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1 Exercise 1

1.1 Problem

Let G and H be two simple graphs. The Cartesian product of G and H is a new simple
graph, denoted G×H, which is defined as follows:

• The vertex set V (G×H) of G×H is the Cartesian product V (G)× V (H).

• A vertex (g, h) of G×H is adjacent to a vertex (g′, h′) of G×H if and only if we
have

– either g = g′ and hh′ ∈ E (H),

– or h = h′ and gg′ ∈ E (G).

(In particular, exactly one of the two equalities g = g′ and h = h′ has to hold when
(g, h) is adjacent to (g′, h′).)

(a) Recall the n-dimensional cube graph Qn defined for each n ∈ N. (Its vertices
are n-tuples (a1, a2, . . . , an) ∈ {0, 1}n, and two such vertices are adjacent if and only if
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they differ in exactly one entry.) Prove that Qn
∼= Qn−1 × Q1 for each positive integer

n. (Thus, Qn can be obtained from Q1 by repeatedly forming Cartesian products; i.e.,
it is a “Cartesian power” of Q1.)
(b) Assume that each of the graphs G and H has a Hamiltonian path. Prove that G×H
has a Hamiltonian path.
(c) Assume that both numbers |V (G)| and |V (H)| are > 1, and that at least one of
them is even. Assume again that each of the graphs G and H has a Hamiltonian path.
Prove that G×H has a Hamiltonian cycle.

1.2 Solution to parts (a) and (b)

Proof of Part (a). To show that Qn
∼= Qn−1×Q1, I will first show that their vertex sets

are the same, provided that we identify each pair ((x1, x2, . . . , xn−1) , xn) ∈ {0, 1}n−1 ×
{0, 1} with the n-tuple (x1, x2, . . . , xn) ∈ {0, 1}n. Then, we will show that their edge
sets are the same.

The equality of their vertex sets follows directly from the definition of V (Qn−1 ×Q1):

V (Qn−1 ×Q1) = {0, 1}n−1 × {0, 1}
= {(x1, x2, . . . , xn) | xi ∈ {0, 1} for 1 ≤ i ≤ n− 1, and xn ∈ {0, 1}}
= {(x1, x2, . . . , xn) | xi ∈ {0, 1} for 1 ≤ i ≤ n}
= {0, 1}n = V (Qn) .

To show the equality of the edge sets, I will first show that E (Qn−1 ×Q1) ⊆ E (Qn), then
that E (Qn) ⊆ E (Qn−1 ×Q1). Let {(x1, y1) , (x2, y2)} ∈ E (Qn−1 ×Q1), where x1, x2 ∈
V (Qn−1) and y1, y2 ∈ V (Q1). Note that since V (Qn−1 ×Q1) = V (Qn), (x1, y1) ∈
V (Qn) and (x2, y2) ∈ V (Qn). By the definition of E (Qn−1 ×Q1), there are two cases
to consider:

• Case 1: x1 = x2 and y1y2 ∈ E (Q1). (This is the “either” case from the definition.)
In this case, x1 = x2 = (x1,1, x1,2, . . . , x1,n−1). The graph Q1 has only one edge:
{0, 1}, so {y1, y2} = {0, 1} and y1 6= y2. Then (x1, y1) = (x1,1, x1,2, . . . , x1,n−1, y1)
and (x2, y2) = (x1,1, x1,2, . . . , x1,n−1, y2) differ in only one entry (y1 and y2). There-
fore, {(x1, y1) , (x2, y2)} ∈ E (Qn).

• Case 2: y1 = y2 and x1x2 ∈ E (Qn−1). (This is the “or” case from the definition.)
Since x1x2 ∈ E (Qn−1), the first n−1 entries in (x1, y1) and (x2, y2) differ in exactly
one entry. But y1 = y2, so (x1, y1) and (x2, y2) differ in exactly one entry as well.
Therefore, {(x1, y1) , (x2, y2)} ∈ E (Qn).

