)). Therefore, f belongs to at least one cycle of (V, L, ϕ |L) (namely, to c). Now,

c (K \ { f })− c (K) = [ f belongs to no cycle of (V, K, ϕ |K)] (by (3))
= 0 (since f belongs to at least one cycle of (V, K, ϕ |K)) .

Comparing this with

c (L \ { f })− c (L) = [ f belongs to no cycle of (V, L, ϕ |L)]
= 0 (since f belongs to at least one cycle of (V, L, ϕ |L)) ,

we obtain c (K \ { f }) − c (K) = c (L \ { f }) − c (L). Hence, c (K \ { f }) − c (K) ≥ c (L \ { f }) −
c (L). This proves (5).

11Proof of (7). Fix i ∈ {1, 2, . . . , k}. We have F︸︷︷︸
⊆F′

\ { f1, f2, . . . , fi−1} ⊆ F′ \ { f1, f2, . . . , fi−1}. Fur-

thermore, fi ∈ { f1, f2, . . . , fk} = F \ E ⊆ F. Combining this with fi /∈ { f1, f2, . . . , fi−1}
(since f1, f2, . . . , fk are distinct), we obtain fi ∈ F \ { f1, f2, . . . , fi−1}. Hence, (5) (applied to
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But

k

∑
i=1

(c (F \ { f1, f2, . . . , fi})− c (F \ { f1, f2, . . . , fi−1}))

= c

F \ { f1, f2, . . . , fk}︸ ︷︷ ︸
=F\E

− c

F \ { f1, f2, . . . , f0}︸ ︷︷ ︸
=∅


(by Lemma 0.9, applied to ri = c (F \ { f1, f2, . . . , fi}))

= c

F \ (F \ E)︸ ︷︷ ︸
=E∩F

− c

F \∅︸ ︷︷ ︸
=F

 = c (E ∩ F)− c (F) . (8)

The same argument (but with F replaced by F′) shows that

k

∑
i=1

(
c
(

F′ \ { f1, f2, . . . , fi}
)
− c

(
F′ \ { f1, f2, . . . , fi−1}

))
= c

(
E ∩ F′)− c

(
F′) . (9)

But E ⊆ E ∪ F = F′, so that E ∩ F′ = E.
Now, (8) shows that

c (E ∩ F)− c (F)

=
k

∑
i=1

(c (F \ { f1, f2, . . . , fi})− c (F \ { f1, f2, . . . , fi−1}))︸ ︷︷ ︸
≥c(F′\{ f1, f2,..., fi})−c(F′\{ f1, f2,..., fi−1})

(by (7))

≥
k

∑
i=1

(
c
(

F′ \ { f1, f2, . . . , fi}
)
− c

(
F′ \ { f1, f2, . . . , fi−1}

))
= c

(
E ∩ F′︸ ︷︷ ︸
=E

)
− c

(
F′︸︷︷︸

=E∪F

)
(by (9))

= c (E)− c (E ∪ F) .

K = F \ { f1, f2, . . . , fi−1}, L = F′ \ { f1, f2, . . . , fi−1} and f = fi) yields

c ((F \ { f1, f2, . . . , fi−1}) \ { fi})− c (F \ { f1, f2, . . . , fi−1})
≥ c

((
F′ \ { f1, f2, . . . , fi−1}

)
\ { fi}

)
− c

(
F′ \ { f1, f2, . . . , fi−1}

)
.

Since (F \ { f1, f2, . . . , fi−1}) \ { fi} = F \ { f1, f2, . . . , fi} and (F′ \ { f1, f2, . . . , fi−1}) \ { fi} = F′ \
{ f1, f2, . . . , fi}, this rewrites as

c (F \ { f1, f2, . . . , fi})− c (F \ { f1, f2, . . . , fi−1}) ≥ c
(

F′ \ { f1, f2, . . . , fi}
)
− c

(
F′ \ { f1, f2, . . . , fi−1}

)
.

This proves (7).
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In other words, c (E) + c (F) ≤ c (E ∪ F) + c (E ∩ F). This proves (2). As we know,
this yields (1) (since (2) is just a rewritten version of (1)). Hence, Exercise 3 (a) is
solved.

(b) There are many possible examples.
For example, let (V, H, ϕ) = ({1, 2, 3} , {12, 13, 23} , id) (this is just the complete
graph K3 on the three vertices 1, 2, 3, regarded as a multigraph), and set E =
{12, 23} and F = {23, 13}. In this case, conn (V, E, ϕ |E) = 1, conn (V, F, ϕ |F) = 1,
conn (V, E ∪ F, ϕ |E∪F) = 1 and conn (V, E ∩ F, ϕ |E∩F) = 2, and thus the inequality
(1) becomes 1 + 1 ≤ 1 + 2.

0.4.4. Second solution

Now, we shall outline a second solution of Exercise 3, following the hint.

Definition 0.10. Let G = (V, E, ϕ) be a multigraph.
(a) A subset X of E is said to be connective if the connected components of

(V, X, ϕ |X) are precisely the connected components of G. (Equivalently: A sub-
set X of E is connective if and only if every two vertices that are connected by a
walk in G are also connected by a walk that only uses edges from X.)

(b) A subset X of E is said to be independent if the multigraph (V, X, ϕ |X) has
no cycles (i.e., if no cycle of G has all its edges belong to X).

(c) A basis of G shall mean a subset X of E that is both connective and inde-
pendent.

(d) When X is a basis of a multigraph G = (V, E, ϕ), the sub-multigraph
(V, X, ϕ |X) is called a spanning forest of G.

There is an analogy between multigraphs and vector spaces. Under this anal-
ogy, a connective subset corresponds to a spanning subset; an independent subset
corresponds to a linearly independent subset; a basis corresponds to a basis.

Proposition 0.11. Let G be a multigraph. Then, a basis of G exists.

Proof of Proposition 0.11. For each connected component C of G, consider a span-
ning tree of the induced sub-multigraph G [C] of G 12. Let XC be the set of all
edges of this spanning tree.

Let X be the union of these sets XC over all connected components C of G. Then,
X is connective. (Indeed, any two vertices lying in one and the same connected
component of G must also be connected by the spanning tree of this component.)
Also, X is independent. (Indeed, the sub-multigraph (V, X, ϕ |X) has no cycles, be-
cause each spanning tree separately has no cycles, and because we cannot “jump”
from one spanning tree to the other since they are in different connected compo-
nents.) Hence, X is a basis of G.
12Induced sub-multigraphs of G are defined as follows: Write G in the form G = (V, E, ϕ). If S

is a subset of V, then the induced sub-multigraph G [S] is defined to be the sub-multigraph(
S, ES, ϕ |ES

)
of G, where ES is the set of all edges e ∈ E such that ϕ (e) ⊆ S (in other words,

such that both endpoints of e lie in S).
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Proposition 0.12. Let G be a forest. Then, |E (G)| = |V (G)| − conn G.

Proposition 0.12 is precisely Corollary 20 from lecture 9 (with the only difference
being that we denoted conn G by b0 (G) in lecture 9), so we omit its proof here.

Proposition 0.13. Let G = (V, E, ϕ) be a multigraph. Let X be a basis of G. Then,
|X| = |V| − conn G.

Proof of Proposition 0.13 (sketched). The set X is a basis of G. In other words, X is a
subset of E that is both connective and independent.

Since X is connective, the connected components of (V, X, ϕ |X) are precisely the
connected components of G. Hence, the number of the former connected com-
ponents equals the number of the latter connected components. In other words,
conn (V, X, ϕ |X) = conn G.

But X is independent. In other words, the multigraph (V, X, ϕ |X) has no cy-
cles. In other words, this multigraph is a forest. Hence, Proposition 0.12 (applied
to (V, X, ϕ |X) instead of G) shows that |E ((V, X, ϕ |X))| = |V ((V, X, ϕ |X))| −
conn (V, X, ϕ |X). Since E ((V, X, ϕ |X)) = X, V ((V, X, ϕ |X)) = V and conn (V, X, ϕ |X) =
conn G, this rewrites as |X| = |V| − conn G.

Compare Proposition 0.13 to the well-known fact from linear algebra that any
two bases of a vector space have the same size (the dimension of this vector space).

Proposition 0.14. Let G = (V, E, ϕ) be a multigraph. Let X be a subset of E.
Assume that for each edge e ∈ E \ X, there exists a path that uses only edges
from X, and that connects the two endpoints of e (that is, the starting point and
the ending point of this path are the two endpoints of e). Then, the subset X of
E is connective.

Proof of Proposition 0.14. For each edge e ∈ E \ X, we fix some path that uses only
edges from X, and that connects the two endpoints of e 13. We shall refer to this
path as the X-detour for e.

Now, let u and v be two vertices that are connected by a walk in G. Fix such a
walk. Some of the edges of this walk may belong to E \ X. But if we replace all
these edges by their X-detours, we obtain a (possibly longer) walk that uses only
edges from X. Thus, u and v are connected by a walk that uses only edges from X.

We thus have proven that every two vertices that are connected by a walk in G
are also connected by a walk that only uses edges from X. In other words, the
subset X of E is connective. This proves Proposition 0.14.

Lemma 0.15. Let G = (V, E, ϕ) be a multigraph. Let X be an independent subset
of E. Assume that X is not connective. Then, there exists an edge e ∈ E \ X such
that the subset X ∪ {e} is independent.

13The existence of such a path is guaranteed by the hypothesis of Proposition 0.14.

http://www.cip.ifi.lmu.de/~grinberg/t/17s/5707lec9.pdf
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Proof of Lemma 0.15. Assume the contrary. Thus, for each edge e ∈ E \ X, the subset
X ∪ {e} is not independent.

Now, for each edge e ∈ E \ X, there exists a path that uses only edges from X,
and that connects the two endpoints of e (that is, the starting point and the ending
point of this path are the two endpoints of e) 14. Hence, Proposition 0.14 shows
that the subset X of E is connective. This contradicts the hypothesis that X is not
connective. This contradiction completes the proof.

Proposition 0.16. Let G = (V, E, ϕ) be a multigraph. Let Y be an independent
subset of E. Then, there exists a basis of G that contains Y as a subset.

Proof of Proposition 0.16 (sketched). We construct a sequence (Y0, Y1, . . . , Yk) of inde-
pendent subsets of E by the following algorithm:

• Set Y0 = Y and i = 0.

• While there exists an edge e ∈ E \ Yi such that the set Yi ∪ {e} is still inde-
pendent, do the following:

– Pick such an e, and set Yi+1 = Yi ∪ {e}. Then, set i = i + 1.

• Set k = i.

This algorithm must terminate. (Indeed, each subset Yi+1 constructed during the
algorithm has a larger size than the previous subset Yi, but a subset of E cannot
have size larger than |E|, so we cannot build an infinite sequence (Y0, Y1, Y2, . . .)
of subsets of E where each subset has larger size than the previous one.) Thus,
the subset Yk built at the end of the algorithm has the following property: It is
an independent subset of E, but there exists no edge e ∈ E \ Yk such that the set
Yk ∪ {e} is still independent.

The algorithm guarantees that Yi ⊆ Yi+1 for each i for which Yi+1 has been
constructed. Thus, Y0 ⊆ Y1 ⊆ · · · ⊆ Yk, so that Y0 ⊆ Yk and thus Y = Y0 ⊆ Yk.
Consequently, Yk contains Y as a subset.

