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0.1. Notations and conventions

See the lecture notes and also the handwritten notes for relevant material. If you
reference results from the lecture notes, please mention the date and time of the
version of the notes you are using (as the numbering changes during updates).

Let me recall a few notations:

• A simple graph is a pair (V, E), where V is a finite set and where E is a subset
of P2 (V). The set V is called the vertex set of the simple graph (and the
elements of V are called the vertices of the simple graph), whereas the set E
is called the edge set of the simple graph (and the elements of E are called the
edges of the simple graph).

• A multigraph is a triple (V, E, φ), where V and E are finite sets and where φ
is a map from E to P2 (V). The set V is called the vertex set of the multigraph
(and the elements of V are called the vertices of the multigraph); the set E is
called the edge set of the multigraph (and the elements of E are called the edges
of the multigraph); the map φ is called the endpoint map of the multigraph. If
e is an edge of the multigraph, then the two elements of φ (e) are called the
endpoints of e.

• A digraph is a pair (V, A), where V is a finite set and where A is a subset of
V × V. The set V is called the vertex set of the digraph (and the elements of
V are called the vertices of the digraph); the set A is called the arc set of the
digraph (and the elements of A are called the arcs of the digraph). If (v, w) is
an arc of the digraph, then v is called the source of this arc, and w is called the
target of this arc. If the source of an arc equals its target, then this arc is said
to be a loop.

http://www.cip.ifi.lmu.de/~grinberg/t/17s/nogra.pdf
http://www.cip.ifi.lmu.de/~grinberg/t/17s/
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• A multidigraph is a triple (V, A, φ), where V and A are finite sets and where φ
is a map from A to V×V. The set V is called the vertex set of the multidigraph
(and the elements of V are called the vertices of the multidigraph); the set A is
called the arc set of the multidigraph (and the elements of A are called the arcs
of the multidigraph). If a is an arc of the multidigraph, and if (v, w) = φ (a),
then v is called the source of this arc, and w is called the target of this arc.

• If u and v are two vertices of a simple graph G, then we use the shorthand
notation uv for the set {u, v} (even if this set is not an arc of G, and even if it
is not a two-element set). If u and v are two vertices of a digraph G, then we
use the shorthand notation uv for the pair (u, v). We hope the two notations
will not be confused.

• A walk in a simple graph G (or in a digraph G) is defined to be a list of the
form (v0, v1, . . . , vk), where v0, v1, . . . , vk are vertices of G, and where vivi+1 is
an edge of G (or an arc of G, respectively) for each i ∈ {0, 1, . . . , k− 1}. Here,
the meaning of vivi+1 depends on whether G is a simple graph or a digraph
(namely, it means a set in the former case, and a pair in the latter).
A walk in a multigraph G is defined to be a list of the form (v0, e1, v1, e2, v2, . . . , ek, vk),
where v0, v1, . . . , vk are vertices of G, and where ei is an edge of G having end-
points vi−1 and vi for each i ∈ {1, 2, . . . , k}.
A walk in a multidigraph G is defined to be a list of the form (v0, a1, v1, a2, v2, . . . , ak, vk),
where v0, v1, . . . , vk are vertices of G, and where ai is an arc of G having source
vi−1 and target vi for each i ∈ {1, 2, . . . , k}.
In each of these cases, the vertices of the walk are defined to be v0, v1, . . . , vk.
Moreover, v0 is called the starting point of the walk, and vk is called the ending
point of the walk. The edges of the walk are defined to be v0v1, v1v2, . . . , vk−1vk
(if G is a simple graph) or e1, e2, . . . , ek (if G is a multigraph). The arcs of the
walk are defined to be v0v1, v1v2, . . . , vk−1vk (if G is a digraph) or a1, a2, . . . , ak
(if G is a multidigraph).

• A path in a simple graph G (or in a digraph G, or in a multigraph G, or in
a multidigraph G) means a walk in G such that the vertices of the walk are
distinct.

• A circuit in a simple graph G (or in a digraph G, or in a multigraph G, or in
a multidigraph G) means a walk in G such that the starting point of the walk
equals the ending point of the walk.
If v0, v1, . . . , vk are the vertices of a circuit c, then v0, v1, . . . , vk−1 are called the
non-ultimate vertices of c.

• A cycle in a simple graph G means a circuit (v0, v1, . . . , vk) in G such that the
vertices v0, v1, . . . , vk−1 are distinct and such that k ≥ 3.
A cycle in a digraph G means a circuit (v0, v1, . . . , vk) in G such that the ver-
tices v0, v1, . . . , vk−1 are distinct and such that k ≥ 1. (In particular, each loop
(v, v) gives rise to a cycle.)
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A cycle in a multigraph G means a circuit (v0, e1, v1, e2, v2, . . . , ek, vk) such that
the vertices v0, v1, . . . , vk−1 are distinct, the edges e1, e2, . . . , ek are also distinct,
and such that k ≥ 2.
A cycle in a multidigraph G means a circuit (v0, a1, v1, a2, v2, . . . , ak, vk) in G
such that the vertices v0, v1, . . . , vk−1 are distinct and such that k ≥ 1.

• A simple graph G (or multigraph G, or digraph G, or multidigraph G) is said
to be strongly connected if its vertex set is nonempty1 and it has the property
that for any two vertices u and v of G, there exists at least one walk from u to
v in G. (Note that if there exists a walk from u to v in G, then there also exists
a path from u to v in G.)

When G is a simple graph or a multigraph, we usually say “G is connected”
instead of “G is strongly connected”.

• A Hamiltonian path in a simple graph G (or multigraph G, or digraph G, or
multidigraph G) means a path p in G such that each vertex of G appears
exactly once among the vertices of p.

• A Hamiltonian cycle in a simple graph G (or multigraph G, or digraph G, or
multidigraph G) means a cycle c of G such that each vertex of G appears
exactly once among the non-ultimate vertices of c.

• A walk w in a simple graph G (or multigraph G) is said to be Eulerian if each
edge of G appears exactly once among the edges of w.
A walk w in a digraph G (or multidigraph G) is said to be Eulerian if each arc
of G appears exactly once among the arcs of w.
Notice that this automatically defines the notion of an Eulerian circuit (namely,
an Eulerian circuit is just a circuit that is Eulerian).

0.2. Exercise 1: Hamiltonian paths in Cartesian product graphs

Exercise 1. Let G and H be two simple graphs. The Cartesian product of G and H
is a new simple graph, denoted G× H, which is defined as follows:

• The vertex set V (G× H) of G× H is the Cartesian product V (G)×V (H).

• A vertex (g, h) of G× H is adjacent to a vertex (g′, h′) of G× H if and only
if we have

– either g = g′ and hh′ ∈ E (H),

– or h = h′ and gg′ ∈ E (G).

(In particular, exactly one of the two equalities g = g′ and h = h′ has to
hold when (g, h) is adjacent to (g′, h′).)

1Do not forget this requirement!



Math 5707 Spring 2017 (Darij Grinberg): homework set 2 page 4

(a) Recall the n-dimensional cube graph Qn defined for each n ∈ N. (Its
vertices are n-tuples (a1, a2, . . . , an) ∈ {0, 1}n, and two such vertices are adjacent
if and only if they differ in exactly one entry.) Prove that Qn ∼= Qn−1 × Q1
for each positive integer n. (Thus, Qn can be obtained from Q1 by repeatedly
forming Cartesian products; i.e., it is a “Cartesian power” of Q1.)

(b) Assume that each of the graphs G and H has a Hamiltonian path. Prove
that G× H has a Hamiltonian path.

(c) Assume that both numbers |V (G)| and |V (H)| are > 1, and that at least
one of them is even. Assume again that each of the graphs G and H has a
Hamiltonian path. Prove that G× H has a Hamiltonian cycle.

Solution sketch to Exercise 1. (a) It suffices to check that the map

{0, 1}n → {0, 1}n−1 × {0, 1} , (a1, a2, . . . , an) 7→ ((a1, a2, . . . , an−1) , an)

is a graph isomorphism from Qn to Qn−1×Q1. The proof of this is straightforward;
the main step is to check that two n-tuples (a1, a2, . . . , an) and (b1, b2, . . . , bn) in
{0, 1}n differ in exactly one entry (i.e., are adjacent as vertices of Qn) if and only if

• either we have (a1, a2, . . . , an−1) = (b1, b2, . . . , bn−1) and an 6= bn,

• or the (n− 1)-tuples (a1, a2, . . . , an−1) and (b1, b2, . . . , bn−1) differ in exactly
one entry (i.e., are adjacent as vertices of Qn−1) and we have an = bn.

This is obvious.
(b) By assumption, there exists a Hamiltonian path (g1, g2, . . . , gn) of G, and there

exists a Hamiltonian path (h1, h2, . . . , hm) of H. Use these two paths to construct
the Hamiltonian path

((g1, h1) , (g1, h2) , . . . , (g1, hm) ,
(g2, hm) , (g2, hm−1) , . . . , (g2, h1) ,
(g3, h1) , (g3, h2) , . . . , (g3, hm) ,
(g4, hm) , (g4, hm−1) , . . . , (g4, h1) ,
· · · ) (1)

in G × H. (This Hamiltonian path first traverses all vertices of the form (g1, hi)
in the order of increasing i, then traverses all vertices of the form (g2, hi) in the
order of decreasing i, then traverses all vertices of the form (g3, hi) in the order of
increasing i, and so on, always alternating between increasing and decreasing i. It
ends at the vertex (gn, hm) if n is odd, and at the vertex (gn, h1) if n is even. Here is
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how it looks like:

(g1, h1) // (g1, h2) // · · · // (g1, hm)

��

(g2, h1)

��

(g2, h2)oo · · ·oo (g2, hm)oo

(g3, h1) // (g3, h2) // · · · // (g3, hm)

��

(g4, h1)

��

(g4, h2)oo · · ·oo (g4, hm)oo

...

where the arrows merely signify the order in which the vertices are traversed by
the path (the edges are still undirected).)

(c) At least one of the integers |V (G)| and |V (H)| is even. Since G× H ∼= H×G
(in fact, there is a graph isomorphism G×H → H×G sending each vertex (v, w) of
G× H to (w, v)), we can WLOG assume that |V (G)| is even (because otherwise we
can simply switch G with H). Assume this, and recall furthermore that |V (H)| > 1.