Case 1 and Case 2 together show that E (Qn−1 ×Q1) ⊆ E (Qn). It must now be shown
that E (Qn) ⊆ E (Qn−1 ×Q1). Let {(x1,1, x1,2, . . . , x1,n) , (x2,1, x2,2, . . . , x2,n)} ∈ E (Qn).
Since (x1,1, x1,2, . . . , x1,n) and (x2,1, x2,2, . . . , x2,n) must differ in exactly one entry, there
are two cases to consider.
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• Case 1: (x1,1, x1,2, . . . , x1,n−1) = (x2,1, x2,2, . . . , x2,n−1) and x1,n 6= x2,n. This im-
plies that {x1,n, x2,n} = {0, 1} ∈ E (Q1). (x1,1, x1,2, . . . , x1,n−1) = (x2,1, x2,2, . . . , x2,n−1)
and {x1,n, x2,n} ∈ E (Q1) satisfy the “either” condition for

{(x1,1, x1,2, . . . , x1,n) , (x2,1, x2,2, . . . , x2,n)} ∈ E (Qn−1 ×Q1) .

• Case 2: x1,n = x2,n and (x1,1, x1,2, . . . , x1,n−1) differs from (x2,1, x2,2, . . . , x2,n−1) in
exactly one entry. This implies that {(x1,1, x1,2, . . . , x1,n−1) , (x2,1, x2,2, . . . , x2,n−1)} ∈
E (Qn−1). Together with x1,n = x2,n, this satisfies the “or” condition for

{(x1,1, x1,2, . . . , x1,n) , (x2,1, x2,2, . . . , x2,n)} ∈ E (Qn−1 ×Q1) .

Case 1 and Case 2 together show that E (Qn) ⊆ E (Qn−1 ×Q1). Therefore, E (Qn) =
E (Qn−1 ×Q1). Since V (Qn−1 ×Q1) = V (Qn) and E (Qn) = E (Qn−1 ×Q1), it follows
that Qn

∼= Qn−1 ×Q1.

Proof of Part (b). Let n = |V (G)| and m = |V (H)|. Since both G and H have a
Hamiltonian path, there is a listing (v1, v2, . . . , vn) of the vertices of G such that vivi+1 ∈
E (G) for all 1 ≤ i ≤ n− 1, and a listing (w1, w2, . . . , wm) of the vertices of H such that
wiwi+1 ∈ E (H) for all 1 ≤ i ≤ m − 1. It follows from the definition of E (G×H) that
the following holds:

• {(vi, wj) , (vi, wj+1)} ∈ E (G×H) for all 1 ≤ i ≤ n and 1 ≤ j ≤ m− 1, and

• {(vi, wj) , (vi+1, wj)} ∈ E (G×H) for all 1 ≤ i ≤ n− 1 and 1 ≤ j ≤ m.

Thus we may construct a Hamiltonian path as below:

((v1, w1) , (v1, w2) , . . . , (v1, wm) , (v2, wm) , (v2, wm−1) , . . . , (v2, w1) , (v3, w1) , (v3, w2) ,

. . . , (vn−1, wa) , (vn, wa) , . . . , (vn, wb)),

where a = 1 if n ≡ 1 mod 2 and a = m if n ≡ 0 mod 2; and b = m if n ≡ 1 mod 2
and b = 1 if n ≡ 0 mod 2. It is easily verified that each consecutive pair of vertices is
adjacent in G×H, and that each of the n ·m vertices of G×H appears exactly once.
Indeed, this path fully traverses the n ×m matrix M where the entry mi,j = (vi, wj),
descending row by row in alternating (left/right) directions.

2 Exercise 2

2.1 Problem

Let n be a positive integer. Recall that Kn denotes the complete graph on n vertices.
This is the graph with vertex set V = {1, 2, . . . , n} and edge set P2 (V ) (so that each
two distinct vertices are connected). Find Eulerian circuits for the graphs K3, K5, and
K7.
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2.2 Solution

We shall represent walks as lists of edges, omitting the vertices.