It the subset Yk of E was not connective, then Lemma 0.15 (applied to X = Yk)
would show that there exists an edge e ∈ E \ Yk such that the subset Yk ∪ {e} is
independent. This would contradict the fact that there exists no edge e ∈ E \ Yk
such that the set Yk ∪ {e} is still independent. Hence, the subset Yk is connective.
Thus, Yk is both connective and independent. In other words, Yk is a basis of G.
Hence, there exists a basis of G that contains Y as a subset (namely, Yk). This proves
Proposition 0.16.
14Proof. Let e ∈ E \ X be an edge. We know (from the previous paragraph) that the subset X ∪ {e} is

not independent. In other words, there exists a cycle of G all of whose edges belong to X ∪ {e}.
Fix such a cycle. Clearly, not all of the edges of this cycle belong to X (because the subset X is
independent, and thus there exists no cycle of G all of whose edges belong to X). Hence, at least
one edge of this cycle must be e. Therefore, exactly one edge of this cycle is e (since the edges of
a cycle are always distinct). If we remove the edge e from this cycle, we thus obtain a path that
uses only edges from X, and that connects the two endpoints of e. Thus, there exists a path that
uses only edges from X, and that connects the two endpoints of e.
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Compare Proposition 0.16 to the well-known fact that a linearly independent
subset of a vector space can always be extended to a basis.

Notice that we can also use Proposition 0.16 to prove Proposition 0.11 again
(namely, by applying Proposition 0.16 to Y = ∅, exploiting the obvious fact that ∅
is independent).

Proposition 0.17. Let G = (V, E, ϕ) be a multigraph. Then, conn G ≥ |V| − |E|.

Proposition 0.17 is precisely Proposition 14 from lecture 9 (with the only differ-
ence being that we denoted conn G by b0 (G) in lecture 9), so we omit its proof
here.

Proposition 0.18. Let G = (V, E, ϕ) be a multigraph. Let X be a connective
subset of E. Then, |X| ≥ |V| − conn G.

Proof of Proposition 0.18 (sketched). Since X is connective, the connected components
of (V, X, ϕ |X) are precisely the connected components of G. Hence, the number
of the former connected components equals the number of the latter connected
components. In other words, conn (V, X, ϕ |X) = conn G.

But Proposition 0.17 (applied to (V, X, ϕ |X), X and ϕ |X instead of G, E and ϕ)
shows that conn (V, X, ϕ |X) ≥ |V| − |X|. Thus, |X| ≥ |V| − conn (V, X, ϕ |X) =
conn G. This proves Proposition 0.18.

Second solution to Exercise 3 (sketched). (a) Proposition 0.11 (applied to (V, E ∩ F, ϕ |E∩F)
instead of G) shows that a basis of the multigraph (V, E ∩ F, ϕ |E∩F) exists. Fix such
a basis, and denote it by Y. Thus, Y is an independent subset of E ∩ F.

Proposition 0.16 (applied to (V, E, ϕ |E) and ϕ |E instead of G and ϕ) shows that
there exists a basis of (V, E, ϕ |E) that contains Y as a subset. Fix such a basis, and
denote it by P. Thus, P is a subset of E that is both independent and connective
(with respect to the multigraph (V, E, ϕ |E)).

Proposition 0.16 (applied to (V, F, ϕ |F), F and ϕ |F instead of G, E and ϕ) shows
that there exists a basis of (V, F, ϕ |F) that contains Y as a subset. Fix such a basis,
and denote it by Q. Thus, Q is a subset of F that is both independent and connective
(with respect to the multigraph (V, F, ϕ |F)).

From Y ⊆ P and Y ⊆ Q, we obtain Y ⊆ P ∩ Q.
It is not necessarily true that P ∪ Q is a basis of the multigraph (V, E ∪ F, ϕ |E∪F).

However, it is not hard to see that P ∪ Q is a connective subset of E ∪ F (with
respect to this multigraph). Indeed, for each edge e ∈ (E ∪ F) \ (P ∪ Q), there
exists a path that uses only edges from P ∪ Q, and that connects the two endpoints
of e 15. Thus, Proposition 0.14 (applied to (V, E ∪ F, ϕ |E∪F), E ∪ F, ϕ |E∪F and

15Proof. Let e ∈ (E ∪ F) \ (P ∪ Q) be an edge. Then, e ∈ (E ∪ F) \ (P ∪ Q) ⊆ E ∪ F. Hence, either
e ∈ E or e ∈ F (or both). We WLOG assume that e ∈ E (since otherwise, an analogous argument
works). Then, the two endpoints of e lie in the same connected component of the multigraph
(V, E, ϕ |E) (because they are adjacent in this multigraph). Hence, these two endpoints are
connected by a path using only edges from P (since P is a connective subset of E with respect

http://www.cip.ifi.lmu.de/~grinberg/t/17s/5707lec9.pdf
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P ∪ Q instead of G, E, ϕ and X) shows that the subset P ∪ Q of E ∪ F is connective
with respect to the multigraph (V, E ∪ F, ϕ |E∪F). Hence, Proposition 0.18 (applied
to (V, E ∪ F, ϕ |E∪F), E ∪ F, ϕ |E∪F and P ∪ Q instead of G, E, ϕ and X) shows that
|P ∪ Q| ≥ |V| − conn (V, E ∪ F, ϕ |E∪F). Hence,

conn (V, E ∪ F, ϕ |E∪F) ≥ |V| − |P ∪ Q| . (10)

But Y is a basis of (V, E ∩ F, ϕ |E∩F). Hence, Proposition 0.13 (applied to (V, E ∩ F, ϕ |E∩F),
E∩ F, ϕ |E∩F and Y instead of G, E, ϕ and X) shows that |Y| = |V|− conn (V, E ∩ F, ϕ |E∩F).
Hence,

conn (V, E ∩ F, ϕ |E∩F) = |V| − |Y|︸︷︷︸
≤|P∩Q|

(since Y⊆P∩Q)

≥ |V| − |P ∩ Q| .

Adding this inequality to (10), we obtain

conn (V, E ∪ F, ϕ |E∪F) + conn (V, E ∩ F, ϕ |E∩F) ≥ (|V| − |P ∪ Q|) + (|V| − |P ∩ Q|)
= 2 |V| − (|P ∪ Q|+ |P ∩ Q|)︸ ︷︷ ︸

=|P|+|Q|

= 2 |V| − (|P|+ |Q|) .

On the other hand, P is a basis of (V, E, ϕ |E). Hence, Proposition 0.13 (ap-
plied to (V, E, ϕ |E), ϕ |E and P instead of G, ϕ and X) shows that |P| = |V| −
conn (V, E, ϕ |E). Hence,

conn (V, E, ϕ |E) = |V| − |P| .

The same reasoning (but applied to F and Q instead of E and P) shows that

conn (V, F, ϕ |F) = |V| − |Q| .

Thus,

conn (V, E ∪ F, ϕ |E∪F) + conn (V, E ∩ F, ϕ |E∩F)

≥ 2 |V| − (|P|+ |Q|) = |V| − |P|︸ ︷︷ ︸
=conn(V,E,ϕ|E)

+ |V| − |Q|︸ ︷︷ ︸
=conn(V,F,ϕ|F)

= conn (V, E, ϕ |E) + conn (V, F, ϕ |F) .

This solves Exercise 3 (a).
(b) See the First solution above.

to the the multigraph (V, E, ϕ |E)). This path thus uses only edges from P ∪ Q (since the edges
from P clearly are edges from P ∪ Q), and connects the two endpoints of e. Hence, there exists
a path that uses only edges from P ∪ Q, and that connects the two endpoints of e.
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0.4.5. Third solution

The third solution of Exercise 3 (which will be roughly outlined) uses linear algebra.
Let us first introduce some notations.

Definition 0.19. Let n ∈ N. Then, (e1, e2, . . . , en) will denote the standard basis
of the Q-vector space Qn. This means that ei is the column vector whose i-th
coordinate is 1, and whose all other coordinates are 0.

(Instead of Q-vector spaces, we can just as well use R-vector spaces or C-vector
spaces16. I have chosen Q merely because rational numbers feel more concrete to
me.)

The crux of the third solution is the following neat result from linear algebra:

Proposition 0.20. Let G = (V, E, ϕ) be a multigraph, where V = {1, 2, . . . , n} for
some n ∈ N. For each edge e of G, define a vector ve ∈ Qn by picking i ∈ V and
j ∈ V such that ϕ (e) = {i, j}, and setting ve = ei − ej. (We are free to choose
which of the two endpoints of e is to become i and which is to become j here.)

Then,
conn G = |V| − dim (span ({ve | e ∈ E})) . (11)

(More precisely, span ({ve | e ∈ E}) is the Q-vector subspace of Qn that con-

sists of all vectors


p1
p2
...

pn

 ∈ Qn satisfying

∑
i∈C

pi = 0 for each connected component C of G.

Thus, it is the solution set of a system of conn G many linear equations.)

(Notice that the equality (11) appears in the literature in various guises. For
example, [Quinla17, Theorem 1.3.5] is a restatement of (11) in terms of matrices.)

Hints to a proof of Proposition 0.20. Let P denote the Q-vector subspace of Qn that

consists of all vectors


p1
p2
...

pn

 ∈ Qn satisfying

∑
i∈C

pi = 0 for each connected component C of G. (12)

16Or vector spaces over any field – if you know what this means.
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For each connected component C of G, fix a vertex of C (chosen arbitrarily), and
call it the root of C. A vertex of G is said to be a root if and only if it is the root of
its connected component.

The depth of a vertex v ∈ V shall be defined as the distance from v to the root of
the connected component of v. This depth is a nonnegative integer, and it equals 0
if and only if v itself is a root.

Let S denote the Q-vector subspace span ({ve | e ∈ E}) of Qn.
Let R be the Q-vector subspace span ({ev | v ∈ V is a root}) of Qn. In other

words, R is the set of all vectors


p1
p2
...

pn

 ∈ Qn satisfying

pi = 0 for each i ∈ V that is not a root. (13)

Clearly,
dimR = (the number of roots) = conn G.

Now, it is not hard to see that

ei ∈ S +R for all i ∈ V. (14)

Indeed, this is easily proven by induction17. Since the vectors e1, e2, . . . , en form a
basis of Qn, this shows that Qn = S +R.

Also, S ⊆ P (to check this, show that all the generators ve of S lie in P). Fur-
thermore, P ∩ R = 0 18. Now, from S ⊆ P , we obtain S ∩ R ⊆ P ∩ R = 0.
Combined with Qn = S +R, this yields

Qn = S ⊕R.
17In (slightly) more detail:

We proceed by induction over the depth of i.
The induction base is the case when the depth of i is 0. This case is easy (because if the depth

of i is 0, then i is a root, whence ei ∈ R ⊆ S +R).
The induction step requires us to prove (14) for all i of depth k + 1, assuming that (14) holds for

all i of depth k. This can be argued as follows: Fix an i ∈ V of depth k + 1. Then, there exists a
neighbor j ∈ V of i that has depth k (since the depth is the distance from the root). Fix such a
neighbor, and let e be an edge connecting i to this neighbor. Then, ej ∈ S +R by the induction
hypothesis (since j has depth k).

But the edge e connects i with j. Hence, either ve = ei − ej or ve = ej − ei (depending on the
way we defined ve). Thus, in either case, ei − ej ∈ {ve,−ve} ⊆ S , so that ei ∈ S + ej ⊆ S +R
(since ej ∈ S +R). This completes the induction step.

