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1 EXERCISE 1

1.1 PROBLEM

Let G and H be two simple graphs. The Cartesian product of G and H is a new simple
graph, denoted G x H, which is defined as follows:

e The vertex set V(G x H) of G x H is the Cartesian product V (G) x V (H).

e A vertex (g,h) of G x H is adjacent to a vertex (¢’, h’) of G x H if and only if we
have
— either g = ¢’ and hh' € E (H),
— or h="h and g¢ € E (G).
(In particular, exactly one of the two equalities ¢ = ¢’ and h = b’ has to hold when
(g,h) is adjacent to (¢',h').)

(a) Recall the n-dimensional cube graph @),, defined for each n € N. (Its vertices
are n-tuples (a1, as,...,a,) € {0,1}", and two such vertices are adjacent if and only if
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they differ in exactly one entry.) Prove that @, = Q,—1 x @ for each positive integer
n. (Thus, @, can be obtained from @) by repeatedly forming Cartesian products; i.e.,
it is a “Cartesian power” of Q);.)

(b) Assume that each of the graphs G and H has a Hamiltonian path. Prove that G x H
has a Hamiltonian path.

(c) Assume that both numbers |V (G)| and |V (H)| are > 1, and that at least one of
them is even. Assume again that each of the graphs G and H has a Hamiltonian path.
Prove that G x H has a Hamiltonian cycle.

1.2 SOLUTION TO PARTS (A) AND (B)

Proof of Part (a). To show that Q,, = Q,_1 X Q1, I will first show that their vertex sets
are the same, provided that we identify each pair ((z1, 2, ..., Zn_1),2n) € {0,1}" 7" x
{0,1} with the n-tuple (z1,2s,...,2,) € {0,1}". Then, we will show that their edge
sets are the same.

The equality of their vertex sets follows directly from the definition of V (Q,,—1 x @1):

V(Qno1 x Q1) ={0,1}"7" x {0,1}
={(z1,22,...,2,) | 2; € {0,1} for 1 <i<n-1, and z, € {0,1}}
={(z1,22,...,2,) | 2; € {0,1} for 1 <i <n}

={0,1}" =V (@n).

To show the equality of the edge sets, I will first show that E (Q,,—1 x Q1) C E(Q,), then
that E(Q,) € E(Qn-1 x Q1). Let {(z1,y1), (22,y2)} € E(Qn_1 X Q1), where x1, 25 €
V(Qn-1) and y1,y2 € V(Q1). Note that since V (Q,-1 X Q1) = V(Qy), (z1,y1) €
V(@) and (x9,y2) € V(Q,). By the definition of E (Q,,_1 X Q1), there are two cases
to consider:

e Case 1: z1 = x5 and 3192 € E(Q1). (This is the “either” case from the definition.)

In this case, x; = x9 = (x11,%12,...,Z1n-1). The graph @; has only one edge:
{0,1}, so {y1,y2} = {0,1} and y; # y2. Then (z1,11) = (T11,T12, -+, T10-1,Y1)
and (z2,92) = (11,212 - - - s T1n—1, y2) differ in only one entry (y; and ys). There-

fore, {(21,y1), (z2,92)} € E(Qn).

e Case 2: y; =y and x1x9 € E(Q,,—1). (This is the “or” case from the definition.)
Since x1x9 € E(Q,—1), the first n—1 entries in (21, 1) and (z2, yo) differ in exactly
one entry. But y; = ys, so (z1,y1) and (x9,y9) differ in exactly one entry as well.
Therefore, {(z1,11), (z2,y2)} € E(Q,).

Case 1 and Case 2 together show that E (Q,,—1 x @1) € E(Q,). It must now be shown
that E (Qn) CE (anl X Ql) Let {<$1,17 L1,25 - - - ailfl,n) ) (372,17552,2, e 7372,n)} €k (Qn)
Since (11,212, ...,21,) and (291, T29,...,T2,) must differ in exactly one entry, there
are two cases to consider.
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o Case 1: (211,%12,---,%10-1) = (T21,%22,...,%2,—1) and Z;, # T2,. This im-
plies that {1'1’”, .1’27”} = {O, 1} - E (Q1> (ZIZ’l,l, .1'1’2, e ,1'1’“,1) = (1'2’1, .%'2’2, N 7372,1171)
and {xy,, 2.} € E(Q1) satisfy the “either” condition for