• For K3, the edge set contains only the three edges {1, 2}, {2, 3}, and {3, 1}. The
edges in this order are already an Eulerian circuit: ({1, 2} , {2, 3} , {3, 1}).

• In the representation of the graph K5 below, an Eulerian circuit can be created
by starting at 1 and first following the edges clockwise around the outer pentagon
back to 1, then following the edges of the inner pentagram back to 1:

( {1, 2} , {2, 3} , {3, 4} , {4, 5} , {5, 1} ,
{1, 3} , {3, 5} , {5, 2} , {2, 4} , {4, 1}).

Note that all
(
5
2

)
= 10 edges are included, with the first 5 edges {i, j} having

(j − i) ≡ 1 mod 5 and the next 5 edges having (j − i) ≡ 2 mod 5.

• In the representation of the graph K7 below, an Eulerian circuit can be created by
starting at 1 and first following the edges clockwise around the outer heptagon back
to 1, then following the edges of the first inner heptagram clockwise by skipping
1 vertex each time back to 1, and finally following the other inner heptagram
clockwise by skipping two vertices each time back to 1:

( {1, 2} , {2, 3} , {3, 4} , {4, 5} , {5, 6} , {6, 7} , {7, 1} ,
{1, 3} , {3, 5} , {5, 7} , {7, 2} , {2, 4} , {4, 6} , {6, 1} ,
{1, 4} , {4, 7} , {7, 3} , {3, 6} , {6, 2} , {2, 5} , {5, 1}).

Note that all
(
7
2

)
= 21 edges are included, with the first 7 edges {i, j} having

(j − i) ≡ 1 mod 7, the next 7 edges having (j − i) ≡ 2 mod 7, and the final 7
edges having (j − i) ≡ 3 mod 7.
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4 Exercise 4

4.1 Problem

Let D be a digraph. Show that
∑

v∈V(D)

deg−(v) =
∑

v∈V(D)

deg+(v).

4.2 Solution

Proof. Let V = V (D) and A = A(D). (We use the notation A(D) for the set of all
arcs of D.)

Using the definition of deg−(v), the sum on the left hand side can be written as∑
v∈V

deg−(v) =
∑
v∈V

|{a ∈ A | v is the target of a}| .

Next, using Proposition 0.3.a from homework set 1, the sum can be rewritten again as∑
v∈V

|{a ∈ A | v is the target of a}| =
∑
v∈V

∑
u∈V

[(u, v) ∈ A] .

Finally, the order of the summation can be flipped, and we can reverse the above process
to arrive at the conclusion:∑

v∈V

∑
u∈V

[(u, v) ∈ A] =
∑
u∈V

∑
v∈V

[(u, v) ∈ A]

=
∑
u∈V

|{a ∈ A | u is the source of a}|

=
∑
u∈V

deg+(u) =
∑
v∈V

deg+(v).

5 Exercise 5

5.1 Problem

Let D = (V,A) be a tournament. Set n = |V | and m =
∑
v∈V

(
deg+(v)

2

)
.
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(a) Show that m =
∑
v∈V

(
deg−(v)

2

)
.

(b) Show that the number of 3-cycles in D is 3 ·
((

n
3

)
−m

)
.

5.2 Solution

Proof of Part (a). To begin, note that for every v ∈ V , by the definition of a tournament
we have that for each of the n − 1 vertices u ∈ V such that u 6= v, either (u, v) ∈ A or
(v, u) ∈ A but not both. Thus we have for each v ∈ V the equality deg+(v)+deg−(v) =
n− 1, and therefore

deg+(v) = n− 1− deg−(v). (1)

Also, since there is exactly one arc between each pair of vertices, we have |A| =
(
n
2

)
.