18Proof. Let p =


p1
p2
...

pn

 be a vector in P ∩R. Then, this vector must satisfy both equations (12) and

(13) (since it lies in both P and R).
Now, let j ∈ V be a vertex. We want to show that pj = 0. Indeed, if j is not a root, then

this follows from (13) (applied to i = j). So let us WLOG assume that j is a root. Let C be the
connected component containing j. Then, the only root in C is j. Hence, all vertices i ∈ C except
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Taking dimensions, we find dim (Qn) = dimS + dimR. Hence,

dimS = dim (Qn)︸ ︷︷ ︸
=n

− dimR︸ ︷︷ ︸
=conn G

= n − conn G.

Hence, conn G = n − dimS = |V| − dimS (since n = |V|). This proves (11).
Let us now prove the “More precisely” statement in Proposition 0.20. Indeed, this

statement simply claims that S = P . To prove it, we assume the contrary. Thus,
S is a proper subset of P (because we know that S ⊆ P). Hence, dimS < dimP .
But P ∩R = 0 yields that the sum P +R is a direct sum. Hence,

dim (P +R) = dimP︸ ︷︷ ︸
>dimS

+dimR > dimS + dimR = dim (Qn) .

This contradicts the fact that dim (P +R) ≤ dim (Qn) (which is a trivial conse-
quence of the fact that P +R is a subspace of Qn). This contradiction shows that
our assumption was wrong, and so S = P is proven. Finally, the proof of Proposi-
tion 0.20 is complete.

This allows solving Exercise 3 as follows:

Hints to a third solution of Exercise 3. WLOG assume that V = {1, 2, . . . , n} for some
n ∈ N. For each edge e ∈ H, define a vector ve ∈ Qn by picking i ∈ V and j ∈ V
such that ϕ (e) = {i, j}, and setting ve = ei − ej.

Define two Q-vector subspaces X and Y of Qn by

X = span ({ve | e ∈ E}) and Y = span ({ve | e ∈ F}) .

Then, notice that
X + Y = span ({ve | e ∈ E ∪ F})

and
X ∩ Y ⊇ span ({ve | e ∈ E ∩ F}) (15)

(this is not an equality, just an inclusion). But a classical fact from linear alge-
bra says that dim X + dim Y = dim (X + Y) + dim (X ∩ Y). Substitute the above
expressions for X, Y, X + Y and X ∩ Y into this equality (thus turning it into an
inequality, since (15) is merely an inclusion). Finally, rewrite the dimensions of the
spans using Proposition 0.20. The result is precisely the claim of Exercise 3.

0.5. Exercise 4: forcing a Hamiltonian cycle on a tree

for j are not roots. Thus, all vertices i ∈ C except for j satisfy pi = 0 (by (13)). Hence, ∑
i∈C

pi = pj.

Therefore, the equality (12) simplifies to pj = 0.
Now, forget that we fixed j. We thus have proven that pj = 0 for each j ∈ V. In other words,

all coordinates of our vector p are 0. In other words, p = 0.
We thus have shown that any vector p ∈ P ∩R satisfies p = 0. In other words, P ∩R = 0.
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Exercise 4. Let T be a tree having more than 1 vertex. Let L be the set of leaves
of T. Prove that it is possible to add |L| − 1 new edges to T in such a way that
the resulting multigraph has a Hamiltonian cycle.

Exercise 4 is taken from [Wang17, Lemma 3.1, second inequality sign]. Rather
than solve this exercise directly, we shall prove a stronger fact. First, we define a
notation:

Definition 0.21. Let T be a tree. Then, Leaves (T) shall mean the set of all leaves
of T.

The following fact is simple:

Proposition 0.22. Let T be a tree such that |V (T)| > 2. Let v be a leaf of T. Let T′

denote the multigraph obtained from T by removing this leaf v and the unique
edge that contains v. Let u be the unique neighbor of v in T.

(a) The multigraph T′ is a tree again.
(b) We have u /∈ Leaves (T).
(c) If u is a leaf of T′, then Leaves (T′) = (Leaves (T) \ {v}) ∪ {u}.
(d) If u is not a leaf of T′, then Leaves (T′) = Leaves (T) \ {v}.

Unfortunately, the length of a proof of Proposition 0.22 is far out of proportion to
its simplicity. We recommend the reader to prove it themselves instead of reading
the below argument.

Proof of Proposition 0.22 (sketched). The vertex v is a leaf of T. In other words, degT v = 1.
Hence, there is a unique edge of T that contains v. Let e be this edge. The other endpoint
of this edge e (besides v) is u (since u is the unique neighbor of v in T). Thus, the two
endpoints of this edge e are u and v.

Recall that e is the unique edge of T that contains v. Hence, e is the unique edge that
gets removed from T in the construction of T′. In other words, e is the only edge of T that
is not an edge of T′.

Observe that v is not a vertex of T′ (since the multigraph T′ is obtained from T by
removing the vertex v).

Also, the multigraph T′ is obtained from T by removing the vertex v (and an edge). Thus,
the vertex set of T′ is obtained from the vertex set of T by removing the vertex v. In other
words, V (T′) = V (T) \ {v}. Since v ∈ V (T), we thus obtain |V (T′)| = |V (T)| − 1 > 1
(since |V (T)| > 2).

Let us first show that T′ is a tree. This is an easy fact (and was done in class), but we
briefly recall the argument for the sake of completeness: The multigraph T′ is connected19

19Proof. Let p and q be two vertices of T′. Then, p and q are distinct from v (since v is not a vertex
of T′). Since T is connected (because T is a tree), there exists a walk from p to q in T. Hence,
there exists a path from p to q in T. The starting point and the ending point of this path are both
distinct from v (since these two vertices are p and q, and we know that p and q are distinct from
v). All intermediate vertices of this path (i.e., all its vertices other than the starting point and the
ending point) must be distinct from v as well (since v is a leaf, but an intermediate vertex of a
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and is a forest20. Thus, T′ is a tree. This proves Proposition 0.22 (a).
Each vertex q of T′ satisfies

degT′ q ≥ 1 (16)
21.

The vertex u is not a leaf of T 22. In other words, u /∈ Leaves (T). This proves
Proposition 0.22 (b).

Next, let us notice that each q ∈ Leaves (T) \ {v} satisfies q ∈ Leaves (T′) 23. In other
words,

Leaves (T) \ {v} ⊆ Leaves
(
T′) . (17)

On the other hand, each q ∈ Leaves (T′) \ {u} satisfies q ∈ Leaves (T) \ {v} 24. In

path can never be a leaf). Thus, all vertices of this path are distinct from v. Hence, all vertices of
this path are vertices of T′. Thus, this path is a path in T′. Consequently, there is a path from p
to q in T′ (namely, the path that we have just constructed).

Thus, we have shown that if p and q are two vertices of T′, then there is a path from p to q in
T′. Hence, T′ is connected (since |V (T′)| > 1 > 0).

20Proof. The multigraph T has no cycles (since it is a tree). Thus, the multigraph T′ has no cycles
either (since any cycle of T′ would be a cycle of T). In other words, T′ is a forest.

21Proof of (16). Let q be a vertex of T′. Recall that |V (T′)| > 1, so that |V (T′)| ≥ 2. Hence, there
exist at least two vertices of T′. Thus, there exists at least one vertex of T′ distinct from q. Fix
such a vertex, and denote it by p.

The multigraph T′ is connected. Thus, there exists a walk from q to p in T′. This walk has
length > 0 (since p is distinct from q), and thus has at least one edge. Hence, there exists an
edge containing q in T′ (namely, the very first edge of this walk). In other words, degT′ q ≥ 1.
This proves (16).

22Proof. Assume the contrary. Thus, u is a leaf of T. In other words, degT u = 1. In other words,
there exists a unique edge of T containing u. This unique edge must be e (since the edge e
contains u (because the two endpoints of this edge e are u and v)). Thus, e is the only edge of T
containing u.

But u ̸= v (since u is a neighbor of v in T). Hence, u ∈ V (T) \ {v} = V (T′). In other words,
u is a vertex of T′. Therefore, (16) (applied to q = u) shows that degT′ u ≥ 1. In other words, the
number of edges of T′ containing u is ≥ 1. Hence, there exists at least one edge of T′ containing
u. Fix such an edge, and denote it by f .

Now, f is an edge of T′ containing u. But T′ is a sub-multigraph of T. Thus, f is an edge of
T (since f is an edge of T′). Hence, f is an edge of T containing u. Since e is the only edge of
T containing u, we thus conclude that f = e. But e is not an edge of T′ (since e is the unique
edge that gets removed from T in the construction of T′). In other words, f is not an edge of T′

(since f = e). This contradicts the fact that f is an edge of T′. This contradiction proves that our
assumption was false; qed.

23Proof. Let q ∈ Leaves (T) \ {v}. Thus, q ∈ Leaves (T) and q ̸= v. Since q ̸= v, we conclude that q
is a vertex of T′.

We know that q ∈ Leaves (T). In other words, q is a leaf of T. In other words, degT q = 1.
But T′ is a submultigraph of T. Hence, degT′ q ≤ degT q = 1. Combining this with (16), we

obtain degT′ q = 1. In other words, q is a leaf of T′. In other words, q ∈ Leaves (T′).
24Proof. Let q ∈ Leaves (T′) \ {u}. Thus, q ∈ Leaves (T′) and q ̸= u.

We know that q ∈ Leaves (T′). In other words, q is a leaf of T′. In other words, degT′ q = 1.
Hence, there is only one edge of T′ that contains q.

Recall that T′ is a submultigraph of T. Thus, degT q ≥ degT′ q = 1.
Since q is a vertex of T′, we have q ̸= v (since the multigraph T′ is obtained from T by

removing the vertex v).
Assume (for the sake of contradiction) that degT q ̸= 1. Thus, degT q > 1 (since degT q ≥ 1),
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other words,
Leaves

(
T′) \ {u} ⊆ Leaves (T) \ {v} (18)

(c) Assume that u is a leaf of T′. In other words, u ∈ Leaves (T′). Hence,

Leaves
(
T′) = (Leaves

(
T′) \ {u}

)︸ ︷︷ ︸
⊆Leaves(T)\{v}

(by (18))

∪ {u} ⊆ (Leaves (T) \ {v}) ∪ {u} .

Combining this with

(Leaves (T) \ {v})︸ ︷︷ ︸
⊆Leaves(T′)

(by (17))

∪ {u}︸︷︷︸
⊆Leaves(T′)

(since u∈Leaves(T′))

⊆ Leaves
(
T′) ∪ Leaves

(
T′) = Leaves

(
T′) ,

we obtain Leaves (T′) = (Leaves (T) \ {v}) ∪ {u}. This proves Proposition 0.22 (c).
(d) Assume that u is not a leaf of T′. In other words, u /∈ Leaves (T′). Hence,

Leaves
(
T′) = Leaves

(
T′) \ {u} ⊆ Leaves (T) \ {v} (by (18)) .

Combining this with (17), we obtain Leaves (T′) = Leaves (T) \ {v}. This proves Proposi-
tion 0.22 (d).

Also, here is a particularly trivial fact:

Proposition 0.23. Let T be a tree such that |V (T)| ≤ 2. Let v and w be two
distinct leaves of T. Then, the vertices v and w are adjacent, and we have V (T) =
Leaves (T) = {v, w}.

