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Exercise 1. Let G be a simple graph. A triangle in G means a set {a, b, c} of
three distinct vertices a, b, and c of G such that ab, bc, and ca are edges of G.
An antitriangle in G means a set {a, b, c} of three distinct vertices a, b, and c of
G such that none of ab, bc, and ca is an edge of G. A triangle-or-antitriangle in
G is a set that is either a triangle or an antitriangle.

(a) Assume that |V(G)| ≥ 6. Prove that G has at least two triangle-or-anti-
triangles.

Proof: To begin, assume, without loss of generality, that |V(G)| = 6, and note

that there are

(
6
3

)
= 20 unordered triples of vertices in G. We wish to count the

number of ordered triples (a, b, c) such that ab ∈ E(G) and bc /∈ E(G). Observe
that each vertex v has deg v = 0, 1, 2, 3, 4, or 5. If deg v is 0 or 5, then v is the
second vertex in 0 such triples. If deg v is 1 or 4, then v is the second vertex in
4 such triples. If deg v is 2 or 3, then v is the second vertex in 6 such triples.
Thus, there are at most 36 such ordered triples. Note that each unordered
triple of vertices that does not form a triangle-or-antitriangle corresponds to
two such ordered triples, so at most 18 unordered triples of vertices do not form
triangle-or-antitriangles, so there are at least two triangle-or-antitriangles in G.
�

(b) Assume that |V(G)| = m + 6 for some m ∈ N. Prove that G has at least
m+ 1 triangle-or-anti-triangles.

Proof: Let V(G) = {v1, v2, ..., v6, u1, ..., um}. Now, take {v1, ..., v6}. By the
above, we can find at least one triangle-or-antitriangle among these six vertices.
Suppose, without loss of generality, that this triangle-or-antitriangle includes
v1. Then, we take the vertices {v2, ..., v6, u1}. Again, there is at least one
triangle-or-antitriangle among these six vertices, and since v1 is not included,
this triangle-or-antitriangle must be distinct from the one found previously. By
repeating this process of finding a triangle-or-antitriangle, removing one of its
vertices, and replacing it by one of the uk, we find at least one new triangle-or-
antitriangle for each of {u1, ..., um}, plus one in which none of the uk were used.
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Thus, we find m+ 1 triangle-or-antitriangles. �

Exercise 2. Let G be a simple graph. Let n = |V(G)| be the number of

vertices of G. Assume that |E(G)| < n(n−2)
4 . Prove that there exist three

distinct vertices a, b, and c of G such that none of ab, bc, and ca are edges of G.

Proof: Suppose that for all distinct a, b, c ∈ V(G), at least one of ab, bc, ca ∈
E(G). Then the complement G of G is a graph with no triangles. We know∣∣E(G)

∣∣ = n(n−1)
2 − |E(G)|, so that |E(G)| = n(n−1)

2 −
∣∣E(G)

∣∣. But by Mantel’s

theorem we know
∣∣E(G)

∣∣ ≤ n2

4 (since G has no triangles), and thus |E(G)| =
n(n−1)

2 −
∣∣E(G)

∣∣ ≥ n(n−1)
2 − n2

4 = n(n−2)
4 . Thus, if |E(G)| < n(n−2)

4 , then there
exist a, b, c ∈ V(G) such that ab, bc, ca /∈ E(G). �

Exercise 3. Let G be a simple graph. Let w be a path in G. Prove that the
edges of w are distinct.

Proof: Let {v0, v1, ..., vk} be the vertices of w. Since w is a path, its vertices
are distinct. Now, the edges of w are {vivi+1 | 0 ≤ i ≤ k − 1}. Note that two
edges pq and rs are the same only when p = r and q = s or p = s and q = r, i.e.
if they connect the same pair of vertices. Now, each vertex vi in w is connected
to at most two edges in w, but these two edges must be distinct because the
vertices vi−1 and vi+1 are distinct. �

Exercise 4. Let n ∈ N. What is the smallest possible size of a dominating set
of the cycle graph C3n?

