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All mentioned theorems/propositions from the lecture notes are taken from the 2017-05-27 version.

Exercise 1

(a) It is sufficient to prove that there are at least two triangle-or-anti-triangles for |V (G)| = 6, because any graph with more
than 6 vertices can be viewed as a graph with 6 vertices by removing the extra vertices and their edges. For example,
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(the dotted vertex and edges in the second picture are understood to be absent) when we remove the vertex g. According to
Proposition 2.4.1 from the notes, G already has at least one triangle-or-anti-triangle. Let this triangle-or-anti-triangle be a
triangle with vertices a, b, and c. Consider the other three vertices x, y, and z. If xy, yz, and zx are all edges, then xyz is
a triangle and we’re done. So, assume that at least one edge, xy is a non-edge. Either two out of the three xa, xb, xc are
edges, or two out of the three are non-edges. If two out of the three are edges, then we’re done. So assume that two of the
three edges are non-edges. Similarly, assume that two out of the three edges ya, yb, and yc are non-edges. By the pigeonhole
principle, either xa and ya, xb and yb, or xc and yc are both non-edges, which forms an anti-triangle with xy.
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An analogous argument for when abc is an anti-triangle comes to a similar conclusion, replacing edge with non-edge and etc.

(b) When m = 0, |(V (G))| = 6, so by Proposition 2.4.1 from the notes, G has one triangle-or-anti-triangle.
Assume there are k + 1 triangle-or-anti-triangles when m = k.
Suppose there is a graph H where |V (H)| = (k + 1) + 6. According to Proposition 2.4.1 from the notes, this graph must

have at least one triangle-or-anti-triangle with vertices a, b, and c. Ignore vertex a, so that you’re viewing a graph with k
vertices. This graph must have k + 1 triangle-or-anti-triangles, none of which are abc because we have ignored a. Thus, abc
plus these k + 1 triangle-or-anti-triangles means that H has (k + 1) + 1 triangle-or-anti-triangles total.

Thus, by induction, G has at least m+ 1 triangle-or-anti-triangles.

Exercise 2.

A graph G = (V,E) has |V (G)| = n. The most number of edges G could have is

(
n

2

)
, or

n(n− 1)

2
. If |E(G)| < n(n− 2)

4
,

the graph G has over
n(n− 1)

2
− n(n− 2)

4
=

2n2 − 2n

4
− n2 − 2n

4
=

n2

4
non-edges. Mantel’s theorem (Theorem 2.5.10 in
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the notes) states that a simple graph with more than
n2

4
edges must have a, b, c ∈ G such that ab, bc, and ca are edges. As

such, it should still be true if we consider those
n2

4
edges as non-edges, and ab, bc, and ca as non-edges. Since we have more

than
n2

4
non-edges, there must be a, b, c ∈ G such that ab, bc, cb are not edges.

Exercise 3.

By definition, w in G has vertices v0, v1, v2....vk such that for 0 ≤ i, j ≤ k, vi ̸= vj . Let 0 ≤ n,m ≤ k, and w be
(v0, v1, ...vn, vn+1, ...vm, vm+1...vk). If w has a repeated ege, then {vn, vn+1} = {vm, vm+1} for some n,m. However, vi ̸= vj ,
so vn ̸= vm ̸= vm+1. Thus, each edge must be distinct.

Exercise 4.

A cycle is a walk w with vertices (v0, v1, ..., vk) and vk = v0 but for 0 ≤ i, j < k, vi ̸= vj .
Label C3n as follows:

v1,1

v1,2

v1,3

v2,1

v2,2

v2,3

vn,1

vn,2

vn,3

Thus, C3n has edges v1,1v1,2, v1,2v1,3, . . . , vn,2vn,3, vn,3v1,1.
Say we’re constructing a dominating set U . Each vertex v of C3n has degree exactly 2. So if we choose a vertex v to be

part of U , its each of its two neighbors satisfies the conditions that it has a neighbor in U .
So at most, choosing one vertex v accounts for 3 vertices: v itself, which is in U , and its 2 neighbors.
So the minimum number of vertices needed to dominate C3n is |V (C3n)| /3 = 3n/3 = n.
For example, choose all the vk,2 vertices to form U .

Exercise 5.

Proposition 0.2
(i) If A and B are true, [A] = 1, [B] = 1.