Proof of Proposition 0.23. We have Leaves (T) ⊆ V (T) (since each leaf of T is a vertex of T).
Thus, |Leaves (T)| ≤ |V (T)| ≤ 2.

On the other hand, v and w are two distinct leaves of T. Thus, T has at least two distinct
leaves. In other words, |Leaves (T)| ≥ 2. Combined with |Leaves (T)| ≤ 2, this yields
|Leaves (T)| = 2. Hence, 2 = |Leaves (T)| ≤ |V (T)|. Combining this with |V (T)| ≤ 2, we
find |V (T)| = 2. In other words, V (T) is a 2-element set. Hence, the only 2-element subset
of the set V (T) is this set V (T) itself.

Now, v and w are two distinct leaves of T. In other words, v and w are two distinct
elements of Leaves (T). Hence, {v, w} ⊆ Leaves (T) ⊆ V (T). Thus, {v, w} is a 2-element
subset of the set V (T) (in fact, {v, w} is a 2-element set since v and w are distinct). There-
fore, {v, w} is the set V (T) itself (since the only 2-element subset of the set V (T) is this

so that degT q ≥ 2 (since degT q is an integer). In other words, there are at least 2 edges of T
that contain q. This yields that there are more edges of T that contain q than there are edges of
T′ that contain q (because there is only one edge of T′ that contains q). Hence, there exists an
edge of T that contains q but that is not an edge of T′. This edge must be e (since e is the only
edge of T that is not an edge of T′). Thus, the edge e contains q. In other words, q is one of the
two endpoints of e. In other words, q is one of u and v (since the two endpoints of e are u and
v). Since q ̸= u, we thus obtain q = v. This contradicts q ̸= v. This contradiction proves that our
assumption was wrong. Hence, we cannot have degT q ̸= 1.

In other words, we have degT q = 1. In other words, q is a leaf of T. In other words,
q ∈ Leaves (T). Combining this with q ̸= v, we obtain q ∈ Leaves (T) \ {v}.
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set V (T) itself). In other words, {v, w} = V (T). Combining {v, w} ⊆ Leaves (T) with
Leaves (T) ⊆ V (T) = {v, w}, we find {v, w} = Leaves (T). Altogether, we thus know that
V (T) = {v, w} = Leaves (T), so that V (T) = Leaves (T) = {v, w}.

The vertex v of T is a leaf of T. In other words, v is a vertex of T such that deg v = 1. In
other words, v is a vertex of T having exactly one neighbor. Let q be this neighbor.

Since q ∈ V (T) (since q is a vertex of T) and q ̸= v (because q is a neighbor of v), we have
q ∈ V (T)︸ ︷︷ ︸

={v,w}

\ {v} = {v, w} \ {v} ⊆ {w}, so that q = w. But the vertices v and q are adjacent

(since q is a neighbor of v). Since q = w, this rewrites as follows: The vertices v and w are
adjacent. This completes the proof of Proposition 0.23.

Next, we introduce some simple notations:

Definition 0.24. For any k ∈ N, we let [k] denote the set {1, 2, . . . , k}.

Definition 0.25. Let V be a finite set. A listing of V shall mean a list of elements
of V such that each element of V appears exactly once in this list.

For example, the set {1, 4, 6} has exactly 6 listings; two of them are (1, 4, 6)
and (4, 1, 6).

Definition 0.26. Let G be a multigraph. Let p and q be two vertices of G. Then,
we write p nadG q if and only if p is not adjacent to q in G.

The following fact is obvious:

Proposition 0.27. Let V be a finite set. Let v ∈ V. Let (v1, v2, . . . , vn−1) be a
listing of the set V \ {v}. Then, (v1, v2, . . . , vn−1, v) is a listing of the set V.

Now comes a theorem which (once proven) will quickly yield the claim of Exer-
cise 4:

Theorem 0.28. Let n ∈ N. Let T be a tree such that |V (T)| = n. Let v and w be
two distinct leaves of T. Then, there exists a listing (v1, v2, . . . , vn) of V (T) such
that v1 = w and vn = v and

|{i ∈ [n − 1] | vi nadT vi+1}| ≤ |Leaves (T)| − 2.

Proof of Theorem 0.28. We shall prove Theorem 0.28 by induction over n:
Induction base: Theorem 0.28 holds in the case when n ≤ 2.
[Proof. Assume that n ≤ 2. Thus, |V (T)| = n ≤ 2. Proposition 0.23 shows that

the vertices v and w are adjacent, and that we have V (T) = Leaves (T) = {v, w}.
From Leaves (T) = {v, w}, we obtain |Leaves (T)| = |{v, w}| = 2 (since v and w
are distinct). From V (T) = {v, w}, we obtain |V (T)| = |{v, w}| = 2, whence
n = |V (T)| = 2.
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But the list (w, v) is a listing of the set {v, w} (since v and w are distinct),
i.e., is a listing of the set V (T) (since {v, w} = V (T)). Denote this listing by
(v1, v2, . . . , vn). (This is well-defined, since the length of this listing is 2 = n.) Thus,
(v1, v2, . . . , vn) = (w, v); hence, v1 = w and vn = v. Moreover, there exists no
i ∈ [n − 1] satisfying vi nadT vi+1

25. Hence, {i ∈ [n − 1] | vi nadT vi+1} = ∅, so
that

|{i ∈ [n − 1] | vi nadT vi+1}| = 0 ≤ 0 = 2︸︷︷︸
=|Leaves(T)|

−2 = |Leaves (T)| − 2.

Hence, we have constructed a listing (v1, v2, . . . , vn) of V (T) such that v1 = w and
vn = v and

|{i ∈ [n − 1] | vi nadT vi+1}| ≤ |Leaves (T)| − 2.

This proves that such a listing exists. In other words, Theorem 0.28 holds. We thus
have proven Theorem 0.28 in the case when n ≤ 2.]

This completes the induction base.
Induction step: Let N > 2 be an integer. Assume (as the induction hypothesis)

that Theorem 0.28 holds in the case when n = N − 1. We must then prove that
Theorem 0.28 holds in the case when n = N.

We have assumed that Theorem 0.28 holds in the case when n = N − 1. In other
words, the following fact holds:

Fact 1: Let T be a tree such that |V (T)| = N − 1. Let v and w be two
distinct leaves of T. Then, there exists a listing (v1, v2, . . . , vN−1) of V (T)
such that v1 = w and vN−1 = v and

|{i ∈ [(N − 1)− 1] | vi nadT vi+1}| ≤ |Leaves (T)| − 2.

Now, let us prove that Theorem 0.28 holds in the case when n = N.
Let T be a tree such that |V (T)| = N. Let v and w be two distinct leaves of T.
We want to prove that there exists a listing (v1, v2, . . . , vN) of V (T) such that

v1 = w and vN = v and

|{i ∈ [N − 1] | vi nadT vi+1}| ≤ |Leaves (T)| − 2.

Such a listing will be called a helpful listing. Thus, we want to prove that there exists
a helpful listing.

We have |V (T)| = N > 2.

25Proof. Assume the contrary. Thus, there exists some i ∈ [n − 1] satisfying vi nadT vi+1. Consider
this i.

We have n = 2, thus n − 1 = 1, thus [n − 1] = [1] = {1}. Hence, i ∈ [n − 1] = {1}, so that
i = 1. Hence, vi = v1 = w. Moreover, from i = 1, we obtain i + 1 = 2 = n, so that vi+1 = vn = v.
Now, recall that vi nadT vi+1. In light of vi = w and vi+1 = v, this rewrites as w nadT v. In other
words, the vertex w is not adjacent to v in T. This contradicts the fact that w is adjacent to v
(since the vertices v and w are adjacent). This contradiction completes our proof.
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Recall that v is a leaf of T. Let T′ denote the multigraph obtained from T by
removing this leaf v and the unique edge that contains v. Let u be the unique
neighbor of v in T. Proposition 0.22 (a) shows that the multigraph T′ is a tree again.
Proposition 0.22 (b) shows that u /∈ Leaves (T), and thus u /∈ Leaves (T) \ {v}.
Notice that v ∈ Leaves (T) (since v is a leaf of T) and w ∈ Leaves (T) (since w is a
leaf of T). Thus, w ̸= u (because otherwise, we would have w = u /∈ Leaves (T),
which would contradict w ∈ Leaves (T)). In other words, u and w are distinct.
Also, w ̸= v (since v and w are distinct).

We know that u is a neighbor of v in T. Hence, there exists an edge of T having
endpoints u and v. Let us denote this edge by e.

We have N ≥ 3 (because N is an integer and satisfies N > 2). The multigraph T′

was obtained by removing the vertex v and one edge from T. Hence, the vertices of
T′ are exactly the vertices of T other than v. In other words, V (T′) = V (T) \ {v}.
Thus, ∣∣∣∣∣∣∣ V

(
T′)︸ ︷︷ ︸

=V(T)\{v}

∣∣∣∣∣∣∣ = |V (T) \ {v}| = |V (T)|︸ ︷︷ ︸
=N

−1 (since v ∈ V (T))

= N − 1 ≥ 2 (since N ≥ 3) .

We are in one of the following two cases:
Case 1: The vertex u is a leaf of T′.
Case 2: The vertex u is not a leaf of T′.
Let us treat these cases separately:

• Let us first consider Case 1. In this case, the vertex u is a leaf of T′. Hence,
Proposition 0.22 (c) shows that Leaves (T′) = (Leaves (T) \ {v})∪{u}. Hence,∣∣Leaves

(
T′)∣∣ = |(Leaves (T) \ {v}) ∪ {u}|

= |Leaves (T) \ {v}|︸ ︷︷ ︸
=|Leaves(T)|−1

(since v∈Leaves(T))

+1 (since u /∈ Leaves (T) \ {v})

= (|Leaves (T)| − 1) + 1 = |Leaves (T)| .

But w ∈ Leaves (T) \ {v} (since w ∈ Leaves (T) and w ̸= v) and thus w ∈
Leaves (T) \ {v} ⊆ (Leaves (T) \ {v}) ∪ {u} = Leaves (T′). Hence, w is a leaf
of T′. Hence, u and w are two distinct leaves of T′ (since u and w are leaves
of T′, and are distinct). Thus, Fact 1 (applied to T′ and u instead of T and v)
shows that there exists a listing (v1, v2, . . . , vN−1) of V (T′) such that v1 = w
and vN−1 = u and

|{i ∈ [(N − 1)− 1] | vi nadT′ vi+1}| ≤
∣∣Leaves

(
T′)∣∣− 2. (19)

Consider this listing.
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We know that (v1, v2, . . . , vN−1) is a listing of the set V (T′) = V (T) \ {v}.
Hence, Proposition 0.27 (applied to V = V (T) and n = N) shows that
(v1, v2, . . . , vN−1, v) is a listing of the set V (T).