But |A| =
∑
u∈V

∑
v∈V

[(u, v) ∈ A] =
∑
v∈V

deg+(v), so we have

∑
v∈V

deg+(v) =

(
n

2

)
=

n · (n− 1)

2
. (2)

Using (1), we can rewrite the definition of m as

m =
∑
v∈V

(
n− 1− deg−(v)

2

)
.

Expanding the binomial coefficient and performing algebra:

m =
∑
v∈V

(n− 1− deg−(v))(n− 2− deg−(v))

2

=
1

2

∑
v∈V

(
deg−(v)2 − deg−(v)

)
+

1

2

∑
v∈V

(
4 · deg−(v)− 2n · deg−(v) + n2 − 3n+ 2

)
=
∑
v∈V

deg−(v)(deg−(v)− 1)

2
+ (2− n)

∑
v∈V

deg−(v) +
1

2

∑
v∈V

(
n2 − 3n+ 2

)
.

We can now make use of (2) and the fact that |V | = n to evaluate the second and third
sums:

=
∑
v∈V

(
deg−(v)

2

)
+

(2− n)n(n− 1)

2
+

n(n− 1)(n− 2)

2

=
∑
v∈V

(
deg−(v)

2

)
.
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Proof of Part (b). Let

S = {s ∈ P3 (V ) | the sub-digraph D |s contains at least one 3-cycle} and
T = {t ∈ P3 (V ) | the sub-digraph D |t contains no 3-cycles} .

(Here, D |s denotes the sub-digraph of D obtained by removing all vertices that don’t
lie in s, and removing all arcs that don’t connect two vertices in s.)

Consider an arbitrary s ∈ S. There exists a 3-cycle (s1, s2, s3) in the sub-digraph
D |s, so (s1, s2), (s2, s3), and (s3, s1) all belong to A. But then (s2, s3, s1) and (s3, s1, s2)
are also 3-cycles in D. On the other hand, since D is a tournament, none of (s2, s1),
(s3, s2), or (s1, s3) belong to A. Hence none of (s3, s2, s1), (s2, s1, s3), or (s1, s3, s2) are
3-cycles in D. Therefore, for each s ∈ S, the sub-digraph D |s contains exactly three
3-cycles. Hence, the total number of 3-cycles in D is 3 |S| (because clearly, each 3-cycle
in D must be contained in D |s for a unique s ∈ S). It thus remains to be shown that
|S| =

(
n
3

)
−m.

The problem can be simplified further by noting that |P3 (V )| =
(
n
3

)
. Since |S| =

|P3 (V )| − |T |, the goal is reduced to showing that |T | = m.

Consider an arbitrary t = {t1, t2, t3} ∈ T . Since the sub-digraph D |t must contain

exactly one arc between each pair of vertices, we have
3∑

i=1

deg−D|t(ti) = 3.

Now, we can’t have deg−D|t(ti) = 1 for all 1 ≤ i ≤ 3, or we would have a 3-cycle. Nor
can we have deg−D|t(ti) = 3 for any 1 ≤ i ≤ 3, since this would contradict the definition
of a tournament. Therefore we must have deg−D|t(ti) = 2 for exactly one 1 ≤ i ≤ 3.
There are arcs from the other two elements of t having ti as their target.

Hence, each subset t ∈ T has exactly one element ti satisfying deg−D|t(ti) = 2, and
there are arcs from the other two elements of t having ti as their target. Consequently,
each t ∈ T gives rise to two arcs of D having a common target. Conversely, any two arcs
of D having a common target are obtained from exactly one t ∈ T . To see this, pick any
two arcs (u, v) ∈ A and (w, v) ∈ A with a common target v. The vertices of these arcs
define a unique element of P3 (V ), namely {u, v, w}. Clearly the sub-digraph D |{u,v,w}
does not contain a 3-cycle, so {u, v, w} ∈ T .