By assumption, there exists a Hamiltonian path (g1, g2, . . . , gn) of G, and there
exists a Hamiltonian path (h0, h1, . . . , hm) of H. (Note that I am indexing the vertices
of the former path from 1, but indexing the vertices of the latter path from 0.) Thus,
n = |V (G)| is even. Also, n = |V (G)| > 1. Also, m + 1 = |V (H)| > 1, so that
m > 0.

Now, consider the path (1). It is not a Hamiltonian path, since it misses the
vertices of the form (gi, h0). But it is a path from (g1, h1) to (gn, h1) (since n is
even) that uses each vertex not of this form exactly once; thus, we can extend it to
a Hamiltonian cycle of G× H by appending the following vertices at its end:

(gn, h0) , (gn−1, h0) , . . . , (g1, h0) , (g1, h1) .

(In other words, we close the path by going back to its starting point along the
missing vertices (gi, h0).) Hence, we have found a Hamiltonian cycle of G× H.
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(Here is how this Hamiltonian cycle looks like:

(g1, h0) // (g1, h1) // (g1, h2) // · · · // (g1, hm)

��

(g2, h0)

OO

(g2, h1)

��

(g2, h2)oo · · ·oo (g2, hm)oo

(g3, h0)

OO

(g3, h1) // (g3, h2) // · · · // (g3, hm)

��

(g4, h0)

OO

(g4, h1)

��

(g4, h2)oo · · ·oo (g4, hm)oo

...

OO

...

��

(gn−1, h0)

OO

(gn−1, h1) // (gn−1, h2) // · · · // (gn−1, hm)

��

(gn, h0)

OO

(gn, h1)oo (gn, h2)oo · · ·oo (gn, hm)oo

where the arrows merely signify the order in which the vertices are traversed by
the cycle (the edges are still undirected).)

0.3. Exercise 2: Eulerian circuits in K3, K5 and K7

Exercise 2. Let n be a positive integer. Recall that Kn denotes the complete graph
on n vertices. This is the graph with vertex set V = {1, 2, . . . , n} and edge set
P2 (V) (so each two distinct vertices are connected).

Find Eulerian circuits for the graphs K3, K5, and K7.

Solution sketch to Exercise 2. An Eulerian circuit of K3 is (1, 2, 3, 1).
An Eulerian circuit of K5 is (1, 2, 3, 4, 5, 1, 3, 5, 2, 4, 1).
An Eulerian circuit of K7 is (1, 2, 3, 4, 5, 6, 7, 1, 3, 5, 7, 2, 4, 6, 1, 4, 7, 3, 6, 2, 5, 1).
[Remark: Of course, other choices are possible. For each odd positive integer n,

the complete graph Kn has an Eulerian circuit (because it is connected, and each of
its vertices has even degree n− 1), and so it has at least one Eulerian circuit; but in
truth, there are many. (How many? See OEIS entry A007082. There doesn’t seem
to be an explicit formula.)

When n is an odd prime2, there is actually a simple way to construct an Eulerian
circuit in Kn: For each k ∈ {1, 2, . . . , (n− 1) /2}, let ck be the cycle (a0, a1, . . . , an),

2Everyone gets confused by the notion of an “odd prime” at least once in their life. But it means
exactly what it says: a prime that is odd. In other words, a prime that is distinct from 2.

http://oeis.org/A007082
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where ai denotes the unique element of (1, 2, . . . , n) that is congruent to ki + 1
modulo n. Then, the cycles c1, c2, . . . , c(n−1)/2 can be combined to a single Eulerian
circuit. Finding Eulerian circuits on Kn for non-prime n is harder, but of course the
algorithm done in class still works.]

0.4. Exercise 3: de Bruijn sequences exist
Exercise 3. Let n be a positive integer, and K be a nonempty finite set. Let
k = |K|. A de Bruijn sequence of order n on K means a list (c0, c1, . . . , ckn−1) of kn

elements of K such that

(1) for each n-tuple (a1, a2, . . . , an) ∈ Kn of elements of K, there exists a unique
r ∈ {0, 1, . . . , kn − 1} such that (a1, a2, . . . , an) = (cr, cr+1, . . . , cr+n−1).

Here, the indices are understood to be cyclic modulo kn; that is, cq (for q ≥ kn)
is defined to be cq%kn , where q%kn denotes the remainder of q modulo kn.

(Note that the condition (1) can be restated as follows: If we write the elements
c0, c1, . . . , ckn−1 on a circular necklace (in this order), so that the last element ckn−1
is followed by the first one, then each n-tuple of elements of K appears as a string
of n consecutive elements on the necklace, and the position at which it appears
on the necklace is unique.)

For example, (c0, c1, c2, c3, c4, c5, c6, c7, c8) = (1, 1, 2, 2, 3, 3, 1, 3, 2) is a de Bruijn
sequence of order 2 on the set {1, 2, 3}, because for each 2-tuple (a1, a2) ∈
{1, 2, 3}2, there exists a unique r ∈ {0, 1, . . . , 8} such that (a1, a2) = (cr, cr+1).
Namely:

(1, 1) = (c0, c1) ; (1, 2) = (c1, c2) ; (1, 3) = (c6, c7) ;
(2, 1) = (c8, c9) ; (2, 2) = (c2, c3) ; (2, 3) = (c3, c4) ;
(3, 1) = (c5, c6) ; (3, 2) = (c7, c8) ; (3, 3) = (c4, c5) .

Prove that there exists a de Bruijn sequence of order n on K (no matter what n
and K are).

Hint: Let D be the digraph with vertex set Kn−1 and an arc from
(a1, a2, . . . , an−1) to (a2, a3, . . . , an) for each (a1, a2, . . . , an) ∈ Kn (and no other
arcs). Prove that D has an Eulerian circuit.

Solution sketch to Exercise 3. The hint suggests defining a digraph. I shall use a mul-
tidigraph instead, as this is slightly simpler and cleaner.

Recall that a multidigraph means a triple (V, A, φ), where V and A are two finite
sets and where φ is a map from A to V × V. We define a multidigraph D to be(
Kn−1, Kn, f

)
, where the map f : Kn → Kn−1 × Kn−1 is given by the formula

f (a1, a2, . . . , an) = ((a1, a2, . . . , an−1) , (a2, a3, . . . , an)) .

(As usual, we write f (a1, a2, . . . , an) for f ((a1, a2, . . . , an)), since the extra paren-
theses do not add any clarity.) Thus, in the multidigraph D, there is an arc from
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(a1, a2, . . . , an−1) to (a2, a3, . . . , an) for each (a1, a2, . . . , an) ∈ Kn. (Note that if n = 1,
then there is only one vertex, namely the empty 0-tuple (), but there are |K| many
arcs from it to itself. This is why we are using a multidigraph instead of a digraph.
Of course, you are free to throw the n = 1 case aside, seeing how easy it is to
handle separately.)

Recall that the indegree of a vertex v of a multidigraph (V, A, φ) is defined to be
the number of all arcs a ∈ A whose target is v (that is, which satisfy φ (a) = (x, v)
for some x ∈ V). This indegree is denoted by deg− v. Also, the outdegree of a vertex
v of a multidigraph (V, A, φ) is defined to be the number of all arcs a ∈ A whose
source is v (that is, which satisfy φ (a) = (v, x) for some x ∈ V). This outdegree is
denoted by deg+ v.

Recall that a multidigraph (V, A, φ) is said to be strongly connected if V 6= ∅
and if, for any u ∈ V and v ∈ V, there is at least one walk from u to v in the
multidigraph. The multidigraph D is strongly connected3. Moreover, each vertex
v ∈ Kn−1 satisfies deg− v = deg+ v (where both indegree and outdegree are taken
respective to the multidigraph D) 4.

Recall that a multidigraph has an Eulerian circuit if and only if it is strongly
connected and each vertex v satisfies deg− v = deg+ v. Hence, the multidigraph
D has an Eulerian circuit (since it is strongly connected and each vertex v satisfies
deg− v = deg+ v). Consider such an Eulerian circuit c. It contains each arc of D
exactly once, and thus has kn arcs (since the number of arcs of D is |Kn| = |K|n =
kn). Let p0, p1, . . . , pkn−1 be these arcs (listed in the order in which they appear on
the Eulerian circuit). We extend the indexing of these arcs modulo kn; in other
words, we set pi = pi%kn for each i ∈ Z. (This, of course, does not conflict with
the already introduced notations p0, p1, . . . , pkn−1, since each i ∈ {0, 1, . . . , kn − 1}
satisfies i%kn = i.)

Let me now explain what I intend to do before I go into the technical details. We
want to construct a de Bruijn sequence (c0, c1, . . . , ckn−1). I claim that the sequence

3Proof. Let u ∈ Kn−1 and v ∈ Kn−1. We must prove that there is at least one walk from u to v in D.
Write the (n− 1)-tuples u and v as u = (u1, u2, . . . , un−1) and v = (v1, v2, . . . , vn−1), respectively.
Then, the walk

((u1, u2, u3, u4, . . . , un−1) , (u1, u2, u3, u4, . . . , un−1, v1) ,
(u2, u3, u4, . . . , un−1, v1) , (u2, u3, u4, . . . , un−1, v1, v2) ,

(u3, u4, . . . , un−1, v1, v2) , (u3, u4, . . . , un−1, v1, v2, v3) ,
· · · ,

(un−1, v1, v2, . . . , vn−2) , (un−1, v1, v2, . . . , vn−2, vn−1) ,
(v1, v2, . . . , vn−2, vn−1))

is a walk from u to v in D. Hence, such a walk exists.
4Proof. Let v ∈ Kn−1. Write the (n− 1)-tuple v in the form v = (v1, v2, . . . , vn−1). Now, deg− v

is the number of arcs of D with target v. But these arcs are exactly the n-tuples of the form
(k, v1, v2, . . . , vn−1) ∈ Kn with k ∈ K (by the definition of the multidigraph D). Hence, there are
exactly |K| of them. Therefore, deg− v = |K| (since deg− v is the number of these arcs). Similarly,
deg+ v = |K|. Thus, deg− v = |K| = deg+ v.
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of the first entries of the n-tuples p0, p1, . . . , pkn−1 is such a de Bruijn sequence.
Once this is proven, the exercise will clearly be solved.