Let us extend the (N − 1)-tuple (v1, v2, . . . , vN−1) to an N-tuple (v1, v2, . . . , vN)
by setting vN = v. Thus, (v1, v2, . . . , vN) = (v1, v2, . . . , vN−1, v) is a listing of
the set V (T) (as we have just seen). Furthermore, v1 = w and vN = v. Next,
we claim that

{i ∈ [N − 1] | vi nadT vi+1} ⊆ {i ∈ [(N − 1)− 1] | vi nadT′ vi+1} . (20)

[Proof of (20): Let j ∈ {i ∈ [N − 1] | vi nadT vi+1} be arbitrary. Thus, j is an
element of [N − 1] satisfying vj nadT vj+1. We have j ̸= N − 1 26. Combined
with j ∈ [N − 1], this yields j ∈ [N − 1] \ {N − 1} = [(N − 1)− 1]. Hence,
both vj and vj+1 are entries of the list (v1, v2, . . . , vN−1), and therefore are
elements of V (T′) (since this list (v1, v2, . . . , vN−1) is a listing of V (T′)). But
we have vj nadT vj+1. In other words, the vertex vj is not adjacent to vj+1 in
T. If the vertex vj was adjacent to vj+1 in T′, then it would also be adjacent
to vj+1 in T (since T′ is a sub-multigraph of T), which would contradict the
fact that the vertex vj is not adjacent to vj+1 in T. Hence, the vertex vj is not
adjacent to vj+1 in T′. In other words, we have vj nadT′ vj+1.

Now, we have shown that j is an element of [(N − 1)− 1], and that this ele-
ment j satisfies vj nadT′ vj+1. Hence, j ∈ {i ∈ [(N − 1)− 1] | vi nadT′ vi+1}.

Now, forget that we fixed j. We thus have proven that
j ∈ {i ∈ [(N − 1)− 1] | vi nadT′ vi+1} for each j ∈ {i ∈ [N − 1] | vi nadT vi+1}.
In other words,

{i ∈ [N − 1] | vi nadT vi+1} ⊆ {i ∈ [(N − 1)− 1] | vi nadT′ vi+1} .

This proves (20).]

From (20), we obtain

|{i ∈ [N − 1] | vi nadT vi+1}| ≤ |{i ∈ [(N − 1)− 1] | vi nadT′ vi+1}|
≤
∣∣Leaves

(
T′)∣∣︸ ︷︷ ︸

=|Leaves(T)|

−2 (by (19))

= |Leaves (T)| − 2.

Thus, we have shown that (v1, v2, . . . , vN) is a listing of V (T) such that v1 = w
and vN = v and

|{i ∈ [N − 1] | vi nadT vi+1}| ≤ |Leaves (T)| − 2.
26Proof. Assume the contrary. Thus, j = N − 1. Hence, vj = vN−1 = u. Also, from j = N − 1, we

obtain j + 1 = N, so that vj+1 = vN = v. Now, vj nadT vj+1 rewrites as u nadT v (since vj = u
and vj+1 = v). In other words, the vertex u is not adjacent to v in T. In other words, u is not
a neighbor of v in T. This contradicts the fact that u is a neighbor of v in T. This contradiction
proves that our assumption was wrong, qed.
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In other words, (v1, v2, . . . , vN) is a helpful listing. Hence, there exists a help-
ful listing in Case 1.

• Let us now consider Case 2. In this case, the vertex u is not a leaf of T′. Hence,
Proposition 0.22 (d) shows that Leaves (T′) = Leaves (T) \ {v}. Hence,∣∣Leaves

(
T′)∣∣ = |Leaves (T) \ {v}| = |Leaves (T)| − 1

(since v ∈ Leaves (T)).

But w ∈ Leaves (T) \ {v} (since w ∈ Leaves (T) and w ̸= v) and thus w ∈
Leaves (T) \ {v} = Leaves (T′). Hence, w is a leaf of T′.

The tree T′ has at least two vertices (since |V (T′)| ≥ 2). It is known that any
tree with at least two vertices must have at least two leaves. Since T′ is a tree
with at least two vertices, we thus conclude that T′ has at least two leaves.
Hence, T′ has at least one leaf distinct from w. Pick such a leaf, and denote it
by p. Hence, p and w are two distinct leaves of T′ (since p and w are leaves of
T′, and since p is distinct from w). Thus, Fact 1 (applied to T′ and p instead
of T and v) shows that there exists a listing (v1, v2, . . . , vN−1) of V (T′) such
that v1 = w and vN−1 = p and

|{i ∈ [(N − 1)− 1] | vi nadT′ vi+1}| ≤
∣∣Leaves

(
T′)∣∣− 2. (21)

Consider this listing.

We know that (v1, v2, . . . , vN−1) is a listing of the set V (T′) = V (T) \ {v}.
Hence, Proposition 0.27 (applied to V = V (T) and n = N) shows that
(v1, v2, . . . , vN−1, v) is a listing of the set V (T).

Let us extend the (N − 1)-tuple (v1, v2, . . . , vN−1) to an N-tuple (v1, v2, . . . , vN)
by setting vN = v. Thus, (v1, v2, . . . , vN) = (v1, v2, . . . , vN−1, v) is a listing of
the set V (T) (as we have just seen). Furthermore, v1 = w and vN = v. Next,
we claim that

{i ∈ [N − 1] | vi nadT vi+1} \ {N − 1} ⊆ {i ∈ [(N − 1)− 1] | vi nadT′ vi+1} .
(22)

[Proof of (22): Let j ∈ {i ∈ [N − 1] | vi nadT vi+1} \ {N − 1} be arbitrary.
Thus, j ∈ {i ∈ [N − 1] | vi nadT vi+1} and j /∈ {N − 1}. From
j ∈ {i ∈ [N − 1] | vi nadT vi+1}, we see that j is an element of [N − 1] satis-
fying vj nadT vj+1. From j /∈ {N − 1}, we obtain j ̸= N − 1. Combined with
j ∈ [N − 1], this yields j ∈ [N − 1] \ {N − 1} = [(N − 1)− 1]. Hence, both vj
and vj+1 are entries of the list (v1, v2, . . . , vN−1), and therefore are elements
of V (T′) (since this list (v1, v2, . . . , vN−1) is a listing of V (T′)). But we have
vj nadT vj+1. In other words, the vertex vj is not adjacent to vj+1 in T. If the
vertex vj was adjacent to vj+1 in T′, then it would also be adjacent to vj+1 in
T (since T′ is a sub-multigraph of T), which would contradict the fact that the
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vertex vj is not adjacent to vj+1 in T. Hence, the vertex vj is not adjacent to
vj+1 in T′. In other words, we have vj nadT′ vj+1.

Now, we have shown that j is an element of [(N − 1)− 1], and that this ele-
ment j satisfies vj nadT′ vj+1. Hence, j ∈ {i ∈ [(N − 1)− 1] | vi nadT′ vi+1}.

Now, forget that we fixed j. We thus have proven that
j ∈ {i ∈ [(N − 1)− 1] | vi nadT′ vi+1} for each j ∈ {i ∈ [N − 1] | vi nadT vi+1} \
{N − 1}. In other words,

{i ∈ [N − 1] | vi nadT vi+1} \ {N − 1} ⊆ {i ∈ [(N − 1)− 1] | vi nadT′ vi+1} .

This proves (22).]

Now,

|{i ∈ [N − 1] | vi nadT vi+1} \ {N − 1}|
≥ |{i ∈ [N − 1] | vi nadT vi+1}| − |{N − 1}|︸ ︷︷ ︸

=1

= |{i ∈ [N − 1] | vi nadT vi+1}| − 1.

Hence,

|{i ∈ [N − 1] | vi nadT vi+1}| − 1
≤ |{i ∈ [N − 1] | vi nadT vi+1} \ {N − 1}|
≤ |{i ∈ [(N − 1)− 1] | vi nadT′ vi+1}| (by (22))

≤
∣∣Leaves

(
T′)∣∣︸ ︷︷ ︸

=|Leaves(T)|−1

−2 (by (19))

= (|Leaves (T)| − 1)− 2 = |Leaves (T)| − 3.

Adding 1 to both sides of this inequality, we obtain

|{i ∈ [N − 1] | vi nadT vi+1}| ≤ |Leaves (T)| − 2.

Thus, we have shown that (v1, v2, . . . , vN) is a listing of V (T) such that v1 = w
and vN = v and

|{i ∈ [N − 1] | vi nadT vi+1}| ≤ |Leaves (T)| − 2.

In other words, (v1, v2, . . . , vN) is a helpful listing. Hence, there exists a help-
ful listing in Case 2.

Thus, in each of the two Cases 1 and 2, we have shown that there exists a helpful
listing. Hence, there is always a helpful listing (since the two cases cover all possi-
bilities). In other words, there always exists a listing (v1, v2, . . . , vN) of V (T) such
that v1 = w and vN = v and

|{i ∈ [N − 1] | vi nadT vi+1}| ≤ |Leaves (T)| − 2.

Hence, we have proven that Theorem 0.28 holds in the case when n = N. This
completes the induction step. Thus, Theorem 0.28 is proven.
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Solution to Exercise 4 (sketched). Let n = |V (T)|. The tree T has more than 1 vertex.
In other words, |V (T)| > 1. Hence, n = |V (T)| > 1. Thus, n ≥ 2 (since n is an
integer).

The tree T has at least two vertices (since |V (T)| = n ≥ 2). It is known that any
tree with at least two vertices must have at least two leaves. Since T is a tree with at
least two vertices, we thus conclude that T has at least two leaves. In other words,
there exist two distinct leaves of T. Pick two such leaves, and denote them by v and
w. Theorem 0.28 shows that there exists a listing (v1, v2, . . . , vn) of V (T) such that
v1 = w and vn = v and

|{i ∈ [n − 1] | vi nadT vi+1}| ≤ |Leaves (T)| − 2. (23)

Consider such a listing.
The n elements v1, v2, . . . , vn are distinct elements of V (T) (since (v1, v2, . . . , vn)

is a listing of V (T)). Hence, vn ̸= v1 (since n ≥ 2).
Define a subset S of [n − 1] by S = {i ∈ [n − 1] | vi nadT vi+1}. Thus,

|S| = |{i ∈ [n − 1] | vi nadT vi+1}| ≤

∣∣∣∣∣∣Leaves (T)︸ ︷︷ ︸
=L

∣∣∣∣∣∣− 2 (by (23))

= |L| − 2.

Hence,
|L| − 1 − |S|︸︷︷︸

≤|L|−2

≥ |L| − 1 − (|L| − 2) = 1.

Now, let G be the multigraph obtained from T by the following procedure:

• Step 1: For each i ∈ S, add an edge with endpoints vi and vi+1. (This is
possible, because vi and vi+1 are distinct vertices of T (since v1, v2, . . . , vn are
distinct).)

• Step 2: Add |L| − 1 − |S| many edges with endpoints vn and v1. (This is
possible, since vn ̸= v1, and because |L| − 1 − |S| ≥ 1 ≥ 0.)

Let us state some simple observations about this multigraph G:

Observation 1: The multigraph G is obtained from T by adding |L| − 1
new edges to T.

Proof of Observation 1: The multigraph G is obtained from T by the above proce-
dure, which has two steps. Both steps consist in adding edges to the multigraph.
In Step 1, exactly |S| many edges are added (because one edge is added for each
i ∈ S). In Step 2, exactly |L| − 1 − |S| further edges are added. Thus, altogether,
|S|+ (|L| − 1 − |S|) = |L| − 1 many edges are added. Hence, the multigraph G is
obtained from T by adding |L| − 1 new edges to T. This proves Observation 1.
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Observation 2: The list (v1, v2, . . . , vn) is a listing of V (G).

Proof of Observation 2: The multigraph G is obtained from T by adding some edges;
but no vertices are ever added. Hence, the vertices of G are precisely the vertices
of T. In other words, V (G) = V (T).

But recall that the list (v1, v2, . . . , vn) is a listing of V (T). Since V (G) = V (T),
this rewrites as follows: The list (v1, v2, . . . , vn) is a listing of V (G). This proves
Observation 2.

