Math 5707: Graph Theory, Spring 2017 Homework 2 # Nicholas Rancourt (edited by DG) January 8, 2019 # 1 Exercise 1 ## 1.1 Problem Let G and H be two simple graphs. The *Cartesian product* of G and H is a new simple graph, denoted $G \times H$, which is defined as follows: - The vertex set $V(G \times H)$ of $G \times H$ is the Cartesian product $V(G) \times V(H)$. - A vertex (g,h) of $G \times H$ is adjacent to a vertex (g',h') of $G \times H$ if and only if we have - either g = g' and $hh' \in E(H)$, - or h = h' and $gg' \in E(G)$. (In particular, exactly one of the two equalities g = g' and h = h' has to hold when (g, h) is adjacent to (g', h').) (a) Recall the *n*-dimensional cube graph Q_n defined for each $n \in \mathbb{N}$. (Its vertices are *n*-tuples $(a_1, a_2, \ldots, a_n) \in \{0, 1\}^n$, and two such vertices are adjacent if and only if they differ in exactly one entry.) Prove that $Q_n \cong Q_{n-1} \times Q_1$ for each positive integer n. (Thus, Q_n can be obtained from Q_1 by repeatedly forming Cartesian products; i.e., it is a "Cartesian power" of Q_1 .) - (b) Assume that each of the graphs G and H has a Hamiltonian path. Prove that $G \times H$ has a Hamiltonian path. - (c) Assume that both numbers |V(G)| and |V(H)| are > 1, and that at least one of them is even. Assume again that each of the graphs G and H has a Hamiltonian path. Prove that $G \times H$ has a Hamiltonian cycle. # 1.2 SOLUTION TO PARTS (A) AND (B) Proof of Part (a). To show that $Q_n \cong Q_{n-1} \times Q_1$, I will first show that their vertex sets are the same, provided that we identify each pair $((x_1, x_2, \ldots, x_{n-1}), x_n) \in \{0, 1\}^{n-1} \times \{0, 1\}$ with the *n*-tuple $(x_1, x_2, \ldots, x_n) \in \{0, 1\}^n$. Then, we will show that their edge sets are the same. The equality of their vertex sets follows directly from the definition of V $(Q_{n-1} \times Q_1)$: $$V(Q_{n-1} \times Q_1) = \{0, 1\}^{n-1} \times \{0, 1\}$$ $$= \{(x_1, x_2, \dots, x_n) \mid x_i \in \{0, 1\} \text{ for } 1 \le i \le n - 1, \text{ and } x_n \in \{0, 1\}\}$$ $$= \{(x_1, x_2, \dots, x_n) \mid x_i \in \{0, 1\} \text{ for } 1 \le i \le n\}$$ $$= \{0, 1\}^n = V(Q_n).$$ To show the equality of the edge sets, I will first show that $E(Q_{n-1} \times Q_1) \subseteq E(Q_n)$, then that $E(Q_n) \subseteq E(Q_{n-1} \times Q_1)$. Let $\{(x_1, y_1), (x_2, y_2)\} \in E(Q_{n-1} \times Q_1)$, where $x_1, x_2 \in V(Q_{n-1})$ and $y_1, y_2 \in V(Q_1)$. Note that since $V(Q_{n-1} \times Q_1) = V(Q_n), (x_1, y_1) \in V(Q_n)$ and $(x_2, y_2) \in V(Q_n)$. By the definition of $E(Q_{n-1} \times Q_1)$, there are two cases to consider: - Case 1: $x_1 = x_2$ and $y_1y_2 \in E(Q_1)$. (This is the "either" case from the definition.) In this case, $x_1 = x_2 = (x_{1,1}, x_{1,2}, \dots, x_{1,n-1})$. The graph Q_1 has only one edge: $\{0,1\}$, so $\{y_1,y_2\} = \{0,1\}$ and $y_1 \neq y_2$. Then $(x_1,y_1) = (x_{1,1},x_{1,2},\dots,x_{1,n-1},y_1)$ and $(x_2,y_2) = (x_{1,1},x_{1,2},\dots,x_{1,n-1},y_2)$ differ in only one entry $(y_1$ and $y_2)$. Therefore, $\{(x_1,y_1),(x_2,y_2)\} \in E(Q_n)$. - Case 2: $y_1 = y_2$ and $x_1x_2 \in E(Q_{n-1})$. (This is the "or" case from the definition.) Since $x_1x_2 \in E(Q_{n-1})$, the first n-1 entries in (x_1, y_1) and (x_2, y_2) differ in exactly one entry. But $y_1 = y_2$, so (x_1, y_1) and (x_2, y_2) differ in exactly one entry as well. Therefore, $\{(x_1, y_1), (x_2, y_2)\} \in