For each n-tuple h and each j ∈ {1, 2, . . . , n}, we will denote the j-th entry of h by
h [j]. So each n-tuple h has the form h = (h [1] , h [2] , . . . , h [n]). Now, I claim that

pi [j + 1] = pi+1 [j] for each i ∈ Z and j ∈ {1, 2, . . . , n− 1} (2)

5. Hence,

pi [j + g] = pi+g [j] for each i ∈ Z and g ∈N and j ∈ {1, 2, . . . , n− g} (3)

6. From this, we can easily obtain

(pi [1] , pi+1 [1] , . . . , pi+n−1 [1]) = pi for each i ∈ Z (4)

7.
Now, recall that p0, p1, . . . , pkn−1 are the arcs of an Eulerian circuit of D. Hence,

each arc of D appears exactly once in the list (p0, p1, . . . , pkn−1). In other words,
for each arc a of D, there exists a unique r ∈ {0, 1, . . . , kn − 1} such that a = pi.
Since the arcs of D are the n-tuples in Kn, we can rewrite this as follows: For
each n-tuple a ∈ Kn, there exists a unique r ∈ {0, 1, . . . , kn − 1} such that a = pr.
Since each r ∈ Z satisfies (pr [1] , pr+1 [1] , . . . , pr+n−1 [1]) = pr (by (4), applied to
i = r), this further rewrites as follows: For each n-tuple a ∈ Kn, there exists a
unique r ∈ {0, 1, . . . , kn − 1} such that a = (pr [1] , pr+1 [1] , . . . , pr+n−1 [1]). Renam-
ing a as (a1, a2, . . . , an) in this result, we obtain the following: For each n-tuple
(a1, a2, . . . , an) ∈ Kn of elements of K, there exists a unique r ∈ {0, 1, . . . , kn − 1}
such that (a1, a2, . . . , an) = (pr [1] , pr+1 [1] , . . . , pr+n−1 [1]). In other words, the list
(p0 [1] , p1 [1] , . . . , pkn−1 [1]) is a de Bruijn sequence of order n on K (because the in-
dices are cyclic modulo kn, so the result in the previous sentence is precisely what
is required in the definition of a de Bruijn sequence). Therefore, there exists a de
Bruijn sequence of order n on K.

[Remark: The underlying philosophy of this solution was to reduce the question
of the existence of a de Bruijn sequence to the existence of an Eulerian circuit in
a multidigraph. At a first glance, this appears unexpected, since it seems more
natural to model a de Bruijn sequence by a Hamiltonian cycle (in a different mul-
tidigraph) instead. However, there are few good criteria for the existence of a

5Proof of (2). Let i ∈ Z. The arc pi+1 immediately follows the arc pi on the Eulerian cir-
cuit c. Hence, the target of the arc pi is the source of the arc pi+1. But by the definition
of the multidigraph D, the former target is (pi [2] , pi [3] , . . . , pi [n]), whereas the latter source
is (pi+1 [1] , pi+1 [2] , . . . , pi+1 [n− 1]). Hence, we have shown that (pi [2] , pi [3] , . . . , pi [n]) =
(pi+1 [1] , pi+1 [2] , . . . , pi+1 [n− 1]). In other words, pi [j + 1] = pi+1 [j] for each j ∈
{1, 2, . . . , n− 1}. This proves (2).

6Indeed, (3) can easily be proven by induction on g, using (2) in the induction step.
7Proof. Let i ∈ Z. Then, (3) (applied to j = 1) shows that pi [1 + g] = pi+g [1] for each

g ∈ {0, 1, . . . , n− 1}. In other words, (pi [1] , pi [2] , . . . , pi [n]) = (pi [1] , pi+1 [1] , . . . , pi+n−1 [1]).
Therefore, (pi [1] , pi+1 [1] , . . . , pi+n−1 [1]) = (pi [1] , pi [2] , . . . , pi [n]) = pi.
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Hamiltonian cycle, whereas the existence of an Eulerian circuit is easy to check.
This is why modelling de Bruijn sequences by Eulerian circuits proves to be the
more useful approach.

This exercise is merely the starting point of a theory. For example, it is general-
ized by the following theorem:

Theorem 0.1. Let d and m be two positive integers such that d | m and d >
1. Then, there exists a permutation (x1, x2, . . . , xm) of the list (0, 1, . . . , m− 1)
with the following property: For each i ∈ {1, 2, . . . , m}, we have xi+1 ≡ dxi + ri
mod m for some ri ∈ {0, 1, . . . , d− 1}. (Here, xm+1 should be understood as x1.)

Why does Theorem 0.1 generalize Exercise 3? Well, if m = dn is a power of
d, then we can identify the integers 0, 1, . . . , d − 1 with n-tuples of elements of
{0, 1, . . . , d− 1} (by representing them in base d, including just enough leading
zeroes to ensure that they all have n digits). Thus, Theorem 0.1 turns into Exercise 3
in this case. With some work, the solution of Exercise 3 can be extended to a proof
of Theorem 0.1. (Some work is required to prove that the digraph is still strongly
connected.) Note that IMO Shortlist 2002 problem C6 is equivalent to the d = 2
particular case of Theorem 0.1.

For more variations on the notion of a de Bruijn sequence, see [ChDiGr92]. There
are several questions left open in that paper, some of which are apparently still
unsolved.

On the other hand, we can also ask ourselves: How many de Bruijn sequences
of order n exist for a given n and K ? Interestingly, the answer is very explicit: The
number of all de Bruijn sequences of order n is

k!kn−1
, where k = |K| .

8 This is proven in the case of K = {0, 1} in [Stanle13, Corollary 10.11]. The general
case can be proven along the same lines.]

0.5. Exercise 4: Indegrees and outdegrees in digraphs

Recall that the indegree of a vertex v of a digraph D = (V, A) is defined to be the
number of all arcs a ∈ A whose target is v. This indegree is denoted by deg− (v)
or by deg−D (v) (whenever the graph D is not clear from the context).

Likewise, the outdegree of a vertex v of a digraph D = (V, A) is defined to be the
number of all arcs a ∈ A whose source is v. This outdegree is denoted by deg+ (v)
or by deg+

D (v) (whenever the graph D is not clear from the context).

Exercise 4. Let D be a digraph. Show that ∑
v∈V(D)

deg− (v) = ∑
v∈V(D)

deg+ (v).

8Some authors treat two de Bruijn sequences as equal if one of them is obtained from the other by
cyclic rotation. With that convention, the number has to be divided by kn.

https://anhngq.files.wordpress.com/2010/07/imo-2002-shortlist.pdf
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Solution to Exercise 4. Let us actually prove a somewhat more general fact:

Fact 1. Let (V, A, φ) be a multidigraph. Then, ∑
v∈V

deg− v = ∑
v∈V

deg+ v.

Fact 1 generalizes Exercise 4, because each digraph D = (V, A) gives rise to
a multidigraph (V, A, idA), and the indegrees and the outdegrees of the vertices
of the former digraph are exactly the same as in the latter multidigraph. Hence,
proving Fact 1 will suffice.

Proof of Fact 1. For each arc a ∈ A, let s (a) denote the source of a, and let t (a)
denote the target of a. (Thus, each a ∈ A satisfies φ (a) = (s (a) , t (a)).)

Now, let us count the number of arcs a ∈ A of our multidigraph in two different
ways:

• Each arc a ∈ A has a unique source s (a). Thus, we can obtain the number |A|
of all arcs a ∈ A by computing, for each v ∈ V, the number of all arcs a ∈ A
satisfying s (a) = v, and then adding up these numbers over all v ∈ V. Thus,
we obtain

|A| = ∑
v∈V

(the number of all a ∈ A satisfying s (a) = v)︸ ︷︷ ︸
=deg+ v

(by the definition of the outdegree deg+ v of v)

= ∑
v∈V

deg+ v. (5)

• Each arc a ∈ A has a unique target t (a). Thus, we can obtain the number |A|
of all arcs a ∈ A by computing, for each v ∈ V, the number of all arcs a ∈ A
satisfying t (a) = v, and then adding up these numbers over all v ∈ V. Thus,
we obtain

|A| = ∑
v∈V

(the number of all a ∈ A satisfying t (a) = v)︸ ︷︷ ︸
=deg− v

(by the definition of the indegree deg− v of v)

= ∑
v∈V

deg− v. (6)

Comparing (6) with (5), we obtain ∑
v∈V

deg− v = ∑
v∈V

deg+ v. This proves Fact

1.

0.6. Exercise 5: Counting 3-cycles in tournaments

The next few exercises are about tournaments. A tournament is a loopless9 digraph
D = (V, A) with the following property: For any two distinct vertices u ∈ V and
v ∈ V, precisely one of the two pairs (u, v) and (v, u) belongs to A. (In other

9A digraph (V, A) is said to be loopless if it has no loops. (A loop means an arc of the form (v, v)
for some v ∈ V.)
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words, any two distinct vertices are connected by an arc in one direction, but not
in both.)

A 3-cycle10 in a tournament D = (V, A) means a triple (u, v, w) of vertices in V
such that all three pairs (u, v), (v, w) and (w, u) belong to A.

Exercise 5. Let D = (V, A) be a tournament. Set n = |V| and m =

∑
v∈V

(
deg− (v)

2

)
.

(a) Show that m = ∑
v∈V

(
deg+ (v)

2

)
.

(b) Show that the number of 3-cycles in D is 3
((

n
3

)
−m

)
.

Solution sketch to Exercise 5. Let us introduce some convenient notations for this ex-
ercise:

• A 3-set shall mean a 3-element subset of V. Clearly, the number of all 3-sets

is
(

n
3

)
(since |V| = n).

• A 3-set {u, v, w} is said to be cyclic if its elements in some order form a 3-
cycle (i.e., if one of the triples (u, v, w), (u, w, v), (v, u, w), (v, w, u), (w, u, v)
and (w, v, u) is a 3-cycle).

• A 3-set {u, v, w} is said to be acyclic if it is not cyclic.

• We say that a 3-set S is sourced at a vertex u ∈ V if this vertex u belongs to S
and if the arcs uv and uw are in A, where v and w are the two vertices of S
distinct from u.

• We say that a 3-set S is targeted at a vertex u ∈ V if this vertex u belongs to S
and if the arcs vu and wu are in A, where v and w are the two vertices of S
distinct from u.

(a) Let us count the number of all acyclic 3-sets in two different ways.
First, we make a few observations:

Observation 1: Let u, v and w be three distinct vertices in V such that the
arcs uv and uw are in A. Then, {u, v, w} is an acyclic 3-set sourced at u.

Proof of Observation 1. Trivial.

