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Exercise 1. Let T be a tree. Let (vg,v1,...,ux) be a longest path of T'. Prove
that each center of T" belongs to this path.

Proof: The path (vg, vy, ..., vx) is a longest path in T and has length k. Thus,
vy and v have eccentricity k. Similarly, v; and vg_; have eccentricity k — 1.
The eccentricity continues to decrease as we move along the path (vg,v1, ..., vg)
towards its middle, and by symmetry we can see that it attains its minimum
value at the center(s) (plural if the path is of odd length) of the path. We must
show that there is no vertex in T" with eccentricity less than that of the centers
of the path, i.e. that the centers of the path are the centers of T. To show this,
note that any vertex not on the path (vg,v1,...,vx) is a greater distance from
the ends of the path than the nearest vertex to it that lies on the path, since
the path between any two vertices of T' is unique. Therefore, for any vertex
u ¢ {vg,v1,..., v} there exists v; € {vg,v1,...,vx} such that eccentricity(u) >
eccentricity(v;). Hence, the vertices of T with minimum eccentricity, which are
the centers of T', lie on the path (vg,v1,...,vg). B

Exercise 2. (a) Consider the cycle graph C), for some n > 2. Its vertices are
1,2,...,n, and its edges are 12,23, ..., (n — 1)n, nl. Find the number of spanning
trees of C),.

There are n spanning trees of C,,.

Proof: Observe that a tree is formed by removing any edge from the cycle
graph C), and there are n edges that can be removed giving n trees. Each of
these trees is a spanning tree, since removing a single edge from a cycle preserves
connectedness. Now, there are no additional spanning trees of C), since removing
any edge from a tree makes it disconnected. Note that all spanning trees of C,,
are isomorphic and that in the case n = 2 the two spanning trees differ only in
the identities of their edge. W

(b) Consider the directed graph C,, for some n > 2. It is a digraph with vertices



1,2,...,n and arcs 12,23, ..., (n — 1)n,nl. Find the number of spanning trees of
', with root 1.

There is a unique spanning tree of C,, with root 1.

Proof: As above, spanning trees of C, are constructed by removing a single
edge of C,. If such a spanning tree is to have root 1, the edge 12 must be
removed, so there is only one way to construct such a tree. l

(c) Fix m > 1. Let G be the simple graph with 3m + 2 vertices
a, ba L1, L2y o s Ty Y1, Y25 -5 Ymy 215 225 o5 Zm
and the following 3m + 3 edges:

ari,ayi,az,
Tilig 1, Yillitl, ZiZitl for all i € {1,2,...,m — 1},

I’m,b, ymb7 Zmb

Compute the number of spanning trees of G.

To begin, notice that G has three cycles, so we construct spanning trees of G
by removing edges so as to disrupt all of these cycles while maintaining the
connectedness of G. Also note that every pair of cycles shares one of the paths
from a to b. Thus, removing a single edge from two of the three paths from
a to b gives us a spanning tree, since removing two edges from the same path
from a to b gives a disconnected graph and removing only one edge leaves a
cycle intact. Therefore, the number of spanning trees of G can be calculated
by finding the number of ways to choose the two paths from which we remove
an edge and multiplying by the number of pairs of edges (one in each path) we
can remove. Clearly, there are 3 ways to choose two paths given a set of three.
Now, each path has m + 1 edges, so there are (m + 1)? pairs of edges we can
remove to obtain a spanning tree for any pair of paths. Hence, G has 3(m +1)?
spanning trees.

Exercise 4. Let T be a tree with more than one vertex. Let L be the set of
leaves of T. Prove that it is possible to add |L| — 1 new edges to T in such a
way that the resulting multigraph has a Hamiltonian cycle.