E(Q_n)$. Case 1 and Case 2 together show that $E(Q_{n-1} \times Q_1) \subseteq E(Q_n)$. It must now be shown that $E(Q_n) \subseteq E(Q_{n-1} \times Q_1)$. Let $\{(x_{1,1}, x_{1,2}, \dots, x_{1,n}), (x_{2,1}, x_{2,2}, \dots, x_{2,n})\} \in E(Q_n)$. Since $(x_{1,1}, x_{1,2}, \dots, x_{1,n})$ and $(x_{2,1}, x_{2,2}, \dots, x_{2,n})$ must differ in exactly one entry, there are two cases to consider. • Case 1: $(x_{1,1}, x_{1,2}, \ldots, x_{1,n-1}) = (x_{2,1}, x_{2,2}, \ldots, x_{2,n-1})$ and $x_{1,n} \neq x_{2,n}$. This implies that $\{x_{1,n}, x_{2,n}\} = \{0, 1\} \in E(Q_1)$. $(x_{1,1}, x_{1,2}, \ldots, x_{1,n-1}) = (x_{2,1}, x_{2,2}, \ldots, x_{2,n-1})$ and $\{x_{1,n}, x_{2,n}\} \in E(Q_1)$ satisfy the "either" condition for $$\{(x_{1,1}, x_{1,2}, \dots, x_{1,n}), (x_{2,1}, x_{2,2}, \dots, x_{2,n})\} \in \mathbb{E}(Q_{n-1} \times Q_1).$$ • Case 2: $x_{1,n} = x_{2,n}$ and $(x_{1,1}, x_{1,2}, \dots, x_{1,n-1})$ differs from $(x_{2,1}, x_{2,2}, \dots, x_{2,n-1})$ in exactly one entry. This implies that $\{(x_{1,1}, x_{1,2}, \dots, x_{1,n-1}), (x_{2,1}, x_{2,2}, \dots, x_{2,n-1})\} \in E(Q_{n-1})$. Together with $x_{1,n} = x_{2,n}$, this satisfies the "or" condition for $$\{(x_{1,1}, x_{1,2}, \dots, x_{1,n}), (x_{2,1}, x_{2,2}, \dots, x_{2,n})\} \in \mathbb{E}(Q_{n-1} \times Q_1).$$ Case 1 and Case 2 together show that $E(Q_n) \subseteq E(Q_{n-1} \times Q_1)$. Therefore, $E(Q_n) = E(Q_{n-1} \times Q_1)$. Since $V(Q_{n-1} \times Q_1) = V(Q_n)$ and $E(Q_n) = E(Q_{n-1} \times Q_1)$, it follows that $Q_n \cong Q_{n-1} \times Q_1$. Proof of Part (b). Let n = |V(G)| and m = |V(H)|. Since both G and H have a Hamiltonian path, there is a listing (v_1, v_2, \ldots, v_n) of the vertices of G such that $v_i v_{i+1} \in E(G)$ for all $1 \le i \le n-1$, and a listing (w_1, w_2, \ldots, w_m) of the vertices of H such that $w_i w_{i+1} \in E(H)$ for all $1 \le i \le m-1$. It follows from the definition of $E(G \times H)$ that the following holds: - $\{(v_i, w_j), (v_i, w_{j+1})\} \in \mathbb{E}(G \times H)$ for all $1 \leq i \leq n$ and $1 \leq j \leq m-1$, and - $\{(v_i, w_j), (v_{i+1}, w_j)\} \in E(G \times H)$ for all $1 \le i \le n-1$ and $1 \le j \le m$. Thus we may construct a Hamiltonian path as below: $$((v_1, w_1), (v_1, w_2), \dots, (v_1, w_m), (v_2, w_m), (v_2, w_{m-1}), \dots, (v_2, w_1), (v_3, w_1), (v_3, w_2), \dots, (v_{n-1}, w_a), (v_n, w_a), \dots, (v_n, w_b)),$$ where a=1 if $n\equiv 1 \mod 2$ and a=m if $n\equiv 0 \mod 2$; and b=m if $n\equiv 1 \mod 2$ and b=1 if $n\equiv 0 \mod 2$. It is easily verified that each consecutive pair of vertices is adjacent in $G\times H$, and that each of the $n\cdot m$ vertices of $G\times H$ appears exactly once. Indeed, this path fully traverses the $n\times m$ matrix M where the entry $m_{i,j}=(v_i,w_j)$, descending row by row in alternating (left/right) directions. # 2 Exercise 2 #### 2.1 Problem Let n be a positive integer. Recall that K_n denotes the complete graph on n vertices. This is the graph with vertex set $V = \{1, 2, ..., n\}$ and edge set $\mathcal{P}_2(V)$ (so that each two distinct vertices are connected). Find Eulerian circuits for the graphs K_3 , K_5 , and K_7 . #### 2.2 Solution We shall represent walks as lists of edges, omitting the vertices. - For K_3 , the edge set contains only the three edges $\{1,2\}$, $\{2,3\}$, and $\{3,1\}$. The edges in this order are already an Eulerian circuit: $(\{1,2\},\{2,3\},\{3,1\})$. - In the representation of the graph K_5 below, an Eulerian circuit can be created by starting at 1 and first following the edges clockwise around the outer pentagon back to 1, then following the edges of the inner pentagram back to 1: $$(\{1,2\},\{2,3\},\{3,4\},\{4,5\},\{5,1\},\{1,3\},\{3,5\},\{5,2\},\{2,4\},\{4,1\}).