10Note that our notions of 3-cycles and of cycles are somewhat different in nature: A 3-cycle is a
triple of distinct vertices, whereas a cycle of length k is a (k + 1)-tuple of vertices with its first
and its last entry being the same vertex. Thus, a 3-cycle (u, v, w) is not in itself a cycle, but rather
corresponds to the cycle (u, v, w, u). But, of course, the 3-cycles are in bijection with the cycles
of length 3; thus, the difference between these two notions is merely notational.
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Observation 2: Let u ∈ V be a vertex. Then, the number of all acyclic

3-sets sourced at u is
(

deg+ u
2

)
.

Proof of Observation 2. First of all, we introduce one more notion: An out-neighbor of
u shall mean a vertex x ∈ V such that the arc ux is in A. Clearly, the out-neighbors
of u are in bijection with the arcs of D whose source is u 11. Hence, the number
of the former out-neighbors equals the number of the latter arcs. Since the number
of the latter arcs is deg+ u (indeed, this is how deg+ u was defined), we can thus
conclude that the number of the former out-neighbors is deg+ u. In other words,
the number of all out-neighbors of u is deg+ u.

Observation 2 now easily follows: A 3-set is an acyclic 3-set sourced at u if and
only if it consists of u and two distinct out-neighbors of u. Hence, choosing an
acyclic 3-set sourced at u is tantamount to choosing two distinct out-neighbors of

u (without specifying the order12). But the latter can be done in exactly
(

deg+ u
2

)
ways (since the number of all out-neighbors of u is deg+ u). Hence, the number of

all acyclic 3-sets sourced at u is
(

deg+ u
2

)
. 13 This proves Observation 2.

11Proof. The two maps

(the set of all out-neighbors of u)→ (the set of all arcs of D whose source is u) ,
x 7→ ux

and

(the set of all arcs of D whose source is u)→ (the set of all out-neighbors of u) ,
a 7→ (the target of a)

are mutually inverse (this can be checked in a straightforward manner). Note that we are here
relying on the fact that D is a digraph, not a multidigraph!

12See the next footnote for a more rigorous way to write up this argument.
13Here is a more rigorous way to present this argument:

Let U be the set of all out-neighbors of u. Let G be the set of all acyclic 3-sets sourced at u.
Then, the maps

G → P2 (U) , S 7→ S \ {u}

and

P2 (U)→ G, T 7→ T ∪ {u}

are well-defined (this is easy to check: e.g., you have to apply Observation 1, and you have
to argue that if S is a 3-set sourced at u, then the two elements of S \ {u} are two distinct
out-neighbors of u) and mutually inverse (this is essentially obvious). Hence, they provide

bijections between G and P2 (U). Thus, |G| = |P2 (U)| =
(
|U|
2

)
(since every finite set Q and

each k ∈ N satisfy |Pk (Q)| =
(
|Q|
k

)
). But U is the set of all out-neighbors of u, and thus has
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Observation 3: Let S be an acyclic 3-set. Then, there is a unique vertex
u ∈ V such that S is sourced at u.

Proof of Observation 3. This can be straightforwardly verified: Write S in the form
{a, b, c}. We want to know which of the six pairs ab, ba, bc, cb, ca and ac belong to
A (i.e., are arcs of D). We know that exactly one of the two arcs ab and ba belongs
to A (since D is a tournament); exactly one of the two arcs bc and cb belongs to A
(since D is a tournament); exactly one of the two arcs ca and ac belongs to A (since
D is a tournament). Hence, a total of 2 · 2 · 2 = 8 cases are possible regarding the
question which of the six pairs ab, ba, bc, cb, ca and ac belong to A (for example,
one case is that ab, cb and ca belong to A, but ba, bc and ac do not). Two of these
cases are impossible due to the requirement that S be acyclic14. In the remaining
six cases, it is easy to check that Observation 3 holds. (For example, if ab, cb and
ca belong to A, then there is a unique vertex u ∈ V such that S is sourced at u;
namely, this u is c. It is unique because clearly, if S is sourced at u, then u has to be
an element of S, and the only element of S that works is c.) Thus, Observation 3 is
proven.

Now, Observation 3 yields

(the number of all acyclic 3-sets)

= ∑
u∈V

(the number of all acyclic 3-sets sourced at u)︸ ︷︷ ︸
=

(
deg+ u

2

)
(by Observation 2)

= ∑
u∈V

(
deg+ u

2

)

= ∑
v∈V

(
deg+ v

2

)
(7)

(here, we renamed the summation index u as v).
On the other hand, we have the following observations, which mimic the Obser-

vations 1, 2 and 3 above (but with sources replaced by targets, and arcs changing
directions), and whose proofs are analogous to those of the latter:

Observation 4: Let u, v and w be three distinct vertices in V such that the
arcs vu and wu are in A. Then, {u, v, w} is an acyclic 3-set targeted at u.

size |U| = deg+ u (since the number of all out-neighbors of u is deg+ u). Hence, |G| =
(
|U|
2

)
rewrites as |G| =

(
deg+ u

2

)
. Since G is the set of all acyclic 3-sets sourced at u, this means

precisely that the number of all acyclic 3-sets sourced at u is
(

deg+ u
2

)
.

14Indeed, the two impossible cases are “ab, bc and ca belong to A, but ba, cb and ac do not” (because
(a, b, c) would be a 3-cycle in this case) and “ba, cb and ac belong to A, but ab, bc and ca do not”
(because (a, c, b) would be a 3-cycle in this case).
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Observation 5: Let u ∈ V be a vertex. Then, the number of all acyclic

3-sets targeted at u is
(

deg− u
2

)
.

Observation 6: Let S be an acyclic 3-set. Then, there is a unique vertex
u ∈ V such that S is targeted at u.

As I said, the proofs of Observations 4, 5 and 6 are analogous to the proofs of
Observations 1, 2 and 3, and so are omitted. Now, similarly to how we proved (7)
using Observations 1, 2 and 3, we can now prove the equality

(the number of all acyclic 3-sets) = ∑
v∈V

(
deg− v

2

)
(8)

using Observations 4, 5 and 6. Comparing this equality with (7), we find

∑
v∈V

(
deg+ v

2

)
= ∑

v∈V

(
deg− v

2

)
= m. This solves part (a) of the exercise.

(b) Let us make one more observation:

Observation 7: Let S be a cyclic 3-set. Then, there exist exactly three
3-cycles (u, v, w) satisfying {u, v, w} = S.

Proof of Observation 7. We know that S is a cyclic 3-set. In other words, S is a 3-
element subset of V whose elements in some order form a 3-cycle (because this is
how a “cyclic 3-set” was defined). In other words, S = {a, b, c} for some 3-cycle
(a, b, c). Consider this (a, b, c). Hence, ab, bc and ca are arcs of D; therefore, ba, cb
and ac are not arcs of D (since D is a tournament).

There are exactly six triples (u, v, w) ∈ V3 satisfying {u, v, w} = S (namely, the
triples (a, b, c), (a, c, b), (b, a, c), (b, c, a), (c, a, b) and (c, b, a)). Among these six
triples, exactly three are 3-cycles (in fact, all of the three triples (a, b, c), (b, c, a) and
(c, a, b) are 3-cycles, whereas none of the three triples (a, c, b), (b, a, c) and (c, b, a) is
a 3-cycle). Hence, there exist exactly three 3-cycles (u, v, w) satisfying {u, v, w} = S.
This proves Observation 7.

Now, it is obvious that for each 3-cycle (u, v, w), the set {u, v, w} is a cyclic 3-set.
Hence, we can count the number of all 3-cycles as follows:

(the number of all 3-cycles)

= ∑
S is a cyclic 3-set

(the number of all 3-cycles (u, v, w) satisfying {u, v, w} = S)︸ ︷︷ ︸
=3

(by Observation 7)

= ∑
S is a cyclic 3-set

3

= 3 (the number of all cyclic 3-sets) . (9)
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But recall that the number of all 3-sets is
(

n
3

)
. Each of these 3-sets is either cyclic

or acyclic (but not both). Hence,

(the number of all cyclic 3-sets) =
(

n
3

)
− (the number of all acyclic 3-sets)︸ ︷︷ ︸

= ∑
v∈V

(
deg− v

2

)
(by (8))

=

(
n
3

)
− ∑

v∈V

(
deg− v

2

)
︸ ︷︷ ︸

=m

=

(
n
3

)
−m.

Hence, (9) rewrites as follows:

(the number of all 3-cycles) = 3
((

n
3

)
−m

)
.

This solves part (b) of the exercise.
[Remark: There is a simpler argument for (a); let me briefly outline it:

∑
v∈V

(
deg− v

2

)
− ∑

v∈V

(
deg+ v

2

)
= ∑

v∈V

((
deg− v

2

)
−
(

deg+ v
2

))
︸ ︷︷ ︸

=
1
2
(deg− v−deg+ v)(deg− v+deg+ v+1)

= ∑
v∈V

1
2
(
deg− v− deg+ v

) (
deg− v + deg+ v + 1

)︸ ︷︷ ︸
=n

(why?)

=
n
2 ∑

v∈V

(
deg− v− deg+ v

)
︸ ︷︷ ︸
= ∑

v∈V
deg− v− ∑

v∈V
deg+ v=0

(by Exercise 4)

= 0.

However, this is of little help in proving part (b).]

0.7. Some lemmas

Before the next exercise, we prove a few simple facts that will eventually prove
useful:

Lemma 0.2. Let D = (V, A, φ) be a multidigraph such that each vertex v ∈ V
satisfies deg− v = deg+ v. Assume that the set A is nonempty (i.e., the multidi-
graph D has at least one arc). Then, D has at least one cycle. (This cycle may be
a one-vertex cycle, i.e., it may be of the form (v, v) for a vertex v ∈ V, provided
that there is an arc from v to v.)



Math 5707 Spring 2017 (Darij Grinberg): homework set 2 page 17

Proof of Lemma 0.2. We know that the set A is nonempty. In other words, the mul-
tidigraph D has at least one arc. Thus, there exists at least one path of length ≥ 1
in D (namely, the path consisting of this arc).

The set of paths of D is finite15 and nonempty16. Hence, there exists a longest
path in D (that is, a path in D having the maximum length). Fix such a path,
and denote it by (v0, a1, v1, a2, v2, . . . , ak, vk). (As usual, this means that the vertices
on this path are v0, v1, . . . , vk, and the arcs along this path are a1, a2, . . . , ak.) The
vertices v0, v1, . . . , vk are distinct (since (v0, a1, v1, a2, v2, . . . , ak, vk) is a path).