The smallest possible size of a dominating set of C3n is n.
Proof: Let the vertices of C3n be {v1, v2, ..., v3n}. We observe that since each
vertex in C3n has 2 neighbors, no three consecutive vertices can be excluded
from a dominating set. Then, if we pick vertices such that every third vertex is
in our dominating set, we have the set {v3, v6, ..., v3n}, which has n vertices. �

Exercise 5. Proposition 0.2 (a) If A and B are two equivalent logical
statements, then [A] = [B].

(b) If A is any logical statement, then [notA] = 1− [A].

(c) If A and B are two logical statements, then [A ∧ B] = [A][B].
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(d) If A and B are two logical statements, then [A ∨ B] = [A] + [B]− [A][B].

Proposition 0.3 Let P be a finite set. Let Q be a subset of P .

(a) Then,

|Q| =
∑
p∈P

[p ∈ Q].

(b) For each p ∈ P , let ap be a number. Then,∑
p∈P

[p ∈ Q]ap =
∑
p∈Q

ap.

(c) For each p ∈ P , let ap be a number. Let q ∈ P. Then,∑
p∈P

[p = q]ap = aq.

(a) Prove Proposition 0.2.

Proof of (a): If A and B are equivalent logical statements, then A is true if
and only if B is true. Thus, [A] = [B]. �

Proof of (b):If [A] = 1, then [notA] = 0 = 1 − 1. If [A] = 0, then [notA] =
1 = 1− 0. �

Proof of (c): If [A] = [B] = 1, [A ∧ B] = 1 = [A][B]. If [A] = 0 or [B] = 0,
then [A ∧ B] = 0=[A][B]. �

Proof of (d): If [A] = [B] = 0, [A ∨ B] = 0 = [A] + [B]− [A][B]. If [A] = 1 or
[B] = 1, then [A ∨ B] = 1 = [A] + [B]− [A][B]. �

(b) Prove Proposition 0.3.

Proof of (a):∑
p∈P

[p ∈ Q] =
∑
p∈Q

[p ∈ Q] +
∑

p∈P\Q

[p ∈ Q] =
∑
p∈Q

1 +
∑

p∈P\Q

0 =
∑
p∈Q

1 = |Q| .�

Proof of (b):∑
p∈P

[p ∈ Q]ap =
∑
p∈Q

[p ∈ Q]ap +
∑

p∈P\Q

[p ∈ Q]ap =
∑
p∈Q

ap.�
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Proof of (c): ∑
p∈P

[p = q]ap =
∑
p 6=q

0 +
∑
p=q

ap = aq.�

(c) Now, let G be a simple graph. Prove that

deg v =
∑

u∈V(G)

[uv ∈ E(G)]

for each vertex v of G.

Proof: Let A ⊂ V(G) be the set of neighbors of v. Then,

deg v = |A| =
∑

u∈V(G)

[u ∈ A].

Now, u ∈ A is equivalent to uv ∈ E(G), so∑
u∈V(G)

[u ∈ A] =
∑

u∈V(G)

[uv ∈ E(G)].�

(d) Prove that

2 |E(G)| =
∑

u∈V(G)

∑
v∈V(G)

[uv ∈ E(G)].

Proof:
2 |E(G)| =

∑
v∈V(G)

deg v =
∑

v∈V(G)

∑
u∈V(G)

[uv ∈ E(G)].�

Exercise 6. Let k be a positive integer. Let G be a graph. A subset U of
V(G) will be called k-path-dominating if for every v ∈ V(G), there exists a
path of length ≤ k from v to some element of U . Prove that the number of all
k-path-dominating subsets of V(G) is odd.

Proof: Consider the case of the 1-path-dominating subsets. As was proven by
Brouwer, the number of such subsets is odd in any graph. Now, construct the
graph Gk by adding to G edges between any two vertices that are connected by
a path of length ≤ k in G. Then, a dominating set of Gk is a k-path-dominating
subset of G, and Gk must have an odd number of dominating sets. �

Exercise 7. Let G be a simple graph with V(G) 6= ∅. Show that the following
two statements are equivalent:
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Statement 1: The graph G is connected.