Proof: To begin, let |L| = k and select two leaves, ¢1,¢; € L. There exists a
unique path Py = (€, v1,,V2,,...; Uny, £1) from £, to ¢1, and it includes none of
the other leaves of 7. We must add at most k — 1 edges to T' to construct a
cycle that includes all vertices of T. We do this in the following way:



1. Select a leaf /5, add the edge ¢1¢5 to T

2. Find a path (possibly of length 0) from ¢5 to a vertex that has a neighbor
that lies on P; but shares no vertices with the latter. Denote this path
Py = ({3, v1,,V2,, ..., Un, ). (We use the subscript on the subscript to note
the leaf at which this path originated and to distinguish the length of this
path from future paths of this form, since they will not in general be of
the same length.)

3. Select another leaf /3. Add the edge vy,¢3 to T'.

4. Find a path (possibly of length 0) from ¢35 to a vertex that has a neigh-
bor on P; or P, but shares no vertices with these paths. Call it P; =
(63,’1}13,1}23, ...,UTLB).

5. Select a leaf ¢4. Add the edge v, f4 to T

6. Continue this process until the edge v, _,f; has been added to T

We have thus added k — 1 edges, and we have the Hamiltonian cycle given by
(Py, Pa, ..., Py, £)), since we have added precisely the edges that connect the ends
of these paths. W

Example: T and its edges are in black, edges we construct are in red.

Exercise 5. Let a, b, and ¢ be three vertices of a strongly connected digraph
G = (V, A) such that |V] > 4.

(a) Prove that d(a,b) + d(b,c) + d(c,a) < 3|V| — 4.



Proof: Choose a shortest path from a to b, a shortest path from b to ¢, and a
shortest path from c to a.

Observe that the greatest possible distance between any two vertices is |[V| — 1,
in which case the path between these two vertices passes through every vertex.
Then, we easily conclude that d(a,b) +d(b, c) +d(c,a) < 3|V|—3. Now suppose
the case of equality. Then, the vertex c lies on the shortest path from a to b,
the vertex a lies on the shortest path from b to ¢, and the vertex b lies on the
shortest path from ¢ to a. Now, suppose there exists a vertex v between ¢ and
b on the path from a to b. Then the path from b to ¢ must visit v. However,
if the path from b to c¢ visits v before visiting a, then we have a path from
¢ to a which does not visit b, a contradiction. Also, if the path from b to ¢
visits v after visiting a, then we have a shorter path from a to b, since there
is an edge that allows us to skip ¢, another contradiction. Therefore, c¢ is the
penultimate vertex on the path from a to b. Hence, cb € A. By symmetry, the
same argument shows that ac € A. Hence, (¢, b,a) is a path in G; therefore,
d(¢,a) < 2. By symmetry, we similarly get d (b,¢) < 2 and d (a,b) < 2. Adding
up, we find d(a,b) + d(b,c) + d(c,a) < 2+2+2 = 6 < 3|V| — 3 (since
|[V| > 4 > 3), which contradicts d(a,b) + d(b, ¢) + d(c,a) = 3|V| — 3. Therefore,
d(a,b) + d(b,c) + d(c,a) < 3|V| — 3 or equivalently, d(a,b) + d(b,c) + d(c,a) <
3IV|—4. 1

(b) For each n > 5, construct an example in which |V| = n and d(a, b)+d(b, c)+
d(c,a) = 3|V| —4.

n/— 5 ‘K
Y/

Exercise 6. We have learned that a simple graph G (or multigraph G) has a
proper 2-coloring if and only if all cycles of G have even length.

(a) Is it true that if all cycles of a simple graph G (or multigraph G) have length
divisible by 3, then G has a proper 3-coloring?

If all cycles of G have length divisible by 3, then G has a proper 3-coloring.



[No solution to this part submitted.)

(b) Is it true that if a simple graph G has a proper 3-coloring, then all cycles
of G have length divisible by 37

It is not true that if G has a proper 3-coloring, then all cycles of G have length
divisible by 3.

Counterexample: Consider the cycle graph Cy. It has a proper 3-coloring
since it has a proper 2-coloring (which is trivially a proper 3-coloring). However,
it has a cycle of length 4, not divisible by 3. Any graph whose cycles are all of
even length and has a cycle of length = 2 or = 4 (mod 6) is a counterexample.
Another counterexample is the Petersen graph, which has cycles of length 5 and
a proper 3-coloring.