Now, let us set vn+1 = v1. Thus, n + 1 vertices v1, v2, . . . , vn+1 of G are defined.

Observation 3: Let j ∈ [n]. Then, there exists an edge of G whose end-
points are vj and vj+1.

Proof of Observation 3: We are in one of the following three cases:

• Case 1: We have j = n.

• Case 2: We have j ∈ S.

• Case 3: We have neither j = n nor j ∈ S.

We shall consider these cases separately:

• Let us first consider Case 1. In this case, we have j = n. Thus, vj = vn
and vj+1 = vn+1 = v1. Now, recall the procedure that we used to define the
multigraph G. This procedure consisted of two steps. In Step 2, we have
added |L| − 1 − |S| many edges with endpoints vn and v1. Since |L| − 1 −
|S| ≥ 1, this shows that we have added at least one edge with endpoints
vn and v1. Hence, the multigraph G has at least one edge whose endpoints
are vn and v1. Since vj = vn and vj+1 = v1, this rewrites as follows: The
multigraph G has at least one edge whose endpoints are vj and vj+1. In other
words, there exists an edge of G whose endpoints are vj and vj+1. Hence,
Observation 3 is proven in Case 1.

• Let us now consider Case 2. In this case, we have j ∈ S. Now, recall the
procedure that we used to define the multigraph G. This procedure consisted
of two steps. In Step 1, we have added an edge with endpoints vi and vi+1
for each i ∈ S. Thus, in particular, we have added an edge with endpoints vj
and vj+1 (since j ∈ S). Hence, the multigraph G has at least one edge whose
endpoints are vj and vj+1. In other words, there exists an edge of G whose
endpoints are vj and vj+1. Hence, Observation 3 is proven in Case 2.

• Let us now consider Case 3. In this case, we have neither j = n nor j ∈ S.
Since we have j ∈ [n] and j ̸= n (since we do not have j = n), we must have
j ∈ [n] \ {n} = [n − 1]. But the multigraph G was obtained from T by adding
edges. Thus, T is a sub-multigraph of G. Hence, each edge of T is an edge
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of G. Now, the vertices vj and vj+1 of T are adjacent27. In other words, there
exists an edge of T whose endpoints are vj and vj+1. Therefore, there exists
an edge of G whose endpoints are vj and vj+1 (since each edge of T is an edge
of G). Hence, Observation 3 is proven in Case 3.

We thus have proven Observation 3 in all three cases.

The list (v1, v2, . . . , vn) is a listing of V (G) (by Observation 2). Thus, this list
(v1, v2, . . . , vn) contains each element of V (G) exactly once. In other words, this list
(v1, v2, . . . , vn) contains each vertex of G exactly once. In other words, each vertex
of G appears exactly once among the vertices v1, v2, . . . , vn.

Now, we define n edges e1, e2, . . . , en of G as follows: For each j ∈ [n], we pick
some edge of G whose endpoints are vj and vj+1 (such an edge exists because of
Observation 3), and denote this edge by ej. Thus, (v1, e1, v2, e2, v3, . . . , vn, en, vn+1)
is a walk in G. This walk is a circuit (since vn+1 = v1) and therefore a cycle (since
the elements v1, v2, . . . , vn are distinct). The non-ultimate vertices of this cycle are
v1, v2, . . . , vn. Hence, each vertex of G appears exactly once among the non-ultimate
vertices of this cycle (since each vertex of G appears exactly once among the vertices
v1, v2, . . . , vn). In other words, this cycle is a Hamiltonian cycle of G. Thus, the
multigraph G has a Hamiltonian cycle.

The multigraph G is obtained by adding |L| − 1 new edges to T (by Observation
1), and has a Hamiltonian cycle. Thus, it is possible to add |L| − 1 new edges to T
in such a way that the resulting multigraph has a Hamiltonian cycle. This solves
the exercise.

0.6. Exercise 5: the maximum perimeter of a triangle on a
digraph

0.6.1. Distances in a digraph

If u and v are two vertices of a digraph D, then d (u, v) denotes the distance from u
to v. This is defined to be the minimum length of a path from u to v if such a path
exists; otherwise it is defined to be the symbol ∞. Notice that d (u, v) is not usually
the same as d (v, u) (unlike for simple graphs).

We observe the following simple facts:28

27Proof. Assume the contrary. Thus, the vertices vj and vj+1 of T are not adjacent. In other words,
vj nadT vj+1. Now, we know that j is an element of [n − 1] satisfying vj nadT vj+1. In other
words, j ∈ {i ∈ [n − 1] | vi nadT vi+1}. In light of S = {i ∈ [n − 1] | vi nadT vi+1}, this rewrites
as j ∈ S. This contradicts the fact that we don’t have j ∈ S. This contradiction shows that our
assumption was false.

28The following facts are analogues of the facts proven in Section 0.8.1 of the solution to midterm 1.
They are proven in the same way as the latter facts (of course, simple graphs must be replaced
by digraphs).

http://www.cip.ifi.lmu.de/~grinberg/t/17s/mt1s.pdf
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Lemma 0.29. Let u and v be two vertices of a strongly connected digraph D =
(V, A). Then, d (u, v) ≤ |V| − 1.

Lemma 0.29 shows that if u and v are two vertices of a strongly connected di-
graph D, then d (u, v) is an actual integer (as opposed to ∞).

Lemma 0.30. Let u and v be two vertices of a digraph D. Let k ∈ N. If there
exists a walk from u to v in D having length k, then d (u, v) ≤ k.

Lemma 0.31. Let D = (V, A) be a digraph.
(a) Each u ∈ V satisfies d (u, u) = 0.
(b) Each u ∈ V, v ∈ V and w ∈ V satisfy d (u, v) + d (v, w) ≥ d (u, w). (This

inequality has to be interpreted appropriately when one of the distances is in-
finite: For example, we understand ∞ to be greater than any integer, and we
understand ∞ + m to be ∞ whenever m ∈ Z.)

(c) If u ∈ V and v ∈ V satisfy d (u, v) = 0, then u = v.

0.6.2. The exercise

Exercise 5. Let a, b and c be three vertices of a strongly connected digraph D =
(V, A) such that |V| ≥ 4.

(a) Prove that d (b, c) + d (c, a) + d (a, b) ≤ 3 |V| − 4.
(b) For each n ≥ 5, construct an example in which |V| = n and d (b, c) +

d (c, a) + d (a, b) = 3 |V| − 4. (No proof required for the example.)

We shall solve Exercise 5 after proving some lemmas:

Lemma 0.32. Let a, b and c be three vertices of a digraph D = (V, A). Let(
y0, y1, . . . , yj

)
be a walk from a to c. Let (z0, z1, . . . , zk) be a walk from c to b. Set

Y =
{

y0, y1, . . . , yj−1
}

and Z = {z0, z1, . . . , zk−1}.
Assume that Y ∩ Z ̸= ∅. Then, d (a, b) < j + k.

Proof of Lemma 0.32. Recall that
(
y0, y1, . . . , yj

)
is a walk from a to c. Hence, y0 = a

and yj = c.
Also, (z0, z1, . . . , zk) is a walk from c to b. Thus, z0 = c and zk = b.
We have Y ∩ Z ̸= ∅. Hence, there exists some v ∈ Y ∩ Z. Consider this v.
We have v ∈ Y =

{
y0, y1, . . . , yj−1

}
. In other words, v = yg for some g ∈

{0, 1, . . . , j − 1}. Consider this g.
We have v ∈ Z = {z0, z1, . . . , zk−1}. In other words, v = zh for some h ∈

{0, 1, . . . , k − 1}. Consider this h.
From g ∈ {0, 1, . . . , j − 1}, we obtain g ≤ j − 1 < j.
Consider the subwalk29 (y0, y1, . . . , yg

)
of the walk

(
y0, y1, . . . , yj

)
. This subwalk(

y0, y1, . . . , yg
)

is a walk from a to v (since y0 = a and yg = v).

29Here, a subwalk of a walk (w0, w1, . . . , wm) means a list of the form
(
wI , wI+1, . . . , wJ

)
for two

elements I and J of {0, 1, . . . , m} satisfying I ≤ J. Such a list is always a walk.
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Consider the subwalk (zh, zh+1, . . . , zk) of the walk (z0, z1, . . . , zk). This subwalk
(zh, zh+1, . . . , zk) is a walk from v to b (since zh = v and zk = b).

Now, the ending point of the walk
(
y0, y1, . . . , yg

)
is the starting point of the walk

(zh, zh+1, . . . , zk) (since yg = v = zh). Hence, these two walks can be combined to
one walk(

y0, y1, . . . , yg−1, zh, zh+1, . . . , zk
)
=
(
y0, y1, . . . , yg, zh+1, zh+2, . . . , zk

)
.

This resulting walk is a walk from a to b (since y0 = a and zk = b), and has
length g + 1 + (k − h − 1). Hence, there exists a walk from a to b in D having
length g + 1 + (k − h − 1) (namely, the walk we have just constructed). Hence,
Lemma 0.30 (applied to a, b and g + 1 + (k − h − 1) instead of u, v and k) shows
that

d (a, b) ≤ g + 1 + (k − h − 1) = g︸︷︷︸
<j

+k − h︸︷︷︸
≥0

< j + k − 0 = j + k.

This proves Lemma 0.32.

Lemma 0.33. Let a, b and c be three vertices of a strongly connected digraph
D = (V, A).

Assume that we have

d (b, c) = d (b, a) + d (a, c) and
d (c, a) = d (c, b) + d (b, a) and
d (a, b) = d (a, c) + d (c, b) .

Then,
d (c, b) + d (a, c) + d (b, a) ≤ |V| .

Proof of Lemma 0.33. There exists a walk from c to b in D 30. Hence, there exists a
path from c to b in D. Hence, there exists a path from c to b in D having minimum
length. Fix such a path, and denote it by (x0, x1, . . . , xi). Define a subset X of V by
X = {x0, x1, . . . , xi−1}.

There exists a walk from a to c in D 31. Hence, there exists a path from a
to c in D. Hence, there exists a path from a to c in D having minimum length.
Fix such a path, and denote it by

(
y0, y1, . . . , yj

)
. Define a subset Y of V by Y ={

y0, y1, . . . , yj−1
}

.
There exists a walk from b to a in D 32. Hence, there exists a path from b

to a in D. Hence, there exists a path from b to a in D having minimum length.
Fix such a path, and denote it by (z0, z1, . . . , zk). Define a subset Z of V by Z =
{z0, z1, . . . , zk−1}.

30since D is strongly connected.
31since D is strongly connected.
32since D is strongly connected.
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There exists a path from c to b (as we know). Hence, d (c, b) is defined as the
minimum length of a path from c to b. Thus,

d (c, b) = (the minimum length of a path from c to b)
= (the length of the path {x0, x1, . . . , xi−1})

(since {x0, x1, . . . , xi−1} is a path from c to b having minimum length)
= i.

The same argument (applied to a, c, j and
(
y0, y1, . . . , yj

)
instead of c, b, i and

(x0, x1, . . . , xi)) shows that d (a, c) = j. The same argument (applied to b, a, k and
(z0, z1, . . . , zk) instead of a, c, j and

(
y0, y1, . . . , yj

)
) shows that d (b, a) = k.