Each choice of two arcs having a common target defines exactly one element of T ,
and each element of T contains exactly one such vertex. Hence, the elements in T can be
counted by totaling the distinct (unordered) pairs of arcs in A with a common vertex as
their target. But this is precisely what m =

∑
v∈V

(
deg−(v)

2

)
counts (because we can count

them by first choosing their common target v, and then we have
(
deg−(v)

2

)
options for

choosing the two arcs). So we have |T | = m, and therefore

# 3-cycles in D = 3(|P3 (V )| − |T |) = 3

((
n

3

)
−m

)
.
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7 Exercise 7

7.1 Problem

Let D be any tournament. Prove that there is a sequence of 2-path reversal operations
that transforms D into a transitive tournament.

7.2 Solution

Proof. Let V = V (D), A = A(D), and n = |V |. If D contains no 3-cycles, it is already
transitive.

It suffices to show that as long as a 3-cycle exists, a 2-path reversal operation can
be chosen that will decrease the number of 3-cycles. Assume that D contains at least
one 3-cycle. By the results of Exercise 5 (b), the number of 3-cycles is given by

3

((
n

3

)
−
∑
v∈V

(
deg+(v)

2

))
= 3

((
n

3

)
−
∑
v∈V

(
deg−(v)

2

))

(since Exercise 5 (a) yields
∑
v∈V

(
deg+(v)

2

)
=
∑
v∈V

(
deg−(v)

2

)
). Hence, in order to decrease the

number of 3-cycles, we need to increase the sum
∑
v∈V

(
deg−(v)

2

)
.

Pick any 3-cycle (u, v, w) in D. Consider two cases: either the indegrees of u, v, and
w are all equal, or they are not all equal.

• Case 1: deg−(u) = deg−(v) = deg−(w). Set d = deg−(u). In this case, performing
the 2-path reversal that replaces the arcs (u, v) and (v, w) with (v, u) and (w, v)
will increase deg−(u) by 1, decrease deg−(w) by 1, and leave the indegrees of all
other vertices unchanged.

Let m be the value of the sum
∑
v∈V

(
deg−(v)

2

)
before the 2-path reversal, and m′′ be

the value after. Then we have:

m′′ = m+

[(
d+ 1

2

)
−
(
d

2

)]
+

[(
d− 1

2

)
−
(
d

2

)]
= m+ (d) + (1− d) = m+ 1.

Thus this 2-path reversal operation reduces the number of 3-cycles by 3 (since the

number of 3-cycles is 3
((

n
3

)
−
∑
v∈V

(
deg−(v)

2

))
).
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• Case 2: deg−(u), deg−(v), and deg−(w) are not all equal. There are three 3-
cycles containing the vertices u, v, and w. Since the indegrees are not all equal,
at least one 3-cycle (x, y, z) among the three has deg−(x) > deg−(z). Fix such
a 3-cycle, and set d = deg−(x) and c = deg−(z). Performing the 2-path reversal
operation that replaces the arcs (x, y) and (y, z) with (y, x) and (z, y) will increase
deg−(x) by 1, decrease deg−(z) by 1, and leave the indegrees of all other vertices
unchanged. As in Case 1, let m be the value of the sum

∑
v∈V

(
deg−(v)

2

)
before the

2-path reversal, and m′′ be the value after. We now have

m′′ = m+

[(
d+ 1

2

)
−
(
d

2

)]
+

[(
c− 1

2

)
−
(
c

2

)]
= m+ (d) + (1− c).

Since d > c, this yields m′′−m ≥ 2. Hence this 2-path reversal reduces the number

of 3-cycles by at least 6 (since the number of 3-cycles is 3
((

n
3

)
−
∑
v∈V

(
deg−(v)

2

))
).

In either case, a 2-path reversal operation on the vertices of the 3-cycle can be chosen to
reduce the total number of 3-cycles. Since there are a finite number of 3-cycles, a finite
number of 2-path reversal operations will reduce the number of 3-cycles to 0.
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