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Exercise 1. Let G be a simple graph. A triangle in G means a set {a,b,c} of
three distinct vertices a,b, and ¢ of G such that ab, bc, and ca are edges of G.
An antitriangle in G means a set {a, b, ¢} of three distinct vertices a,b, and ¢ of
G such that none of ab, be, and ca is an edge of G. A triangle-or-antitriangle in
G is a set that is either a triangle or an antitriangle.

(a) Assume that |[V(G)| > 6. Prove that G has at least two triangle-or-anti-
triangles.

Proof: To begin, assume, without loss of generality, that |V(G)| = 6, and note
that there are <g
number of ordered triples (a, b, ¢) such that ab € E(G) and bc ¢ E(G). Observe
that each vertex v has degv = 0,1,2,3,4, or 5. If degwv is 0 or 5, then v is the
second vertex in 0 such triples. If degwv is 1 or 4, then v is the second vertex in
4 such triples. If degwv is 2 or 3, then v is the second vertex in 6 such triples.
Thus, there are at most 36 such ordered triples. Note that each unordered
triple of vertices that does not form a triangle-or-antitriangle corresponds to
two such ordered triples, so at most 18 unordered triples of vertices do not form
triangle-or-antitriangles, so there are at least two triangle-or-antitriangles in G.
|

= 20 unordered triples of vertices in G. We wish to count the

(b) Assume that [V(G)| = m + 6 for some m € N. Prove that G has at least
m + 1 triangle-or-anti-triangles.

Proof: Let V(G) = {v1,v2,...,06,U1, ..., Uy }. Now, take {v1,...,v6}. By the
above, we can find at least one triangle-or-antitriangle among these six vertices.
Suppose, without loss of generality, that this triangle-or-antitriangle includes
v1. Then, we take the vertices {vs,...,vg,u1}. Again, there is at least one
triangle-or-antitriangle among these six vertices, and since v; is not included,
this triangle-or-antitriangle must be distinct from the one found previously. By
repeating this process of finding a triangle-or-antitriangle, removing one of its
vertices, and replacing it by one of the uy, we find at least one new triangle-or-
antitriangle for each of {uy, ..., s, }, plus one in which none of the u; were used.



Thus, we find m + 1 triangle-or-antitriangles. H

Exercise 2. Let G be a simple graph. Let n = |V(G)| be the number of

vertices of G. Assume that |E(G)| < @. Prove that there exist three
distinct vertices a, b, and ¢ of G such that none of ab, bc, and ca are edges of G.

Proof: Suppose that for all distinct a,b,c € V(G), at least one of ab,be, ca €
E(G). Then the complement G of G is a graph with no triangles. We know
|E(@)| = "1 — |E(G)], so that [E(G)| = "1 — |E(G)|. But by Mantel’s
theorem we know |E(G)| < %2 (since G has no triangles), and thus |E(G)| =
"(”71 |E(G)| > ”(n2 D _ ’2 = n( 2 Thus, if [B(G)| < 2= 2) , then there
ex1st a,b,c € V(G) such that ab be, ca ¢ E( ). |

Exercise 3. Let G be a simple graph. Let w be a path in G. Prove that the
edges of w are distinct.

Proof: Let {vg,v1,...,v;} be the vertices of w. Since w is a path, its vertices
are distinct. Now, the edges of w are {v;v;41 | 0 <@ < k —1}. Note that two
edges pq and rs are the same only whenp=randg=sorp=sand q=r, i.e.
if they connect the same pair of vertices. Now, each vertex v; in w is connected
to at most two edges in w, but these two edges must be distinct because the
vertices v;—1 and v; 1 are distinct. B

Exercise 4. Let n € N. What is the smallest possible size of a dominating set
of the cycle graph Cs,7

The smallest possible size of a dominating set of Cs,, is n.

Proof: Let the vertices of Cs,, be {v1,vs,...,v3,}. We observe that since each
vertex in Cj3, has 2 neighbors, no three consecutive vertices can be excluded
from a dominating set. Then, if we pick vertices such that every third vertex is
in our dominating set, we have the set {vs, vg, ..., V3, }, which has n vertices. B

Exercise 5. Proposition 0.2 (a) If A and B are two equivalent logical
statements, then [A] = [B].
(b) If A is any logical statement, then [not A] = 1 — [A].

(c) If A and B are two logical statements, then [A A B] = [A][B].



(d) If A and B are two logical statements, then [AV B] = [A] + [B] — [A][B].
Proposition 0.3 Let P be a finite set. Let @ be a subset of P.
(a) Then,

Q=) Ipeql

peP

(b) For each p € P, let a, be a number. Then,

Z[p € Qla, = Zap.

pEP PER

c) For each p € P, let a, be a number. Let ¢ € P. en,
F h Pl » D ber. L P. Th

(a) Prove Proposition 0.2.

Proof of (a): If A and B are equivalent logical statements, then A is true if
and only if B is true. Thus, [A] = [B]. B

Proof of (b):If [A] = 1, then not A] = 0 =1—1. If [A] = 0, then [not A] =
1=1-0.1

Proof of (¢): f [A] = [B] =1, [AAB] =1 = [A][B]. If [A] = 0 or [B] = 0,
then [A A B] = 0=[A][B]. &

Proof of (d): If [A] = [B] = 0, [AV B] = 0 = [A] + [B] — [A][B]. If [A4] = 1 or
[B] = 1, then [AV B] = 1 = [A] + [B] — [A][5]. ®

(b) Prove Proposition 0.3.