We have k ≥ 1 17. Thus, the arc ak is well-defined. This arc ak has target
vk. Thus, at least one arc has target vk. Hence, deg− (vk) > 0. But recall that
each vertex v ∈ V satisfies deg− v = deg+ v. Applying this to v = vk, we obtain
deg− (vk) = deg+ (vk). Hence, deg+ (vk) = deg− (vk) > 0. Hence, there exists
some arc with source vk. Fix such an arc, and denote it by ak+1 (this is allowed,
since so far we have only defined ai for i ∈ {1, 2, . . . , k}). Let vk+1 be the target of
this arc (this is allowed, since so far we have only defined vi for i ∈ {0, 1, . . . , k}).

Now, (v0, a1, v1, a2, v2, . . . , ak, vk, ak+1, vk+1) is clearly a walk in D. If this walk was
a path, then it would be a longer path than (v0, a1, v1, a2, v2, . . . , ak, vk), which is ab-
surd (since (v0, a1, v1, a2, v2, . . . , ak, vk) was chosen to be a longest path in D). Hence,
it is not a path. Therefore, the vertices v0, v1, . . . , vk, vk+1 are not distinct (because
if they were distinct, then the walk (v0, a1, v1, a2, v2, . . . , ak, vk, ak+1, vk+1) would be
a path). In other words, two of these vertices are equal. In other words, there exist
two elements i and j of {0, 1, . . . , k + 1} such that i < j and vi = vj. Consider these
i and j. Recall that the vertices v0, v1, . . . , vk are distinct. Hence, j must be k + 1
(since otherwise, vi = vj would contradict the distinctness of v0, v1, . . . , vk). Thus,
vj = vk+1. Therefore, vi = vj = vk+1. Hence, (vi, ai+1, vi+1, ai+2, vi+2, . . . , ak+1, vk+1)
is a circuit in D. This circuit is furthermore a cycle (since the vertices vi, vi+1, . . . , vk
are distinct (because v0, v1, . . . , vk are distinct), and since i < j = k + 1). Hence,
there exists a cycle in D. This proves Lemma 0.2.

Corollary 0.3. Let D = (V, A) be a digraph such that each vertex v ∈ V satisfies
deg− v = deg+ v. Assume that the set A is nonempty (i.e., the digraph D has at
least one arc). Then, D has at least one cycle.

Proof of Corollary 0.3. The digraph D = (V, A) gives rise to a multidigraph D′ =
(V, A, id). The vertices in V have the same indegrees with respect to the latter
multidigraph D′ as they have with respect to the former digraph D; in other words,
each v ∈ V satisfies deg−D′ v = deg−D v. Thus, we do not need to distinguish between
deg−D v and deg−D′ v; we can use the notation deg− v for both of these numbers.

15Proof. Recall that the vertices of a path in D must be distinct. Hence, a path in D cannot have
length larger than |V| (since D has only |V| many vertices). Therefore, there are only finitely
many paths in D (since there are only finitely many paths in D of any given length).

16since we just have shown that there exists at least one path of length ≥ 1 in D
17Proof. We know that there exists at least one path of length ≥ 1 in D. Hence, any longest path in

D has length ≥ 1. In particular, this shows that the path (v0, a1, v1, a2, v2, . . . , ak, vk) has length
≥ 1 (since this path is a longest path in D). In other words, k ≥ 1.



Math 5707 Spring 2017 (Darij Grinberg): homework set 2 page 18

Applying Lemma 0.2 to D′ and id instead of D and φ, we therefore conclude that
D′ has at least one cycle. If we denote this cycle by (v0, a1, v1, a2, v2, . . . , ak, vk), then
(v0, v1, . . . , vk) is a cycle of the digraph D. Thus, the digraph D has at least one
cycle. This proves Corollary 0.3.

Lemma 0.4. Let V be a finite set. Let E = (V, A) and F = (V, B) be two tour-
naments with vertex set V. Let u ∈ V and v ∈ V. Then, we have the following
logical equivalence:

((u, v) ∈ B \ A)⇐⇒ ((v, u) ∈ A \ B) . (10)

Proof of Lemma 0.4. Let us first prove the implication

((u, v) ∈ B \ A) =⇒ ((v, u) ∈ A \ B) . (11)

Indeed, assume that (u, v) ∈ B \ A holds. Thus, (u, v) ∈ B and (u, v) /∈ A. The pair
(u, v) belongs to B, thus is an arc of the tournament F. Therefore, (u, v) is not a
loop (since tournaments have no loops). In other words, u 6= v. Hence, exactly one
of the pairs (u, v) and (v, u) is an arc of E (since E is a tournament). In other words,
exactly one of the pairs (u, v) and (v, u) belongs to A (since A is the set of the arcs
of E). Since (u, v) /∈ A, we thus have (v, u) ∈ A. On the other hand, recall again
that u 6= v. Thus, exactly one of the pairs (u, v) and (v, u) is an arc of F (since F
is a tournament). In other words, exactly one of the pairs (u, v) and (v, u) belongs
to B (since B is the set of the arcs of F). Since (u, v) ∈ B, we thus have (v, u) /∈ B.
Combining (v, u) ∈ A with (v, u) /∈ B, we obtain (v, u) ∈ A \ B.

Now, forget that we assumed that (u, v) ∈ B \ A holds. We thus have proven that
(v, u) ∈ A \ B under the assumption that (u, v) ∈ B \ A. In other words, we have
proven the implication (11).

But we can also apply the implication (11) to v, u, B, A, F and E instead of u, v,
A, B, E and F. Thus, we obtain the implication

((v, u) ∈ A \ B) =⇒ ((u, v) ∈ B \ A) . (12)

Combining this implication with (11), we obtain the equivalence (10). Thus, Lemma 0.4
is proven.

0.8. Exercise 6: Transforming tournaments by reversing 3-cycles

Exercise 6. If a tournament D has a 3-cycle (u, v, w), then we can define a new
tournament D′u,v,w as follows: The vertices of D′u,v,w shall be the same as those
of D. The arcs of D′u,v,w shall be the same as those of D, except that the three
arcs (u, v), (v, w) and (w, u) are replaced by the three new arcs (v, u), (w, v) and
(u, w). (Visually speaking, D′u,v,w is obtained from D by turning the arrows on
the arcs (u, v), (v, w) and (w, u) around.) We say that the new tournament D′u,v,w
is obtained from the old tournament D by a 3-cycle reversal operation.
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Now, let V be a finite set, and let E and F be two tournaments with vertex
set V. Prove that F can be obtained from E by a sequence of 3-cycle reversal
operations if and only if each v ∈ V satisfies deg−E (v) = deg−F (v). (Note that a
sequence may be empty, which allows handling the case E = F even if E has no
3-cycles to reverse.)

Solution sketch to Exercise 6. Exercise 6 is [Moon13, Theorem 35].
Here is another solution:
Let us forget about V, E and F. Instead, we first introduce some more terminol-

ogy:

• If (u, v) is an arc of a tournament D, then reversing this arc (u, v) means
replacing it by the arc (v, u) (in other words, removing the arc (u, v), and
adding a new arc (v, u) instead). The digraph that results from this operation
is again a tournament. (Visually speaking, reversing an arc in a tournament
means turning the arrow on this arc around.)

Using this terminology, our concept of “3-cycle reversal operation” can be re-
formulated as follows: A tournament D′ is obtained from D by a 3-cycle reversal
operation if and only if there exists a 3-cycle (u, v, w) such that D′ is obtained from
D by reversing the arcs (u, v), (v, w) and (w, u). If this is the case, we shall also say
(more concretely) that D′ is obtained from D by reversing the 3-cycle (u, v, w).

Let us introduce a new operation:

• If a tournament D has a cycle c = (v0, v1, . . . , vk), then we let D′′c be the tour-
nament obtained from D by reversing the arcs (v0, v1) , (v1, v2) , . . . , (vk−1, vk).
In other words, we let D′′c be the tournament obtained from D by reversing
all arcs of the cycle c. We say that the new tournament D′′c is obtained from
the old tournament D by reversing the cycle c.

We now claim the following facts:

Observation 1: Let D be a tournament. Let c be a cycle of D. Then, c has
length ≥ 3.

Proof of Observation 1. Assume the contrary. Then, c has length < 3. In other words,
c has length 1 or 2.

But D is a tournament, and thus has no loops.
If the cycle c had length 1, then it would have the form (v, v) for some vertex

v of D. Therefore, (v, v) would be an arc of D; this would imply that D has a
loop; but this contradicts the fact that D has no loops. Hence, the cycle c cannot
have length 1. Therefore, this cycle must have length 2 (since we know that c has
length 1 or 2). Hence, this cycle c has the form (u, v, u) for some vertices u and
v of D. Consider these u and v. Thus, both (u, v) and (v, u) are arcs of D. But
this contradicts the fact that exactly one of the pairs (u, v) and (v, u) is an arc of
D (since D is a tournament). This contradiction proves that our assumption was
wrong. Hence, Observation 1 is proven.
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Observation 2: Let D be a tournament. Let c be a cycle of D. Let D′′ be
the tournament obtained from D by reversing the cycle c. Then, D′′ can
also be obtained from D by a sequence of 3-cycle reversal operations.

Proof of Observation 2. We shall prove Observation 2 by strong induction over the
length of c. Thus, we fix an integer k, and we assume (as the induction hypothesis)
that Observation 2 is proven in the case when the cycle c has length < k. We must
now prove Observation 2 in the case when the cycle c has length k.

So let us consider the situation of Observation 2, and assume that the cycle
c has length k. Write this cycle c in the form (v0, v1, . . . , vk); thus, the vertices
v0, v1, . . . , vk−1 of D are distinct, but v0 = vk. Observation 1 shows that c has length
≥ 3; in other words, we have k ≥ 3 (since k is the length of c).

We want to prove that D′′ can be obtained from D by a sequence of 3-cycle
reversal operations.

Recall that v0, v1, . . . , vk−1 are distinct. Since k ≥ 3, this shows that v0 and v2
are distinct. Hence, exactly one of (v0, v2) and (v2, v0) is an arc of D (since D is a
tournament). We thus are in one of the following two cases:

• Case 1: The pair (v0, v2) is an arc of D.

• Case 2: The pair (v2, v0) is an arc of D.