{11,212, .., 210), (X210, 22, - -, T2p) } € E(Qno1 X Q1)

e Case 2: 71, = T2, and (211, %12, ..., T1,-1) differs from (z91,222,...,T2,-1) in
exactly one entry. This implies that {(z11,212,...,Z1n-1), (T21,T22,...,Tapn 1)} €
E (Qn-1). Together with x;, = x,, this satisfies the “or” condition for

{(@11, 212, -, 1), (221,22, ..., Z2)} € E(Qn_1 X Q1).

Case 1 and Case 2 together show that E (Q,) C E(Q,_1 X @Q1). Therefore, E (Q,,) =
E(Qn_1 X Q7). Since V(Qn_1 X Q1) = V(Q,) and E(Q,) = E(Q,_1 X @Q1), it follows

that Qn = Qn—l X Ql- O
Proof of Part (b). Let n = |V (G)| and m = |V (H)|. Since both G and H have a
Hamiltonian path, there is a listing (vq, vg, . .., v,) of the vertices of G such that v;v;; €

E(G) for all 1 <i<n—1, and a listing (wy, ws, ..., w,,) of the vertices of H such that
ww;+1 € E(H) for all 1 <i <m — 1. It follows from the definition of E (G x H) that
the following holds:

o {(vj,w;),(vi,w;s1)} € E(Gx H)foralll<i<nand1l<j<m-—1,and
o {(vi,w;), (vit1,w;))} €E(Gx H)foralll<i<n—1land1l<j<m.
Thus we may construct a Hamiltonian path as below:
(v, w1), (v, wa) ...y (V1, W), (V2 W), (V2 Win—1) 5 -, (U2, w1) , (v3,w1) , (V3, ws),
s (Vne1,wa) s (Vn, we) - vy (U, wy)),

wherea =1ifn=1 mod2anda=mifn=0 mod2;and b=mif n =1 mod 2
and b =11 n =0 mod 2. It is easily verified that each consecutive pair of vertices is
adjacent in G x H, and that each of the n - m vertices of G x H appears exactly once.
Indeed, this path fully traverses the n x m matrix M where the entry m;; = (v;, w;),
descending row by row in alternating (left/right) directions. O

2 EXERCISE 2

2.1 PROBLEM

Let n be a positive integer. Recall that K, denotes the complete graph on n vertices.
This is the graph with vertex set V' = {1,2,...,n} and edge set Py (V) (so that each
two distinct vertices are connected). Find Eulerian circuits for the graphs K3, K5, and
K.
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2.2 SOLUTION
We shall represent walks as lists of edges, omitting the vertices.

e For K3, the edge set contains only the three edges {1,2}, {2,3}, and {3,1}. The
edges in this order are already an Eulerian circuit: ({1,2},{2,3},{3,1}).

e In the representation of the graph K5 below, an Eulerian circuit can be created
by starting at 1 and first following the edges clockwise around the outer pentagon
back to 1, then following the edges of the inner pentagram back to 1:

({1,2},{2,3}, {3, 4}, {4,5}, {5, 1},
{1,3},{3,5},{5,2},{2,4} ,{4,1}).

Note that all (g) = 10 edges are included, with the first 5 edges {i,j} having
(7 —i) =1 mod 5 and the next 5 edges having (j — i) =2 mod 5.

e In the representation of the graph K7 below, an Eulerian circuit can be created by
starting at 1 and first following the edges clockwise around the outer heptagon back
to 1, then following the edges of the first inner heptagram clockwise by skipping
1 vertex each time back to 1, and finally following the other inner heptagram
clockwise by skipping two vertices each time back to 1:

({1,2},{2,3},{3,4} ,{4,5} ,{5,6} ,{6,7} . {7, 1},
{1,3}.{3,5} .{5.7} . {7.2} ,{2,4} ,{4,6} ,{6, 1},
{1,4} ,{4,7},{7,3},{3,6},{6,2},{2,5},{5,1}).

Note that all (;) = 21 edges are included, with the first 7 edges {i,j} having

(7 —i) =1 mod 7, the next 7 edges having (j — i) = 2 mod 7, and the final 7
edges having (j —7) =3 mod 7.