Statement 2: For every two nonempty subsets A and B of V(G) satisfying
A∩B = ∅ and A∪B = V(G), there exist a ∈ A and b ∈ B such that ab ∈ E(G).

Proof: First, we prove that Statement 1 implies Statement 2. Assume G
is connected. Since G is connected, there exists a path between any pair of
vertices α, β ∈ V(G). Let such a path be (α, v1, ..., vk, β). Without loss of
generality, suppose V(G) is divided into A and B such that α ∈ A and β ∈ B.
Then, since the above path begins with a vertex in A and ends with a vertex
in B, it must have at least one edge connecting some a ∈ A and b ∈ B. Now,
to show Statement 2 implies statement 1, suppose G is not connected, and
that for every two nonempty subsets A and B of V(G) satisfying A ∩ B = ∅
and A ∪ B = V(G), there exist a ∈ A and b ∈ B such that ab ∈ E(G).
Since G is not connected, there exist vertices α and β such that no path exists
from α to β. Then, we attempt to construct the sets A and B by defining
A = {v ∈ V(G) | a path from α to v exists} and B = V(G) \ A. Now, β ∈ B
since no path connects α to β, but since Statement 2 was assumed, there is an
edge connecting β to a vertex in A, a contradiction. Hence, the above statements
are equivalent. �

Exercise 8. Let V be a nonempty finite set. Let G and H be two simple graphs
such that V(G) = V(H) = V . Assume that for each u, v ∈ V ,there exists a
path from u to v in G or a path from u to v in H. Prove that at least one of
the graphs G and H is connected.

Proof: Without loss of generality, assume G is not connected. Then, fix a
vertex u ∈ V . We can divide V into two nonempty subsets: A = {v ∈ V(G) |
a path from u to v exists} and B = V \ A. Now, since no paths connecting

elements of A to elements of B exist in G, for all a ∈ A, b ∈ B a path from a
to b exists in H. Then, for any a1, a2 ∈ A (or b1, b2 ∈ B), a path from a1 to
a2 (b1 to b2) exists in H since such a path can be constructed from the paths
connecting a1 and a2 to any element of B (b1 and b2 to any element of A).
Thus, H is connected. �

Exercise 9. Let G = (V,E) be a simple graph. The complement graph G of G
is defined to be the simple graph (V,P2 (V ) \ E). (Thus, two vertices u and v
are adjacent in G if and only if they are not adjacent in G.) Prove that at least
one of the following statements holds:

Statement 1: For each u ∈ V and v ∈ V , there exists a path from u to v in G
of length ≤ 3.
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Statement 2: For each u ∈ V and v ∈ V , there exists a path from u to v in G
of length ≤ 2.

Proof: It is sufficient to show that when Statement 1 is false, Statement 2
holds. Thus, assume there exist u, v ∈ V such that there is no path from u to
v in G of length ≤ 3. Then, u and v are adjacent in G. We must show that for
each pair (a, b) of vertices, there exists a path of length ≤ 2 between a and b in
G. If the two vertices are not adjacent in G, this is trivial (since they are then
adjacent in G). Now, let a, b ∈ V be a pair of adjacent vertices in G. Then,
none of the paths1 (u, a, b, v), (u, b, a, v), (u, a, v), and (u, b, v) exist in G (by our
assumption on u and v). Hence, we can assume without loss of generality that
ua, ub /∈ E(G), which implies ua, ub ∈ E(G). Hence, the path (a, u, b) of length
2 exists in G. Therefore, Statement 2 holds whenever Statement 1 is false, so
at least one of the two statements holds. �

1Some of the vertices u, a, b, v might coincide. In this case, you should ignore them. For
instance, you should read the path (u, a, b, v) as (u, a, v) in the case when b = v.
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