We consider each of these two cases separately:

• Let us consider Case 1 first. In this case, the pair (v0, v2) is an arc of D.
Hence, (v0, v2, v3, . . . , vk) (this is just the list (v0, v1, v2, . . . , vk) with the vertex
v1 removed) is a circuit of D (since (v0, v1, v2, . . . , vk) = c is a cycle of D),
and furthermore is a cycle (since the vertices v0, v2, v3, . . . , vk−1 are pairwise
distinct, and since k ≥ 3) and has length k− 1 < k. Denote this cycle by c′.
Let D1 be the tournament obtained from D by reversing the cycle c′.
Recall that (by the induction hypothesis) Observation 2 is proven in the case
when the cycle c has length < k. Hence, we can apply Observation 2 to c′ and
D1 instead of c and D′′ (since the cycle c′ has length < k). Thus, we conclude
that D1 can also be obtained from D by a sequence of 3-cycle reversal opera-
tions.
Next, we observe that the arc (v0, v2) of D has been reversed when we re-
versed the cycle c′. Therefore, the tournament D1 (unlike D) has no arc
(v0, v2), but instead has the arc (v2, v0). On the other hand, the two arcs
(v0, v1) and (v1, v2) have not been modified when we reversed the cycle c′

(since these arcs are not part of the cycle c′). Hence, these two arcs are arcs
of D1 as well. Thus, we know that (v0, v1), (v1, v2) and (v2, v0) are arcs of D1.
Therefore, (v0, v1, v2) is a 3-cycle of D1. Let D2 be the tournament obtained
from D1 by reversing this 3-cycle (v0, v1, v2). Thus, D2 is obtained from D1
by a 3-cycle reversal operation. Since D1 (in turn) is obtained from D by a
sequence of 3-cycle reversal operations, we thus conclude that D2 is obtained
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from D by a sequence of 3-cycle reversal operations.
But D2 = D′′ 18. But we know that D2 is obtained from D by a sequence
of 3-cycle reversal operations. In other words, D′′ is obtained from D by a
sequence of 3-cycle reversal operations. This proves what we wanted to prove
in Case 1.

• The argument in Case 2 is closely similar to the one we gave for Case 1. The
only difference is the following: In Case 1, we have first reversed the cycle
c′ = (v0, v2, v3, . . . , vk), thus obtaining a tournament D1, and then reversed
the 3-cycle (v0, v1, v2) in D1, thus obtaining a new tournament D2 which was
equal to D′′. In contrast, this time, we have to proceed the other way round:
We have to first reverse the 3-cycle (v0, v1, v2), thus obtaining a tournament
D1, and then reverse the cycle c′ = (v0, v2, v3, . . . , vk) in D1, thus obtaining
a new tournament D2 which again is equal to D′′. Apart from this, nothing
changes.

Hence, in either case, we have shown that D′′ can be obtained from D by a
sequence of 3-cycle reversal operations. In other words, Observation 2 holds for
our D and c. This completes the induction step. Hence, Observation 2 is proven by
strong induction.

Observation 3: Let V be a finite set. Let E and F be two tournaments
with vertex set V. Assume that F can be obtained from E by a sequence
of 3-cycle reversal operations. Then, each v ∈ V satisfies deg−E (v) =
deg−F (v).

Proof of Observation 3. Fix x ∈ V. We shall prove that

deg−E (x) = deg−F (x) . (13)

It is clearly enough to prove (13) in the case when F can be obtained from E by
one 3-cycle reversal operation (because then, the validity of (13) in the general case
would follow by induction). So we WLOG assume that F can be obtained from E
by one 3-cycle reversal operation. In other words, there exists a 3-cycle (u, v, w) of

18Proof. Recall how D2 was obtained from D:

– First, we obtained D1 from D by reversing the cycle c′ = (v0, v2, v3, . . . , vk) in D. This amounts
to reversing the arcs (v0, v2) , (v2, v3) , (v3, v4) , . . . , (vk−1, vk).

– Then, we obtained D2 from D1 by reversing the 3-cycle (v0, v1, v2). This amounts to reversing
the arcs (v0, v1), (v1, v2) and (v2, v0).

Thus, in total, we have reversed the arcs (v0, v2) , (v2, v3) , (v3, v4) , . . . , (vk−1, vk) and then
the three arcs (v0, v1) , (v1, v2) , (v2, v0) to obtain D2 from D. Clearly, the reversal of the
arc (v0, v2) was undone by the (later) reversal of the arc (v2, v0); therefore, we can for-
get about these two reversals. Hence, D2 is obtained from D by reversing the arcs
(v2, v3) , (v3, v4) , . . . , (vk−1, vk) , (v0, v1) , (v1, v2). But this is tantamount to reversing the cycle
c (since c = (v0, v1, v2, . . . , vk)). Hence, D2 is obtained from D by reversing the cycle c. But D′′

is obtained from D in exactly the same way (i.e., by reversing the cycle c). Hence, D2 = D′′.
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E such that F can be obtained from E by reversing the 3-cycle (u, v, w). Consider
this (u, v, w).

If x /∈ {u, v, w}, then the arcs of E having target x are precisely the arcs of F
having target x (since F can be obtained from E by reversing the 3-cycle (u, v, w),
but this reversal clearly does not affect the arcs having target x). Therefore, if
x /∈ {u, v, w}, then deg−E (x) = deg−F (x). In other words, (13) is proven in the case
when x /∈ {u, v, w}. Hence, we WLOG assume that we don’t have x /∈ {u, v, w}. In
other words, we have x ∈ {u, v, w}. In other words, either x = u or x = v or x = w.
We WLOG assume that x = u (since the other two cases are similar).

Reversing the 3-cycle (u, v, w) removes the arcs (u, v) , (v, w) , (w, u) from the di-
graph E while adding the arcs (v, u) , (w, v) , (u, w). Therefore, in total, one arc
having target u is removed (namely, the arc (w, u)), and one arc having target u is
added (namely, the arc (v, u)). As a consequence, the number of arcs of F having
target u is obtained from the number of arcs of E having target u by subtracting 1
and then adding 1 back. In other words, deg−F (u) = deg−E (u)− 1 + 1 = deg−E (u).
Hence, deg−E (u) = deg−F (u). Since x = u, this rewrites as deg−E (x) = deg−F (x).
Thus, (13) is proven.

Now, forget that we fixed x. We thus have shown that each x ∈ V satisfies
deg−E (x) = deg−F (x). Renaming x as v in this statement, we conclude that each
v ∈ V satisfies deg−E (v) = deg−F (v). This proves Observation 3.

Observation 4: Let V be a finite set. Let E = (V, A) and F = (V, B) be
two digraphs with vertex set V. Let v ∈ V.

(a) We have deg−(V,A\B) (v)− deg−(V,B\A) (v) = deg−E (v)− deg−F (v).

(b) Assume that E and F are tournaments. Assume furthermore that
deg−E (v) = deg−F (v). Then, deg−(V,A\B) (v) = deg+

(V,A\B) (v).

Proof of Observation 4. Recall first that

(the number of all u ∈ V satisfying (u, v) ∈ A) = deg−E (v) (14)
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19. Hence,

∑
u∈V;

(u,v)∈A

1 = (the number of all u ∈ V satisfying (u, v) ∈ A)︸ ︷︷ ︸
=deg−E (v)

·1

= deg−E (v) · 1 = deg−E (v) . (15)

The same argument (applied to F and B instead of E and A) shows that

∑
u∈V;

(u,v)∈B

1 = deg−F (v) . (16)

Furthermore, the same argument that we used to prove (15) can be applied to
(V, A \ B) and A \ B instead of E and A. As a result, we find that

∑
u∈V;

(u,v)∈A\B

1 = deg−(V,A\B) (v) . (17)

Finally, the same argument that we used to prove (15) can be applied to (V, B \ A)
and B \ A instead of E and A. As a result, we find that

∑
u∈V;

(u,v)∈B\A

1 = deg−(V,B\A) (v) . (18)

19Proof of (14). Recall that E = (V, A) is a digraph (not a multidigraph); therefore, the arcs of E are
pairs of vertices in V. Hence, it is easy to check that the two maps

(the set of all u ∈ V satisfying (u, v) ∈ A)→ (the set of all arcs of E whose target is v) ,
u 7→ (u, v)

and

(the set of all arcs of E whose target is v)→ (the set of all u ∈ V satisfying (u, v) ∈ A) ,
a 7→ (the source of a)

are mutually inverse. Thus, they are inverse bijections between the set of all arcs of E whose
target is v and the set of all u ∈ V satisfying (u, v) ∈ A. Consequently, the size of the latter set
equals the size of the former set. In other words, the number of all u ∈ V satisfying (u, v) ∈ A
equals the number of all arcs of E whose target is v. But since the latter number is deg−E (v) (in
fact, this is how deg−E (v) is defined), this rewrites as follows: The number of all u ∈ V satisfying
(u, v) ∈ A equals deg−E (v). This proves (14).
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Now, (15) yields

deg−E (v)

= ∑
u∈V;

(u,v)∈A

1 = ∑
u∈V;

(u,v)∈A;
(u,v)∈B

1

︸ ︷︷ ︸
= ∑

u∈V;
(u,v)∈A∩B

1

+ ∑
u∈V;

(u,v)∈A;
(u,v)/∈B

1

︸ ︷︷ ︸
= ∑

u∈V;
(u,v)∈A\B

1

(since each u ∈ V satisfies either (u, v) ∈ B or (u, v) /∈ B, but not both)

= ∑
u∈V;

(u,v)∈A∩B

1 + ∑
u∈V;

(u,v)∈A\B

1. (19)

Meanwhile, (16) yields

deg−F (v)

= ∑
u∈V;

(u,v)∈B

1 = ∑
u∈V;

(u,v)∈B;
(u,v)∈A

1

︸ ︷︷ ︸
= ∑

u∈V;
(u,v)∈A∩B

1

+ ∑
u∈V;

(u,v)∈B;
(u,v)/∈A

1

︸ ︷︷ ︸
= ∑

u∈V;
(u,v)∈B\A

1

(since each u ∈ V satisfies either (u, v) ∈ A or (u, v) /∈ A, but not both)

= ∑
u∈V;

(u,v)∈A∩B

1 + ∑
u∈V;

(u,v)∈B\A

1. (20)

Subtracting (20) from (19), we find

deg−E (v)− deg−F (v)

=

 ∑
u∈V;

(u,v)∈A∩B

1 + ∑
u∈V;

(u,v)∈A\B

1

−
 ∑

u∈V;
(u,v)∈A∩B

1 + ∑
u∈V;

(u,v)∈B\A

1


= ∑

u∈V;
(u,v)∈A\B

1

︸ ︷︷ ︸
=deg−

(V,A\B)(v)
(by (17))

− ∑
u∈V;

(u,v)∈B\A

1

︸ ︷︷ ︸
=deg−

(V,B\A)(v)
(by (18))

= deg−(V,A\B) (v)− deg−(V,B\A) (v) .