Nicholas Rancourt (edited by DG), 4



Solutions to homework set #2 page 5 of @

4 EXERCISE 4

4.1 PROBLEM
Let D be a digraph. Show that > deg (v) = > deg(v).

veV(D) veV(D)

4.2 SOLUTION

Proof. Let V.=V (D) and A = A (D). (We use the notation A (D) for the set of all
arcs of D.)
Using the definition of deg™ (v), the sum on the left hand side can be written as

Zdeg*(v) = Z [{a € A | v is the target of a}|.
veV veV
Next, using Proposition 0.3.a from homework set 1, the sum can be rewritten again as
Z {a € A | v is the target of a}| = ZZ [(u,v) € A].
veV veV ueV

Finally, the order of the summation can be flipped, and we can reverse the above process
to arrive at the conclusion:

ZZ[(U,U) € Al :ZZ[(u,v) € Al

veV ueV ueV veV
:Z [{a € A | u is the source of a}|
ucV
= Z deg®(u) = Z deg™ (v).
ueV veV

5 EXERCISE 5

5.1 PROBLEM
Let D = (V, A) be a tournament. Set n = |[V]| and m = ) (deg;(”)).

veV
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(a) Show that m = ) (deg;(”)).

veV

(b) Show that the number of 3-cycles in D is 3- ((5) — m).

5.2 SOLUTION

Proof of Part (a). To begin, note that for every v € V', by the definition of a tournament
we have that for each of the n — 1 vertices u € V' such that u # v, either (u,v) € A or
(v,u) € A but not both. Thus we have for each v € V the equality degt (v) +deg™ (v) =
n — 1, and therefore

deg™(v) =n —1—deg (v). (1)
Also, since there is exactly one arc between each pair of vertices, we have |A| = (;)
But [Al = Y 3 [(u,v) € 4] = 3 deg™ (v), so we have
ueV veV veV

3 degt(v) = (;‘) - w (2)

veV
Using , we can rewrite the definition of m as
n—1—deg (v)
m_z( \ |
veV

Expanding the binomial coefficient and performing algebra:

(n—1—deg (v))(n—2—deg (v))
m=y" :

veV

LS (e (0~ de () + & 3 (4 deg () 20+ deg () + 1~ 30 +2
= deg_(v)(df;g_(v) —1) +(2-n)Y deg(v) + % S (02 - 3n+2).

We can now make use of and the fact that |V| = n to evaluate the second and third
sums:

B deg™ (v) 2—n)n(n—1) n(n—1)(n—2)
=2 < 2 ) - 2 - 2
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Proof of Part (b). Let

S = {s € P; (V) | the sub-digraph D |; contains at least one 3-cycle} and
T = {t € P3(V) | the sub-digraph D |; contains no 3-cycles} .

(Here, D |, denotes the sub-digraph of D obtained by removing all vertices that don’t
lie in s, and removing all arcs that don’t connect two vertices in s.)

Consider an arbitrary s € S. There exists a 3-cycle (sy, 2, s3) in the sub-digraph
D |, so (s1,82), (s2,s3), and (s3, s1) all belong to A. But then (ss, s3,s1) and (s3, s1, S2)
are also 3-cycles in D. On the other hand, since D is a tournament, none of (s, s7),
(s3,82), or (s1,s3) belong to A. Hence none of (ss, sq, 1), (82,81, 3), or (s, 83, S2) are
3-cycles in D. Therefore, for each s € S, the sub-digraph D | contains exactly three
3-cycles. Hence, the total number of 3-cycles in D is 3 |S| (because clearly, each 3-cycle
in D must be contained in D | for a unique s € S). It thus remains to be shown that

5] = (5) —m.

The problem can be simplified further by noting that |Ps (V)| = (5). Since |S| =
|Ps (V)| — |T, the goal is reduced to showing that |T| = m.

Consider an arbitrary ¢t = {t1,ts,t3} € T. Since the sub-digraph D |; must contain
3

exactly one arc between each pair of vertices, we have degl_)‘t(ti) = 3.

i=1
Now, we can’t have degE)'t(ti) =1forall 1 <i <3, or we would have a 3-cycle. Nor
can we have deggh(ti) = 3 for any 1 < ¢ < 3, since this would contradict the definition

of a tournament. Therefore we must have deggh(ti) = 2 for exactly one 1 <1 < 3.
There are arcs from the other two elements of ¢t having ¢; as their target.