$$ Note that all $\binom{5}{2} = 10$ edges are included, with the first 5 edges $\{i, j\}$ having $(j-i) \equiv 1 \mod 5$ and the next 5 edges having $(j-i) \equiv 2 \mod 5$. • In the representation of the graph K_7 below, an Eulerian circuit can be created by starting at 1 and first following the edges clockwise around the outer heptagon back to 1, then following the edges of the first inner heptagram clockwise by skipping 1 vertex each time back to 1, and finally following the other inner heptagram clockwise by skipping two vertices each time back to 1: $$(\{1,2\},\{2,3\},\{3,4\},\{4,5\},\{5,6\},\{6,7\},\{7,1\},\\ \{1,3\},\{3,5\},\{5,7\},\{7,2\},\{2,4\},\{4,6\},\{6,1\},\\ \{1,4\},\{4,7\},\{7,3\},\{3,6\},\{6,2\},\{2,5\},\{5,1\}).$$ Note that all $\binom{7}{2} = 21$ edges are included, with the first 7 edges $\{i, j\}$ having $(j - i) \equiv 1 \mod 7$, the next 7 edges having $(j - i) \equiv 2 \mod 7$, and the final 7 edges having $(j - i) \equiv 3 \mod 7$. ## 4 Exercise 4 #### 4.1 Problem Let D be a digraph. Show that $\sum_{v \in V(D)} \deg^-(v) = \sum_{v \in V(D)} \deg^+(v)$. #### 4.2 SOLUTION *Proof.* Let V = V(D) and A = A(D). (We use the notation A(D) for the set of all arcs of D.) Using the definition of $deg^{-}(v)$, the sum on the left hand side can be written as $$\sum_{v \in V} \deg^-(v) = \sum_{v \in V} |\{a \in A \mid v \text{ is the target of } a\}|.$$ Next, using Proposition 0.3.a from homework set 1, the sum can be rewritten again as $$\sum_{v \in V} \left| \left\{ a \in A \mid v \text{ is the target of } a \right\} \right| = \sum_{v \in V} \sum_{u \in V} \left[(u, v) \in A \right].$$ Finally, the order of the summation can be flipped, and we can reverse the above process to arrive at the conclusion: $$\begin{split} \sum_{v \in V} \sum_{u \in V} \left[(u, v) \in A \right] &= \sum_{u \in V} \sum_{v \in V} \left[(u, v) \in A \right] \\ &= \sum_{u \in V} \left| \left\{ a \in A \mid u \text{ is the source of } a \right\} \right| \\ &= \sum_{u \in V} \deg^+(u) = \sum_{v \in V} \deg^+(v). \end{split}$$ # 5 EXERCISE 5 #### 5.1 Problem Let D = (V, A) be a tournament. Set n = |V| and $m = \sum_{v \in V} {\deg^+(v) \choose 2}$. - (a) Show that $m = \sum_{v \in V} {\deg^{-}(v) \choose 2}$. - (b) Show that the number of 3-cycles in D is $3 \cdot {n \choose 3} m$. #### 5.2 SOLUTION Proof of Part (a). To begin, note that for every $v \in V$, by the definition of a tournament we have that for each of the n-1 vertices $u \in V$ such that $u \neq v$, either $(u,v) \in A$ or $(v,u) \in A$ but not both. Thus we have for each $v \in V$ the equality $\deg^+(v) + \deg^-(v) = n-1$, and therefore $$\deg^{+}(v) = n - 1 - \deg^{-}(v). \tag{1}$$ Also, since there is exactly one arc between each pair of vertices, we have $|A| = \binom{n}{2}$. But $|A| = \sum_{u \in V} \sum_{v \in V} [(u, v) \in A] = \sum_{v \in V} \deg^+(v)$, so we have $$\sum_{v \in V} \deg^+(v) = \binom{n}{2} = \frac{n \cdot (n-1)}{2}.$$ (2) Using (1), we can rewrite the definition of m as $$m = \sum_{v \in V} \binom{n - 1 - \deg^-(v)}{2}.