We have |X| = i 33. Similarly, |Y| = j and |Z| = k.
Now, using Lemma 0.32, we can easily see that

Y ∩ Z = ∅ (24)

34. Similarly,
Z ∩ X = ∅ (25)

and
X ∩ Y = ∅. (26)

The equalities (24), (25) and (26) (combined) show that the sets X, Y and Z are
disjoint. Hence, the size of the union of these sets equals the sum of their sizes. In
other words, |X ∪ Y ∪ Z| = |X|+ |Y|+ |Z|. But X ∪ Y ∪ Z ⊆ V (since X, Y and Z
are subsets of V), and thus |X ∪ Y ∪ Z| ≤ |V|. Hence,

|V| ≥ |X ∪ Y ∪ Z| = |X|︸︷︷︸
=i=d(c,b)

+ |Y|︸︷︷︸
=j=d(a,c)

+ |Z|︸︷︷︸
=k=d(b,a)

= d (c, b) + d (a, c) + d (b, a) .

This proves Lemma 0.33.

Lemma 0.34. Let a, b and c be three vertices of a strongly connected digraph
D = (V, A).

Assume that d (a, b) = |V| − 1. Then, d (a, b) = d (a, c) + d (c, b).

33Proof. The list (x0, x1, . . . , xi) is a path. Hence, the vertices x0, x1, . . . , xi are the vertices of a
path, and therefore are distinct (since the vertices of any path are distinct). Thus, the i vertices
x0, x1, . . . , xi−1 are distinct as well. Hence, |{x0, x1, . . . , xi−1}| = i. Since {x0, x1, . . . , xi−1} = X,
this rewrites as |X| = i.

34Proof of (24). Assume the contrary. Thus, Y ∩ Z ̸= ∅. Also, the list
(
y0, y1, . . . , yj

)
is a walk

from a to c (since it is a path from a to c). Furthermore, the list (z0, z1, . . . , zk) is a walk from
b to a (since it is a path from b to a). Thus, Lemma 0.32 (applied to b, c, a, k, j, (z0, z1, . . . , zk),(
y0, y1, . . . , yj

)
, Z and Y instead of a, b, c, j, k,

(
y0, y1, . . . , yj

)
, (z0, z1, . . . , zk), Y and Z) shows that

d (b, c) < k︸︷︷︸
=d(b,a)

+ j︸︷︷︸
=d(a,c)

= d (b, a) + d (a, c). This contradicts d (b, c) = d (b, a) + d (a, c). This

contradiction shows that our assumption was wrong. This proves (24).
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Proof of Lemma 0.34. We have d (a, b) = |V| − 1 ̸= ∞. Hence, there exists a path
from a to b. Thus, d (a, b) is defined as the minimum length of a path from a to b.
Hence, there exists a path from a to b having length d (a, b). Fix such a path, and
denote it by (p0, p1, . . . , pk).

Thus, (p0, p1, . . . , pk) is a path of length d (a, b). Hence,

d (a, b) = (the length of the path (p0, p1, . . . , pk)) = k.

Hence, k = d (a, b) = |V| − 1, so that k + 1 = |V|.
But the k + 1 elements p0, p1, . . . , pk are the vertices of a path (namely, of the

path (p0, p1, . . . , pk)), and thus are distinct (since the vertices of a path are always
distinct). Hence, |{p0, p1, . . . , pk}| = k+ 1 = |V|. Clearly, {p0, p1, . . . , pk} is a subset
of the finite set V.

Now, recall the following simple fact: If S is a finite set, and if T is a subset
of S satisfying |T| = |S|, then T = S. Applying this fact to S = V and T =
{p0, p1, . . . , pk}, we obtain {p0, p1, . . . , pk} = V (since {p0, p1, . . . , pk} is a subset of
the finite set V satisfying |{p0, p1, . . . , pk}| = |V|). Hence, c ∈ V = {p0, p1, . . . , pk}.
In other words, c = pi for some i ∈ {0, 1, . . . , k}. Consider this i.

Clearly, the list (p0, p1, . . . , pk) is a walk (since it is a path). Consider the sub-
walk35 (p0, p1, . . . , pi) of the walk (p0, p1, . . . , pk). This subwalk (p0, p1, . . . , pi) is a
walk from a to c (since p0 = a and pi = c) and has length i. Thus, there exists a
walk from a to c having length i (namely, the subwalk we have just constructed).
Therefore, Lemma 0.30 (applied to a, c and i instead of u, v and k) shows that
d (a, c) ≤ i.

Consider the subwalk (pi, pi+1, . . . , pk) of the walk (p0, p1, . . . , pk). This subwalk
(pi, pi+1, . . . , pk) is a walk from c to b (since pi = c and pk = b) and has length k − i.
Thus, there exists a walk from c to b having length k − i (namely, the subwalk we
have just constructed). Therefore, Lemma 0.30 (applied to c, b and k − i instead of
u, v and k) shows that d (c, b) ≤ k − i.

Lemma 0.31 (b) (applied to a, c and b instead of u, v and w) shows that

d (a, c) + d (c, b) ≥ d (a, b) .

Combining this with the inequality

d (a, c)︸ ︷︷ ︸
≤i

+ d (c, b)︸ ︷︷ ︸
≤k−i

≤ i + (k − i) = k = d (a, b) ,

we obtain d (a, c) + d (c, b) = d (a, b). This proves Lemma 0.34.

Solution to Exercise 5 (sketched). (a) Assume the contrary. Thus, d (b, c) + d (c, a) +
d (a, b) > 3 |V| − 4. Since d (b, c) + d (c, a) + d (a, b) and 3 |V| − 4 are integers, this
shows that

d (b, c) + d (c, a) + d (a, b) ≥ (3 |V| − 4) + 1 = 3 |V| − 3. (27)

35Here, a subwalk of a walk (w0, w1, . . . , wm) means a list of the form
(
wI , wI+1, . . . , wJ

)
for two

elements I and J of {0, 1, . . . , m} satisfying I ≤ J. Such a list is always a walk.
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Lemma 0.29 (applied to u = b and v = c) yields d (b, c) ≤ |V| − 1. Lemma 0.29
(applied to u = c and v = a) yields d (c, a) ≤ |V| − 1. Lemma 0.29 (applied to u = a
and v = b) yields d (a, b) ≤ |V| − 1.

Now, subtracting d (c, a) + d (a, b) from both sides of the inequality (27), we ob-
tain

d (b, c) ≥ 3 |V| − 3 −

d (c, a)︸ ︷︷ ︸
≤|V|−1

+ d (a, b)︸ ︷︷ ︸
≤|V|−1

 ≥ 3 |V| − 3 − ((|V| − 1) + (|V| − 1))

= |V| − 1.

Combining this with d (b, c) ≤ |V| − 1, we obtain d (b, c) = |V| − 1. Similarly,
d (c, a) = |V| − 1 and d (a, b) = |V| − 1.

Now, Lemma 0.34 yields

d (a, b) = d (a, c) + d (c, b) . (28)

Furthermore, Lemma 0.34 (applied to b, c and a instead of a, b and c) yields

d (b, c) = d (b, a) + d (a, c) . (29)

Also, Lemma 0.34 (applied to c, a and b instead of a, b and c) yields

d (c, a) = d (c, b) + d (b, a) . (30)

Hence, Lemma 0.33 yields

d (c, b) + d (a, c) + d (b, a) ≤ |V| .

Now, adding together the three equalities (29), (30) and (28), we find

d (b, c) + d (c, a) + d (a, b)
= (d (b, a) + d (a, c)) + (d (c, b) + d (b, a)) + (d (a, c) + d (c, b))
= 2 (d (c, b) + d (a, c) + d (b, a))︸ ︷︷ ︸

≤|V|

≤ 2 |V| < 3 |V| − 3

(since (3 |V| − 3)− 2 |V| = |V|︸︷︷︸
≥4

−3 ≥ 4 − 3 = 1 > 0). This contradicts (27). This

contradiction proves that our assumption was false. Hence, Exercise 5 (a) is solved.
(b) One possible example is the following digraph:

c

}}

aoo

x1 // x2 // x3 // · · · // xk−1 // xk

bb

ssb

hh

where k = n − 3. In this digraph, we have d (b, c) = n − 1 and d (c, a) = n − 2 and
d (a, b) = n − 1.
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0.7. Exercise 6: cycles of length divisible by 3, and proper
3-colorings

Recall that a k-coloring of a simple graph G = (V, E) means a map f : V →
{1, 2, . . . , k}. Such a k-coloring f is said to be proper if no two adjacent vertices
u and v have the same color (i.e., satisfy f (u) = f (v)).

Exercise 6. We have learned that a simple graph G (or multigraph G) has a
proper 2-coloring if and only if all cycles of G have even length.

(a) Is it true that if all cycles of a simple graph G (or multigraph G) have length
divisible by 3, then G has a proper 3-coloring?

(b) Is it true that if a simple graph G has a proper 3-coloring, then all cycles of
G have length divisible by 3 ?

TODO: Solution. ((a) is true, but it is harder than I thought when posing this
problem. Probably a proof appears in [AGJJ09]. (b) is definitely false, as witnessed
by the 4-cycle C4.

Ah, there is actually a simple proof of (a)! The main step is showing that if G is
a simple graph whose cycles all have length divisible by 3, then at least one vertex
of G has degree < 3 (unless G has 0 vertices). This fact is an olympiad problem
and has been discussed in Art of Problem Solving topic #5744, where a nice proof
has been given by Pascual2005. Now, using this fact, we can fix a vertex v having
degree < 3, and (by induction over the number of vertices) assume that the graph
G with v removed already has a proper 3-coloring; we then extend this 3-coloring
by assigning an appropriate color to v.)

0.8. Exercise 7: Turán’s theorem via independent sets

In class, we have proven the following fact:

Theorem 0.35. Let G = (V, E) be a simple graph. Then, G has an independent

set of size ≥ n
1 + d

, where n = |V| and d =
1
n ∑

v∈V
deg v. (Notice that d is simply

the average degree of a vertex of G.)

On the other hand, recall the following fact (Theorem 2.5.15 in the lecture notes)
which was left unproven in class:

Theorem 0.36 (Turán’s theorem). Let r be a positive integer. Let G be a simple
graph. Let n = |V (G)| be the number of vertices of G. Assume that |E (G)| >
r − 1

r
· n2

2
. Then, there exist r + 1 distinct vertices of G that are mutually adjacent

(i.e., each two distinct ones among these r + 1 vertices are adjacent).

https://artofproblemsolving.com/community/c6h5744
http://www.cip.ifi.lmu.de/~grinberg/t/17s/nogra.pdf
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Exercise 7. Use Theorem 0.35 to prove Theorem 0.36.

In order to solve Exercise 7, let us first rewrite Theorem 0.35 in terms of the
number |E| of edges of G:

Corollary 0.37. Let G = (V, E) be a simple graph. Then, G has an independent

set of size ≥ n2

n + 2 |E| , where n = |V|.

Proof of Corollary 0.37. From G = (V, E), we obtain V (G) = V and E (G) = E.
We know (from Proposition 2.5.6 in the lecture notes) that ∑

v∈V(G)
deg v = 2 |E (G)|.

Now, set d =
1
n ∑

v∈V
deg v. Then,

d =
1
n ∑

v∈V
deg v =

1
n ∑

v∈V(G)

deg v︸ ︷︷ ︸
=2|E(G)|

(since V = V (G))

=
1
n
· 2

∣∣∣∣∣∣E (G)︸ ︷︷ ︸
=E

∣∣∣∣∣∣ = 1
n
· 2 |E| = 2 |E| /n.