This proves Observation 4 (a).
(b) The summation sign ∑

u∈V;
(u,v)∈B\A

in (18) can be rewritten as ∑
u∈V;

(v,u)∈A\B

(because of
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the equivalence (10)). Thus, (18) rewrites as follows:

∑
u∈V;

(v,u)∈A\B

1 = deg−(V,B\A) (v) . (21)

On the other hand,

(the number of all u ∈ V satisfying (v, u) ∈ A) = deg+
E (v) (22)

20. Hence,

∑
u∈V;

(v,u)∈A

1 = (the number of all u ∈ V satisfying (v, u) ∈ A)︸ ︷︷ ︸
=deg+E (v)

·1

= deg+
E (v) · 1 = deg+

E (v) . (23)

The same argument (applied to (V, A \ B) and A \ B instead of E and A) shows
that

∑
u∈V;

(v,u)∈A\B

1 = deg+
(V,A\B) (v) .

Comparing this with (21), we find deg−(V,B\A) (v) = deg+
(V,A\B) (v). Now, Observa-

tion 4 (a) yields deg−(V,A\B) (v)− deg−(V,B\A) (v) = deg−E (v)− deg−F (v) = 0 (since

deg−E (v) = deg−F (v)). Hence, deg−(V,A\B) (v) = deg−(V,B\A) (v) = deg+
(V,A\B) (v).

This proves Observation 4 (b).

Observation 5: Let V be a finite set. Let E = (V, A) and F = (V, B) be
two tournaments with vertex set V such that A 6= B. Assume that each
v ∈ V satisfies deg−E (v) = deg−F (v). Then:

(a) The digraph (V, A \ B) has at least one cycle.

(b) Each cycle of the digraph (V, A \ B) is also a cycle of E.

(c) Let (v0, v1, . . . , vk) be a cycle of the digraph (V, A \ B). Then,

{(v0, v1) , (v1, v2) , . . . , (vk−1, vk)} ⊆ A \ B and
{(v1, v0) , (v2, v1) , . . . , (vk, vk−1)} ⊆ B \ A.

Proof of Observation 5. (a) The set A \ B is nonempty 21. Furthermore, each vertex
v ∈ V satisfies deg−(V,A\B) v = deg+

(V,A\B) v 22. Thus, Corollary 0.3 (applied to

20The proof of (22) is analogous to that of (14), and so is left to the reader.
21Proof. Assume the contrary. Thus, A \ B = ∅. Hence, A ⊆ B. Since A 6= B, we thus conclude that

A is a proper subset of B. Hence, there exists some (u, v) ∈ B \ A. Consider this (u, v). From
(u, v) ∈ B \ A, we obtain (v, u) ∈ A \ B (by the equivalence (10)). Hence, (v, u) ∈ A \ B = ∅,
which is absurd. Hence, we have obtained a contradiction. Therefore, our assumption was false,
qed.

22Proof. Let v ∈ V. The hypothesis of Observation 5 yields deg−E (v) = deg−F (v). Hence, Observa-
tion 4 (b) shows that deg−(V,A\B) (v) = deg+

(V,A\B) (v). Qed.
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(V, A \ B) and A \ B instead of D and A) yields that the digraph (V, A \ B) has at
least one cycle. This proves Observation 5 (a).

(b) Each arc of the digraph (V, A \ B) is also an arc of (V, A) (since A \ B ⊆ A). In
other words, each arc of the digraph (V, A \ B) is also an arc of E (since E = (V, A)).
Therefore, each cycle of the digraph (V, A \ B) is also a cycle of E. This proves
Observation 5 (b).

(c) The arcs (v0, v1) , (v1, v2) , . . . , (vk−1, vk) are the arcs of the cycle (v0, v1, . . . , vk)
of the digraph (V, A \ B), and thus are arcs of the digraph (V, A \ B). In other
words, they belong to A \ B. In other words, {(v0, v1) , (v1, v2) , . . . , (vk−1, vk)} ⊆
A \ B.

On the other hand, each i ∈ {0, 1, . . . , k− 1} satisfies (vi+1, vi) ∈ B \ A 23. In
other words, {(v1, v0) , (v2, v1) , . . . , (vk, vk−1)} ⊆ B \ A. The proof of Observation 5
(c) is now complete.

Observation 6: Let V be a finite set. Let E = (V, A) and F = (V, B) be
two tournaments with vertex set V such that A 6= B. Assume that each
v ∈ V satisfies deg−E (v) = deg−F (v).

Let c be a cycle of the digraph (V, A \ B). Thus, c is also a cycle of E (by
Observation 5 (b)). Let E′′ = (V, A′′) be the tournament obtained from
E by reversing the cycle c. (This is well-defined, since c is a cycle of E.)
Then:

(a) We have |A′′ \ B| < |A \ B|.
(b) Each v ∈ V satisfies deg−E′′ (v) = deg−F (v).

(c) The tournament E′′ can be obtained from E by a sequence of 3-cycle
reversal operations.

Proof of Observation 6. Write the cycle c in the form (v0, v1, . . . , vk) (with v0, v1, . . . , vk ∈
V). Then, Observation 5 (c) yields

{(v0, v1) , (v1, v2) , . . . , (vk−1, vk)} ⊆ A \ B and (24)
{(v1, v0) , (v2, v1) , . . . , (vk, vk−1)} ⊆ B \ A. (25)

Set X = {(v0, v1) , (v1, v2) , . . . , (vk−1, vk)} and Y = {(v1, v0) , (v2, v1) , . . . , (vk, vk−1)}.
Thus, the relations (24) and (25) rewrite as X ⊆ A \ B and Y ⊆ B \ A, respectively.
In particular, no element of X belongs to B (since X ⊆ A \ B); thus, X \ B = X.
Also, Y ⊆ B \ A ⊆ B, so that Y \ B = ∅.

23Proof. Let i ∈ {0, 1, . . . , k− 1}. We know that the arcs (v0, v1) , (v1, v2) , . . . , (vk−1, vk) belong to
A \ B. In particular, (vi, vi+1) belongs to A \ B. In other words, (vi, vi+1) ∈ A \ B. But (10)
(applied to vi+1 and vi instead of u and v) yields that we have the logical equivalence

((vi+1, vi) ∈ B \ A)⇐⇒ ((vi, vi+1) ∈ A \ B) .

Hence, we have (vi+1, vi) ∈ B \ A (since we know that (vi, vi+1) ∈ A \ B). Qed.
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Also, clearly, k ≥ 1 (since (v0, v1, . . . , vk) = c is a cycle), and thus the set X is
nonempty. Hence, |X| > 0.

(a) Recall that the tournament E′′ is obtained from E by reversing the cycle c =
(v0, v1, . . . , vk). In other words, the tournament E′′ is obtained from E by reversing
the arcs (v0, v1) , (v1, v2) , . . . , (vk−1, vk) (because this is how “reversing the cycle
(v0, v1, . . . , vk)” was defined). In other words, the tournament E′′ is obtained from
E by removing the arcs (v0, v1) , (v1, v2) , . . . , (vk−1, vk) and adding the new arcs
(v1, v0) , (v2, v1) , . . . , (vk, vk−1). Since the arc set of E′′ is A′′, whereas the arc set of
E is A, we therefore have

A′′ =

A \ {(v0, v1) , (v1, v2) , . . . , (vk−1, vk)}︸ ︷︷ ︸
=X

 ∪ {(v1, v0) , (v2, v1) , . . . , (vk, vk−1)}︸ ︷︷ ︸
=Y

= (A \ X) ∪Y.

Hence,

A′′ \ B = ((A \ X) ∪Y) \ B =

(A \ B) \ (X \ B)︸ ︷︷ ︸
=X

 ∪ (Y \ B)︸ ︷︷ ︸
=∅

= ((A \ B) \ X) ∪∅

= (A \ B) \ X,

and therefore∣∣A′′ \ B
∣∣ = |(A \ B) \ X| = |A \ B| − |X| (since X ⊆ A \ B)
< |A \ B| (since |X| > 0) .

This proves Observation 6 (a).
(c) Observation 2 (applied to E and E′′ instead of D and D′′) shows that E′′ can

also be obtained from E by a sequence of 3-cycle reversal operations. This proves
Observation 6 (c).

(b) Let v ∈ V. Then, deg−E (v) = deg−F (v) (by the hypothesis of Observation
6). But we know (from Observation 6 (c)) that the tournament E′′ can also be
obtained from E by a sequence of 3-cycle reversal operations. Hence, Observa-
tion 3 (applied to E′′ instead of F) shows that deg−E (v) = deg−E′′ (v). Therefore,
deg−E′′ (v) = deg−E (v) = deg−F (v). This proves Observation 6 (b).

Observation 7: Let V be a finite set. Let E and F be two tournaments with
vertex set V. Assume that each v ∈ V satisfies deg−E (v) = deg−F (v).
Then, F can be obtained from E by a sequence of 3-cycle reversal opera-
tions.

Proof of Observation 7. We shall prove Observation 7 by strong induction over |A (E) \A (F)|.
Thus, we fix some N ∈ N, and we assume (as the induction hypothesis) that
Observation 7 is already proven in the case when |A (E) \A (F)| < N. In other
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words, if E and F are two tournaments with vertex set V, if each v ∈ V satisfies
deg−E (v) = deg−F (v), and if we have |A (E) \A (F)| < N, then

F can be obtained from E by a sequence of 3-cycle reversal operations. (26)

Now, we need to prove Observation 7 in the case when |A (E) \A (F)| = N. So
let E and F be two tournaments wirth vertex set V, and assume that each v ∈ V
satisfies deg−E (v) = deg−F (v). Assume furthermore that |A (E) \A (F)| = N. Our
goal is to prove that F can be obtained from E by a sequence of 3-cycle reversal
operations.