$$ Expanding the binomial coefficient and performing algebra: $$m = \sum_{v \in V} \frac{(n - 1 - \deg^{-}(v))(n - 2 - \deg^{-}(v))}{2}$$ $$= \frac{1}{2} \sum_{v \in V} (\deg^{-}(v)^{2} - \deg^{-}(v)) + \frac{1}{2} \sum_{v \in V} (4 \cdot \deg^{-}(v) - 2n \cdot \deg^{-}(v) + n^{2} - 3n + 2)$$ $$= \sum_{v \in V} \frac{\deg^{-}(v)(\deg^{-}(v) - 1)}{2} + (2 - n) \sum_{v \in V} \deg^{-}(v) + \frac{1}{2} \sum_{v \in V} (n^{2} - 3n + 2).$$ We can now make use of (2) and the fact that |V| = n to evaluate the second and third sums: $$= \sum_{v \in V} {\deg^{-}(v) \choose 2} + \frac{(2-n)n(n-1)}{2} + \frac{n(n-1)(n-2)}{2}$$ $$= \sum_{v \in V} {\deg^{-}(v) \choose 2}.$$ Proof of Part (b). Let $$S = \{s \in \mathcal{P}_3(V) \mid \text{the sub-digraph } D \mid_s \text{ contains at least one 3-cycle}\}$$ and $T = \{t \in \mathcal{P}_3(V) \mid \text{the sub-digraph } D \mid_t \text{ contains no 3-cycles}\}.$ (Here, $D \mid_s$ denotes the sub-digraph of D obtained by removing all vertices that don't lie in s, and removing all arcs that don't connect two vertices in s.) Consider an arbitrary $s \in S$. There exists a 3-cycle (s_1, s_2, s_3) in the sub-digraph $D \mid_s$, so (s_1, s_2) , (s_2, s_3) , and (s_3, s_1) all belong to A. But then (s_2, s_3, s_1) and (s_3, s_1, s_2) are also 3-cycles in D. On the other hand, since D is a tournament, none of (s_2, s_1) , (s_3, s_2) , or (s_1, s_3) belong to A. Hence none of (s_3, s_2, s_1) , (s_2, s_1, s_3) , or (s_1, s_3, s_2) are 3-cycles in D. Therefore, for each $s \in S$, the sub-digraph $D \mid_s$ contains exactly three 3-cycles. Hence, the total number of 3-cycles in D is $3 \mid S \mid$ (because clearly, each 3-cycle in D must be contained in $D \mid_s$ for a unique $s \in S$). It thus remains to be shown that $|S| = \binom{n}{3} - m$. The problem can be simplified further by noting that $|\mathcal{P}_3(V)| = \binom{n}{3}$. Since $|S| = |\mathcal{P}_3(V)| - |T|$, the goal is reduced to showing that |T| = m. Consider an arbitrary $t = \{t_1, t_2, t_3\} \in T$. Since the sub-digraph $D \mid_t$ must contain exactly one arc between each pair of vertices, we have $\sum_{i=1}^{3} \deg_{D|_t}^{-}(t_i) = 3$. Now, we can't have $\deg_{D|_t}^-(t_i)=1$ for all $1\leq i\leq 3$, or we would have a 3-cycle. Nor can we have $\deg_{D|_t}^-(t_i)=3$ for any $1\leq i\leq 3$, since this would contradict the definition of a tournament. Therefore we must have $\deg_{D|_t}^-(t_i)=2$ for exactly one $1\leq i\leq 3$. There are arcs from the other two elements of t having t_i as their target. Hence, each subset $t \in T$ has exactly one element t_i satisfying $\deg_{D|_t}^-(t_i) = 2$, and there are arcs from the other two elements of t having t_i as their target. Consequently, each $t \in T$ gives rise to two arcs of D having a common target. Conversely, any two arcs of D having a common target are obtained from exactly one $t \in T$. To see this, pick any two arcs $(u, v) \in A$ and $(w, v) \in A$ with a common target v. The vertices of these arcs define a unique element of $\mathcal{P}_3(V)$, namely $\{u, v, w\}$. Clearly the sub-digraph $D \mid_{\{u, v, w\}}$ does not contain a 3-cycle, so $\{u, v, w\} \in T$. Each choice of two arcs having a common target defines exactly one element of T, and each element of T contains exactly one such vertex. Hence, the elements in T can be counted by totaling the distinct (unordered) pairs of arcs in A with a