Hence, each subset t € T has exactly one element ¢; satisfying degg‘t(ti) = 2, and
there are arcs from the other two elements of ¢ having t; as their target. Consequently,
each t € T gives rise to two arcs of D having a common target. Conversely, any two arcs
of D having a common target are obtained from exactly one ¢t € T'. To see this, pick any
two arcs (u,v) € A and (w,v) € A with a common target v. The vertices of these arcs
define a unique element of P (V'), namely {u,v, w}. Clearly the sub-digraph D |yv,w)
does not contain a 3-cycle, so {u,v,w} € T.

Each choice of two arcs having a common target defines exactly one element of T',
and each element of 7" contains exactly one such vertex. Hence, the elements in 7" can be
counted by totaling the distinct (unordered) pairs of arcs in A with a common vertex as

their target. But this is precisely what m = ) (deg; (”)) counts (because we can count
veV

them by first choosing their common target v, and then we have (
choosing the two arcs). So we have |T'| = m, and therefore

deg™ (v)

) ) options for

# 3-cycles in D = 3(|Ps (V)| — |T]) = 3 ((Z) - m) .
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]

7 EXERCISE 7

7.1 PROBLEM

Let D be any tournament. Prove that there is a sequence of 2-path reversal operations
that transforms D into a transitive tournament.

7.2 SOLUTION

Proof. Let V =V (D), A=A (D), and n = |V|. If D contains no 3-cycles, it is already
transitive.

It suffices to show that as long as a 3-cycle exists, a 2-path reversal operation can
be chosen that will decrease the number of 3-cycles. Assume that D contains at least
one 3-cycle. By the results of Exercise 5 (b), the number of 3-cycles is given by

(-2 (*5")-2(()-2 (")

(since Exercise 5 (a) yields ) (deg;(”)) = > (deg;(”))). Hence, in order to decrease the
veV veV

deg™ (v)) )

number of 3-cycles, we need to increase the sum ) ( )

veV

Pick any 3-cycle (u,v,w) in D. Consider two cases: either the indegrees of u, v, and
w are all equal, or they are not all equal.

e Case 1: deg (u) =deg (v) = deg™ (w). Set d = deg™ (u). In this case, performing
the 2-path reversal that replaces the arcs (u,v) and (v, w) with (v,u) and (w,v)
will increase deg™ (u) by 1, decrease deg™ (w) by 1, and leave the indegrees of all
other vertices unchanged.

Let m be the value of the sum ) (deg;(v)) before the 2-path reversal, and m” be

veV
the value after. Then we have:

e [(5)- Q7)) -

Thus this 2-path reversal operation reduces the number of 3-cycles by 3 (since the

number of 3-cycles is 3 ((’;) — 3 (%, (”))> ).
veV
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o Case 2: deg (u), deg (v), and deg (w) are not all equal. There are three 3-
cycles containing the vertices u, v, and w. Since the indegrees are not all equal,
at least one 3-cycle (z,y,z) among the three has deg™ (z) > deg™ (z). Fix such
a 3-cycle, and set d = deg™ (z) and ¢ = deg (z). Performing the 2-path reversal
operation that replaces the arcs (z,y) and (y, z) with (y, ) and (z,y) will increase
deg™(x) by 1, decrease deg™ (z) by 1, and leave the indegrees of all other vertices

unchanged. As in Case 1, let m be the value of the sum ) (deg; (”)) before the
veV

2-path reversal, and m” be the value after. We now have

e 1391 [(3)- () -meireo-o

Since d > ¢, this yields m” —m > 2. Hence this 2-path reversal reduces the number

of 3-cycles by at least 6 (since the number of 3-cycles is 3 ((’;) - > (deg; (”))> ).
veV

In either case, a 2-path reversal operation on the vertices of the 3-cycle can be chosen to
reduce the total number of 3-cycles. Since there are a finite number of 3-cycles, a finite
number of 2-path reversal operations will reduce the number of 3-cycles to 0. O
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