Proof of (a):

dpeQl=> P+ > Pe=> 1+ > 0=> 1=|Q.m

pEP PER pEP\Q PER peEP\Q PEQ

Proof of (b):

Y reQa,=> peQla+ Y. peQa,=> a, M

peP peQ pEP\Q PeEQ



Proof of (c):

Y p=day=) 0+) a=a, W

peEP P#q p=q

(c) Now, let G be a simple graph. Prove that
degv = Z [uv € E(G)]
ueV(G)

for each vertex v of G.

Proof: Let A C V(G) be the set of neighbors of v. Then,

degv = |A| = Z [u € A].
ueV(G)

Now, u € A is equivalent to uv € E(G), so

Y uedl= > [weEG).®

uweV(G) uwEV(G)

(d) Prove that

2|E(G Z Z [uv € E(G

ueV(G)veV(G)

Proof:

2|E(G Z degv = Z Z [uv € E(G)]. A

veV(G) veV(G) ueV(G)

Exercise 6. Let k be a positive integer. Let G be a graph. A subset U of
V(G) will be called k-path-dominating if for every v € V(G), there exists a
path of length < k from v to some element of U. Prove that the number of all
k-path-dominating subsets of V(G) is odd.

Proof: Consider the case of the 1-path-dominating subsets. As was proven by
Brouwer, the number of such subsets is odd in any graph. Now, construct the
graph G}, by adding to G edges between any two vertices that are connected by
a path of length < k in G. Then, a dominating set of G}, is a k-path-dominating
subset of G, and G} must have an odd number of dominating sets. l

Exercise 7. Let G be a simple graph with V(G) # §. Show that the following
two statements are equivalent:



Statement 1: The graph G is connected.

Statement 2: For every two nonempty subsets A and B of V(G) satisfying
ANB = and AUB = V(G), there exist a € A and b € B such that ab € E(G).

Proof: First, we prove that Statement 1 implies Statement 2. Assume G
is connected. Since G is connected, there exists a path between any pair of
vertices o, 8 € V(G). Let such a path be (a,v1,...,v%, 3). Without loss of
generality, suppose V(G) is divided into A and B such that o € A and € B.
Then, since the above path begins with a vertex in A and ends with a vertex
in B, it must have at least one edge connecting some a € A and b € B. Now,
to show Statement 2 implies statement 1, suppose G is not connected, and
that for every two nonempty subsets A and B of V(G) satisfying AN B = ()
and AU B = V(G), there exist a € A and b € B such that ab € E(G).
Since G is not connected, there exist vertices a and [ such that no path exists
from « to 5. Then, we attempt to construct the sets A and B by defining
A={v e V(G)| apath from «a to v exists} and B = V(G) \ A. Now, 5 € B
since no path connects a to 8, but since Statement 2 was assumed, there is an
edge connecting 3 to a vertex in A, a contradiction. Hence, the above statements
are equivalent. l

Exercise 8. Let V be a nonempty finite set. Let G and H be two simple graphs
such that V(G) = V(H) = V. Assume that for each u,v € V there exists a
path from u to v in G or a path from u to v in H. Prove that at least one of
the graphs G and H is connected.

Proof: Without loss of generality, assume G is not connected. Then, fix a
vertex u € V. We can divide V into two nonempty subsets: A = {v € V(G) |
a path from u to v exists} and B = V' \ A. Now, since no paths connecting
elements of A to elements of B exist in G, for all a € A, b € B a path from a
to b exists in H. Then, for any a1,as € A (or by, by € B), a path from a; to
as (b1 to be) exists in H since such a path can be constructed from the paths
connecting a; and as to any element of B (b; and by to any element of A).
Thus, H is connected. W

Exercise 9. Let G = (V, E) be a simple graph. The complement graph G of G
is defined to be the simple graph (V,Py (V) \ E). (Thus, two vertices u and v
are adjacent in G if and only if they are not adjacent in G.) Prove that at least
one of the following statements holds:

Statement 1: For each u € V and v € V, there exists a path from u to v in G
of length < 3.



Statement 2: For each v € V and v € V, there exists a path from u to v in G
of length < 2.

Proof: It is sufficient to show that when Statement 1 is false, Statement 2
holds. Thus, assume there exist u,v € V such that there is no path from u to
vin G of length < 3. Then, u and v are adjacent in G. We must show that for
each pair (a,b) of vertices, there exists a path of length < 2 between a and b in
G. If the two vertices are not adjacent in G, this is trivial (since they are then
adjacent in G). Now, let a,b € V be a pair of adjacent vertices in G. Then,
none of the paths! (u,a,b,v), (u,b,a,v), (u,a,v), and (u,b,v) exist in G (by our
assumption on v and v). Hence, we can assume without loss of generality that
ua,ub ¢ E(G), which implies ua,ub € E(G). Hence, the path (a,u,b) of length
2 exists in G. Therefore, Statement 2 holds whenever Statement 1 is false, so
at least one of the two statements holds. B

1Some of the vertices u, a, b, v might coincide. In this case, you should ignore them. For
instance, you should read the path (u,a,b,v) as (u,a,v) in the case when b = v.