common vertex as their target. But this is precisely what $m = \sum_{v \in V} \binom{\deg^-(v)}{2}$ counts (because we can count them by first choosing their common target v, and then we have $\binom{\deg^-(v)}{2}$ options for choosing the two arcs). So we have |T| = m, and therefore # 3-cycles in $$D = 3(|\mathcal{P}_3(V)| - |T|) = 3\left(\binom{n}{3} - m\right)$$. # 7 Exercise 7 #### 7.1 Problem Let D be any tournament. Prove that there is a sequence of 2-path reversal operations that transforms D into a transitive tournament. #### 7.2 SOLUTION *Proof.* Let V = V(D), A = A(D), and n = |V|. If D contains no 3-cycles, it is already transitive. It suffices to show that as long as a 3-cycle exists, a 2-path reversal operation can be chosen that will decrease the number of 3-cycles. Assume that D contains at least one 3-cycle. By the results of Exercise 5 (b), the number of 3-cycles is given by $$3\left(\binom{n}{3} - \sum_{v \in V} \binom{\deg^+(v)}{2}\right) = 3\left(\binom{n}{3} - \sum_{v \in V} \binom{\deg^-(v)}{2}\right)$$ (since Exercise 5 (a) yields $\sum_{v \in V} \binom{\deg^+(v)}{2} = \sum_{v \in V} \binom{\deg^-(v)}{2}$). Hence, in order to decrease the number of 3-cycles, we need to increase the sum $\sum_{v \in V} \binom{\deg^-(v)}{2}$. Pick any 3-cycle (u, v, w) in D. Consider two cases: either the indegrees of u, v, and w are all equal, or they are not all equal. • Case 1: $\deg^-(u) = \deg^-(v) = \deg^-(w)$. Set $d = \deg^-(u)$. In this case, performing the 2-path reversal that replaces the arcs (u, v) and (v, w) with (v, u) and (w, v) will increase $\deg^-(u)$ by 1, decrease $\deg^-(w)$ by 1, and leave the indegrees of all other vertices unchanged. Let m be the value of the sum $\sum_{v \in V} \binom{\deg^-(v)}{2}$ before the 2-path reversal, and m'' be the value after. Then we have: $$m'' = m + \left[\binom{d+1}{2} - \binom{d}{2} \right] + \left[\binom{d-1}{2} - \binom{d}{2} \right] = m + (d) + (1-d) = m+1.$$ Thus this 2-path reversal operation reduces the number of 3-cycles by 3 (since the number of 3-cycles is $3\left(\binom{n}{3} - \sum_{v \in V} \binom{\deg^-(v)}{2}\right)$). • Case 2: $\deg^-(u)$, $\deg^-(v)$, and $\deg^-(w)$ are not all equal. There are three 3-cycles containing the vertices u, v, and w. Since the indegrees are not all equal, at least one 3-cycle (x,y,z) among the three has $\deg^-(x) > \deg^-(z)$. Fix such a 3-cycle, and set $d = \deg^-(x)$ and $c = \deg^-(z)$. Performing the 2-path reversal operation that replaces the arcs (x,y) and (y,z) with (y,x) and (z,y) will increase $\deg^-(x)$ by 1, decrease $\deg^-(z)$ by 1, and leave the indegrees of all other vertices unchanged. As in Case 1, let m be the value of the sum $\sum_{v \in V} \binom{\deg^-(v)}{2}$ before the 2-path reversal, and m'' be the value after. We now have $$m''=m+\left\lceil \binom{d+1}{2}-\binom{d}{2}\right\rceil+\left\lceil \binom{c-1}{2}-\binom{c}{2}\right\rceil=m+(d)+(1-c).$$ Since d > c, this yields $m'' - m \ge 2$. Hence this 2-path reversal reduces the number of 3-cycles by at least 6 (since the number of 3-cycles is $3\left(\binom{n}{3} - \sum_{v \in V} \binom{\deg^-(v)}{2}\right)$). In either case, a 2-path reversal operation on the vertices of the 3-cycle can be chosen to reduce the total number of 3-cycles. Since there are a finite number of 3-cycles, a finite number of 2-path reversal operations will reduce the number of 3-cycles to 0.