Write the tournaments E and F in the forms E = (V, A) and F = (V, B). (This is
possible, since both E and F have vertex set V.) Thus, A (E) = A and A (F) = B. If
A = B, then our claim is obvious24. Hence, we WLOG assume that we don’t have
A = B. Thus, A 6= B.

At this point, all we need to do is combining observations that we already have
proven. Observation 5 (a) shows that the digraph (V, A \ B) has at least one cycle.
Fix such a cycle, and denote it by c. Then, c is also a cycle of E (by Observation 5
(b)). Let E′′ = (V, A′′) be the tournament obtained from E by reversing the cycle
c. (This is well-defined, since c is a cycle of E.) Thus, A (E′′) = A′′. Observation 6
(b) shows that each v ∈ V satisfies deg−E′′ (v) = deg−F (v). Observation 6 (a) shows
that |A′′ \ B| < |A \ B|. Since A′′ = A (E′′), A = A (E) and B = A (F), this rewrites
as |A (E′′) \A (F)| < |A (E) \A (F)|. Since |A (E) \A (F)| = N, this furthermore
rewrites as |A (E′′) \A (F)| < N. Hence, we can apply (26) to E′′ instead of E
(since we have also shown that each v ∈ V satisfies deg−E′′ (v) = deg−F (v)). As
a result, we conclude that F can be obtained from E′′ by a sequence of 3-cycle
reversal operations. But the tournament E′′ can (in turn) be obtained from E by
a sequence of 3-cycle reversal operations (by Observation 6 (c)). Combining the
previous two sentences, we conclude that F can be obtained from E by a sequence
of 3-cycle reversal operations (indeed, we first apply the sequence of 3-cycle reversal
operations that lets us obtain E′′ from E, and then apply the sequence of 3-cycle
reversal operations that lets us obtain F from E′′). But this is exactly the claim
that we wanted to prove. Hence, we have proven Observation 7 in the case when
|A (E) \A (F)| = N. Thus, the proof of Observation 7 (by strong induction) is
complete.

Exercise 6 now follows from Observation 3 and Observation 7. (Indeed, the claim
of Exercise 6 is an “if and only if” statement. The “if” part of this statement follows
from Observation 7, whereas the “only if” part follows from Observation 3.)

0.9. Exercise 7: Transforming tournaments by reversing 2-paths

A tournament D = (V, A) is called transitive if it has no 3-cycles.

24Proof. Assume that A = B. Thus, (V, A) = (V, B), so that E = (V, A) = (V, B) = F. Hence,
F can be obtained from E by a sequence of 3-cycle reversal operations (namely, by the empty
sequence). But this is exactly what we have to prove.
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Exercise 7. If a tournament D = (V, A) has three distinct vertices u, v and w
satisfying (u, v) ∈ A and (v, w) ∈ A, then we can define a new tournament
D′′u,v,w as follows: The vertices of D′′u,v,w shall be the same as those of D. The
arcs of D′′u,v,w shall be the same as those of D, except that the two arcs (u, v) and
(v, w) are replaced by the two new arcs (v, u) and (w, v). We say that the new
tournament D′′u,v,w is obtained from the old tournament D by a 2-path reversal
operation.

Let D be any tournament. Prove that there is a sequence of 2-path reversal
operations that transforms D into a transitive tournament.

Solution sketch to Exercise 7. We shall solve Exercise 7 by induction on |V|, where V
denotes the vertex set of D.

The induction base (i.e., the case |V| = 0) is obvious (because in this case, D
is already transitive, and thus the empty sequence of 2-path reversal operations
transforms D into a transitive tournament).

Now, to the induction step. Fix a positive integer N, and assume (as the induction
hypothesis) that Exercise 7 is already solved in the case when |V| = N − 1. Now,
we must solve Exercise 7 in the case when |V| = N. So let us fix a tournament D
with vertex set V satisfying |V| = N. Write D in the form D = (V, A).

We say that a tournament is sinkless if it has no vertex that has outdegree 0.
We shall now prove the following observation:

Observation 1: Assume that the tournament D is sinkless. Let u ∈ V.
Then, we can apply a 2-path reversal operation to D that decreases
deg+ u by 1.

Proof of Observation 1. The tournament D is sinkless. In other words, it has no ver-
tex that has outdegree 0. In particular, the vertex u does not have outdegree 0.
Hence, there exists at least one arc (u, v) of D having source u. Consider such
an arc. Furthermore, the vertex v also does not have outdegree 0 (since D has no
vertex that has outdegree 0). Thus, there exists at least one arc (v, w) of D having
source v. Consider such an arc.

We have u 6= v (since (u, v) is an arc of D) and v 6= w (since (v, w) is an arc of D).
Also, if we had u = w, then both (v, u) = (v, w) and (u, v) would be arcs of D, and
this would contradict the fact that D is a tournament (indeed, a tournament has
only one arc between two distinct vertices). Hence, we cannot have u = w. Thus,
u 6= w. Now, the three vertices u, v and w of D are distinct (since u 6= v, v 6= w
and u 6= w) and satisfy (u, v) ∈ A and (v, w) ∈ A (since (u, v) and (v, w) are arcs
of D). Hence, a new tournament D′′u,v,w is defined. Recall that this new tournament
D′′u,v,w differs from D in that the two arcs (u, v) and (v, w) are replaced by the two
new arcs (v, u) and (w, v) (due to the definition of D′′u,v,w). In particular, D′′u,v,w is
lacking the arc (u, v) that D used to have, but does not have any new arcs (i.e., arcs
that D lacked) with source u. Thus, deg+

D′′u,v,w
u = deg+

D u− 1.



Math 5707 Spring 2017 (Darij Grinberg): homework set 2 page 30

But the tournament D′′u,v,w clearly is obtained from D by a 2-path reversal opera-
tion. This 2-path reversal operation has decreased deg+ u by 1 (since deg+

D′′u,v,w
u =

deg+
D u− 1). Hence, Observation 1 is proven.

Observation 2: We can apply a sequence of 2-path reversal operations to
D that ensures the following: The tournament obtained at the end of
this sequence is not sinkless.

Proof of Observation 2. If D already is not sinkless, then Observation 2 obviously
holds (just apply the empty sequence). Otherwise, fix any vertex u ∈ V. (This is
possible, since |V| = N > 0.) Observation 1 shows that we can apply a 2-path
reversal operation to D that decreases deg+ u by 1. Apply this 2-path reversal
operation, and replace D by the resulting tournament. Repeat this step as often as
possible (each time applying Observation 1 anew, as long as D is sinkless). This
process must eventually come to an end25, and thus we eventually end up with a
tournament that is no longer sinkless.26 This proves Observation 2.

Now, our goal is to show that there is a sequence of 2-path reversal operations
that transforms D into a transitive tournament. We achieve this by performing the
following procedure:

• First step: We first perform a sequence of 2-path reversal operations that
transforms D into a tournament that is not sinkless. Such a sequence exists
because of Observation 2. Let E be the tournament obtained at the end of this
step.

• Second step: Now, the tournament E is not sinkless. In other words, E has
a vertex that has outdegree 0. Fix such a vertex, and denote it by p. Let E1
be the tournament obtained from E by removing the vertex p and the arcs
whose target or source is p. 27 Then, the number of the vertices of E1 is
|V| − 1 = N − 1 (since |V| = N). Therefore, by the induction hypothesis,
we can apply Exercise 7 to E1 instead of D. We thus conclude that there is
a sequence of 2-path reversal operations that transforms E1 into a transitive
tournament. Fix such a sequence, and apply it “inside E” (i.e., apply the same
operations to E, ignoring the vertex p). Let F be the tournament obtained at
the end of this step.

25Indeed, each time we apply the 2-path reversal operation, the outdegree deg+ u is decreased by
1; but this outdegree cannot keep decreasing by 1 indefinitely.

26Note that we are not guaranteed to obtain deg+ u = 0 in the final tournament. We are only
guaranteed that it will not be sinkless! There may be another vertex v satisfying deg+ v = 0
instead.

27Formally speaking, if we write the tournament E as (V, A′), then E1 is the tournament
(
V1, A′1

)
,

where V1 = V \ {p}, where A′1 = {a ∈ A′ | neither the source nor the target of a is p}. Of
course, due to p having outdegree 0, the tournament E has no arcs with source p, and so we
only need to care about arcs with target p.
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The tournament F is thus obtained from D by a sequence of 2-path reversal
operations. What do we know about F ?

• First, we know that the vertex p has outdegree 0 in F (because it had outde-
gree 0 in E, and because no arcs with source or target p have been modified
by the operations that transformed E into F). In other words, the tournament
F has no arcs with source p. Therefore, the tournament F has no 3-cycles that
contain the vertex p (because if a 3-cycle contains p, then there must be an arc
with source p).

• We furthermore know that the tournament obtained from F by removing the
vertex p is transitive (because the operations that transformed E into F were
chosen in such a way as to transform E1 into a transitive tournament). In other
words, the tournament obtained from F by removing the vertex p has no 3-
cycles. Equivalently, the tournament F has no 3-cycles that do not contain the
vertex p.

We thus have seen that the tournament F has no 3-cycles that contain the vertex
p, but also has no 3-cycles that do not contain the vertex p. Hence, the tournament
F has no 3-cycles at all. In other words, the tournament F is transitive.

Hence, there is a sequence of 2-path reversal operations that transforms D into a
transitive tournament (namely, the sequence of operations that transformed D into
F). In other words, Exercise 7 is solved in the case when |V| = N. This completes
the induction step, and so the solution of Exercise 7 is complete.

Remark 0.5. Exercise 7 suggests an additional question: If E and F are two
tournaments with the same vertex set, then is it always possible to transform E
into F by a sequence of 2-path reversal operations?

The answer to this question is “no”, and there is a rather neat reason for this:
WLOG assume that the common vertex set of E and F is {1, 2, . . . , n}. If D is
a tournament with vertex set {1, 2, . . . , n}, then an inversion of D will mean an
arc (i, j) of D satisfying i > j. Now, it is easy to see that if we apply a 2-path
reversal operation to a tournament with vertex set {1, 2, . . . , n}, then the number
of inversions of the tournament does not change modulo 2 (i.e., if this number
was even, then it remains even; and if this number was odd, then it remains
odd). Hence, E cannot be transformed into F by a sequence of 2-path reversal
operations unless the number of inversions of E is congruent to the number of
inversions of F modulo 2.

But what if they are congruent? I don’t know. Feel free to comment!
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