Hence,

n
1 + d

=
n

1 + 2 |E| /n
=

n
(n + 2 |E|) /n

=
n2

n + 2 |E| .

Now, Theorem 0.35 shows that the graph G has an independent set of size ≥ n
1 + d

.

Since
n

1 + d
=

n2

n + 2 |E| , this rewrites as follows: The graph G has an independent

set of size ≥ n2

n + 2 |E| . This proves Corollary 0.37.

Now, we can prove Theorem 0.36 (thus solving Exercise 7):

Proof of Theorem 0.36. Let V = V (G).
Let G be the simple graph (V,P2 (V) \ E (G)). Note that this graph G is called

the complement graph of G.

http://www.cip.ifi.lmu.de/~grinberg/t/17s/nogra.pdf
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Note that n =

∣∣∣∣∣∣V (G)︸ ︷︷ ︸
=V

∣∣∣∣∣∣ = |V|. But E (G) ⊆ P2 (V). Thus,

|P2 (V) \ E (G)| = |P2 (V)|︸ ︷︷ ︸
=

(
|V|
2

)
=

(
n
2

)
(since |V|=n)

− |E (G)|︸ ︷︷ ︸
>

r − 1
r

·
n2

2

<

(
n
2

)
︸︷︷︸

=
n (n − 1)

2

−r − 1
r

· n2

2
=

n (n − 1)
2

− r − 1
r

· n2

2
=

n (n − r)
2r

.

Hence,

n + 2 |P2 (V) \ E (G)|︸ ︷︷ ︸
<

n (n − r)
2r

< n + 2 · n (n − r)
2r

= n2/r. (31)

Corollary 0.37 (applied to G and P2 (V) \E (G) instead of G and E) shows that G

has an independent set of size ≥ n2

n + 2 |P2 (V) \ E (G)| . Fix such an independent

set, and denote it by I.

The set I has size ≥ n2

n + 2 |P2 (V) \ E (G)| . In other words,

|I| ≥ n2

n + 2 |P2 (V) \ E (G)| >
n2

n2/r
(by (31))

= r.

Thus, |I| ≥ r + 1 (since both |I| and r are integers). Hence, there exist r + 1 distinct
elements of I. Fix such r + 1 distinct elements, and denote them by i1, i2, . . . , ir+1.

For any two distinct elements a and b of {1, 2, . . . , r + 1}, the vertices ia and ib of
G are adjacent36. In other words, the r + 1 vertices i1, i2, . . . , ir+1 of G are mutually

36Proof. Let a and b be two distinct elements of {1, 2, . . . , r + 1}. We must show that the vertices ia
and ib of G are adjacent.

Recall that i1, i2, . . . , ir+1 are r + 1 elements of I. Thus, ia ∈ I and ib ∈ I.
Recall that the elements i1, i2, . . . , ir+1 are distinct. Thus, ia ̸= ib (since a and b are distinct).

Hence, ia and ib are two distinct elements of I (since ia ∈ I and ib ∈ I).
The set I is an independent set of G. In other words, I is a subset of V having the property that

no two distinct elements of I are adjacent with respect to G (by the definition of an “independent
set”).

The elements ia and ib are two distinct elements of I. Hence, ia and ib are not adjacent with
respect to G (since no two distinct elements of I are adjacent with respect to G). In other words,
{ia, ib} /∈ E

(
G
)
.
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adjacent. Hence, there exist r + 1 distinct vertices of G that are mutually adjacent
(namely, the r + 1 distinct vertices i1, i2, . . . , ir+1). This proves Theorem 0.36.

On the other hand, ia and ib are two distinct elements of I. Hence, {ia, ib} is a 2-element subset
of I. Thus, {ia, ib} ∈ P2 (I) ⊆ P2 (V) (since I ⊆ V). Combining this with {ia, ib} /∈ E

(
G
)
, we

obtain {ia, ib} ∈ P2 (V) \ E
(
G
)
. But from G = (V,P2 (V) \ E (G)), we obtain E

(
G
)
= P2 (V) \

E (G). Hence, P2 (V) \ E
(
G
)
= P2 (V) \ (P2 (V) \ E (G)) = E (G) (since E (G) ⊆ P2 (V)). Thus,

{ia, ib} ∈ P2 (V) \ E
(
G
)
= E (G). In other words, the vertices ia and ib of G are adjacent. This

completes our proof.
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0.9. Exercise 8: bijective proofs for Vandermonde-like
identities?

Exercise 8. Extra credit:
In this exercise, “number” means (e.g.) a real number. (Feel free to restrict

yourself to positive integers if it helps you. The most general interpretation
would be “element of a commutative ring”, but you don’t need to work in this
generality.)

For any n numbers x1, x2, . . . , xn, we define v (x1, x2, . . . , xn) to be the number

∏
1≤i<j≤n

(
xj − xi

)
= det

((
xi−1

j

)
1≤i≤n, 1≤j≤n

)
.

Let x1, x2, . . . , xn be n numbers. Let t be a further number. Prove at least one
of the following facts combinatorially (i.e., without using any properties of the
determinant other than its definition as a sum over permutations):

(a) We have

n

∑
k=1

v (x1, x2, . . . , xk−1, xk + t, xk+1, xk+2, . . . , xn) = nv (x1, x2, . . . , xn) .

(b) For each m ∈ {0, 1, . . . , n − 1}, we have

n

∑
k=1

xm
k v (x1, x2, . . . , xk−1, t, xk+1, xk+2, . . . , xn) = tmv (x1, x2, . . . , xn) .

(c) We have

n

∑
k=1

xkv (x1, x2, . . . , xk−1, xk + t, xk+1, xk+2, . . . , xn)

=

((
n
2

)
t +

n

∑
k=1

xk

)
v (x1, x2, . . . , xn) .

Hints to Exercise 8. I hope that at least some parts of Exercise 8 have combinatorial
proofs similar to Gessel’s proof of the Vandermonde determinant (as in lecture 8).
Noone solved any part of Exercise 8, though. Feel free to continue trying (the
extra credit is still available, and, more importantly, a chance to get your new proof
published).

Exercise 8 (a) can be easily proven if you know some abstract algebra (specifically,
properties of polynomial rings in several variables). Let me sketch the argument.
(This is modelled on a well-known proof of the Vandermonde determinant identity

∏
1≤i<j≤n

(
xj − xi

)
= det

((
xi−1

j

)
1≤i≤n, 1≤j≤n

)
itself, which can be found, e.g., in

http://www.cip.ifi.lmu.de/~grinberg/t/17s/5707lec8.pdf
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[Garret10, §17].)
First of all, let x1, x2, . . . , xn and t no longer be numbers; but instead, let them be

indeterminates. Thus, we are working in the polynomial ring Z [x1, x2, . . . , xn, t].

Let P be the polynomial
n
∑

k=1
v (x1, x2, . . . , xk−1, xk + t, xk+1, xk+2, . . . , xn)−nv (x1, x2, . . . , xn).

This polynomial is homogeneous of degree n (n − 1) /2 (check this!). But the poly-
nomial P becomes 0 whenever two of the variables x1, x2, . . . , xn are equal37. Hence,
this polynomial P is divisible by xi − xj for every pair (i, j) satisfying 1 ≤ i < j ≤ n
(by some basic abstract algebra). Consequently, the polynomial P is divisible by the
product ∏

1≤i<j≤n

(
xi − xj

) 38. But this product is homogeneous of the same degree

n (n − 1) /2 as the polynomial P itself (since it has n (n − 1) /2 factors, each of them

linear). Hence, the quotient
P

∏
1≤i<j≤n

(
xi − xj

) must be a homogeneous polynomial

of degree 0, i.e., a constant. We thus merely need to show that this constant is 0.
The easiest way to do so is to evaluate this polynomial at t = 0. The result is clearly
0. Since it is a constant, it thus is 0 whatever t is. And so Exercise 8 (a) is proven
(up to all the steps I have omitted).

Exercise 8 (b) can be solved in a similar manner – actually, even easier. Let Q be

the polynomial
n
∑

k=1
xm

k v (x1, x2, . . . , xk−1, t, xk+1, xk+2, . . . , xn)− tmv (x1, x2, . . . , xn). Then,

it is easy to see that the polynomial Q vanishes whenever t = xi for any i. Thus,
this polynomial Q is divisible by all of the n linear polynomials t − xi with i ∈
{1, 2, . . . , n}. Hence, this polynomial Q must be divisible by their product

n
∏
i=1

(t − xi).

However, this product has degree n when considered as a polynomial in t (treating
x1, x2, . . . , xn as constants), whereas the polynomial Q has degree ≤ m ≤ n − 1
(again, when considered as a polynomial in t). The only way a polynomial can
be divisible by a polynomial of larger degree is when the former polynomial is 0.
Hence, Q must be 0.

Actually, Exercise 8 (b) is a famous formula in disguise – namely, the Lagrange in-
terpolation formula. Namely, if we divide both sides of the claim by v (x1, x2, . . . , xn)

37Check this – it’s not immediately obvious. The main observation to make is that the polynomial
v (x1, x2, . . . , xn) gets multiplied by −1 whenever two of the variables x1, x2, . . . , xn get inter-
changed, and becomes 0 whenever two of the variables x1, x2, . . . , xn are equal.

38This step is nontrivial. We are claiming that if a polynomial is divisible by xi − xj for every
pair (i, j) satisfying 1 ≤ i < j ≤ n, then this polynomial must also be divisible by the product

∏
1≤i<j≤n

(
xi − xj

)
. One way to prove this is by using the fact (often proven in the first semester of

abstract algebra) that the polynomial ring Z [x1, x2, . . . , xn, t] is a unique factorization domain.
There exist other arguments, but these too use at least the language of rings.
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(assuming that x1, x2, . . . , xn are distinct39), then we obtain

n

∑
k=1

xm
k

∏
i ̸=k

(t − xi)

∏
i ̸=k

(xk − xi)
= tm.

More generally, if f is any polynomial (in one variable) of degree ≤ n − 1, then

n

∑
k=1

f (xk)

∏
i ̸=k

(t − xi)

∏
i ̸=k

(xk − xi)
= f (t) .

This is often stated as follows: If x1, x2, . . . , xn are n distinct real numbers, and
y1, y2, . . . , yn are n further real numbers, then there is a unique polynomial g = g (t)
of degree ≤ n − 1 satisfying g (xi) = yi for all i, and this polynomial g is

n

∑
k=1

yk

∏
i ̸=k

(t − xi)

∏
i ̸=k

(xk − xi)
.

See, for example, http://www.math.uconn.edu/~leykekhman/courses/MATH3795/
Lectures/Lecture_14_poly_interp.pdf .

Exercise 8 (c) is a harder variant of Exercise 8 (a); this time the quotient of the
polynomials has degree 1, which makes it harder to identify it (evaluating it at
t = 0 is not enough). It is a step in one of the classical proofs of the hook-length
formula in algebraic combinatorics – see [Fulton97, §4.3, Exercise 10] or [Uecker16,
Lemma 4.13] or [GlaNg04, Lemma 2]40.

Meanwhile, elementary (but still not combinatorial) proofs also exist:

• Exercise 8 (a) is solved in [Grinbe16, Proposition 7.192].

• Exercise 8 (b) is solved in [Grinbe16, Proposition 7.194].

• Exercise 8 (c) is solved in [Grinbe16, Exercise 6.34].
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