If A and B are false, [A] = 0, [B] = 0.
In either case, we obtain [A] = [B].
(ii) If A is true, then [A] = 1, [not A] = 0, and 1− [A] = 0.

If A is false, then [A] = 0, [not A] = 1, and 1− [A] = 1.
In either case, we see that [not A] = 1− [A].
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(iii) If both A and B are true, then [A] = 1, [B] = 1, [A ∧ B] = 1, and [A][B] = 1.
If both A and B are false, then [A] = 0, [B] = 0, [A ∧ B] = 0, and [A][B] = 0.
If A is true and B is false, then [A] = 1, [B] = 0, [A ∧ B] = 0, and [A][B] = 0.
If A is false and B is true, then [A] = 0, [B] = 1, [A ∧ B] = 0, and [A][B] = 0.

Thus, [A ∧ B] = [A][B].
(iv) If both A and B are true, then [A] = 1, [B] = 1, [A ∨ B] = 1, and [A] + [B]− [A][B] = 1.

If both A and B are false, then [A] = 0, [B] = 0, [A ∨ B] = 0, and [A] + [B]− [A][B] = 0.
If A is true and B is false, then [A] = 1, [B] = 0, [A ∨ B] = 1, and [A] + [B]− [A][B] = 1.
If A is false and B is true, then [A] = 0, [B] = 1, [A ∨ B] = 1, and [A] + [B]− [A][B] = 1.

Thus, [A ∨ B] = [A][B][A] + [B]− [A][B].

Proposition 0.3
(i) |Q| is equivalent to the number of elements of P are in Q. Thus, each p is in Q gives the statement p ∈ Q is true, with

a truth value of 1. if p is not in Q, then p ∈ Q is 0. So the sum
∑
p∈P

[p ∈ Q] accurately gives |Q|.

(ii)
∑
p∈P

[p ∈ Q]ap = (0)ap = 0 if p /∈ Q. Thus, if we rewrite the sum by skipping over all p /∈ Q, we get
∑
p∈Q

[p ∈ Q]ap.

[p ∈ Q] = 1 for all p ∈ Q. Thus,
∑
p∈Q

[p ∈ Q]ap =
∑
p∈Q

ap.

(iii) [p = q] = 0 when p ̸= q. Thus, [p = q]ap = 0 for all p ∈ P ̸= q. When p = q, [p = q] = 1, so [p = q]aq = aq.

Then,
∑
p∈P

[p = q]ap = 0 · ap1
+ 0 · ap2

+ ...+ 1 · aq + ...+ 0 · ap = aq.

(c) By Definition 2.5.1, we have deg v = |{u ∈ V | uv ∈ E}|.
[uv ∈ E] = 0 if uv /∈ E, and 1 if uv ∈ G. Thus, for every uv /∈ E, the sum increases by nothing. For every uv ∈ E, the

sum increases by 1. Thus, by definition, the deg v =
∑
u∈V

[uv ∈ E].

(d) According to result (c), ∑
u∈V

∑
v∈V

[uv ∈ E] =
∑
u∈V

deg u.

Think of deg u as the number of edges that have u as an endpoint. That is, if deg u = 5, then u is the endpoint of 5
edges. Then the sum of all the degrees of u are equal to twice the number of edges because each edge has two endpoints,
implying that the sum of all the degrees of u double counts the edges. So,

2 |E| =
∑
u∈V

deg u =
∑
u∈V

∑
v∈V

[uv ∈ E].

Exercise 6.

A k-path-dominating subset U of V (G) can be thought of as a 1-path-dominating subset of V (G) by drawing an edge between
all u, v ∈ V such that the smallest path w from u → v has length k. Since 1-path-dominating subsets have an odd number
of subsets according to Brouwer’s theorem, so do k-path-dominating subsets which can be thought of as 1-path-dominating
subsets!

Exercise 7.

Write our graph G as (V,E).
First let’s show that Statement 1 ⇒ Statement 2.
Assume that Statement 1 holds.
The definition of a graph G being connected is that for each u, v ∈ V , there exists a path from u to v. Suppose V was

divided into nonempty subsets A,B such that for all a ∈ A and b ∈ B, we have ab /∈ E. Then, pick any u ∈ A and v ∈ B.
Since G is connected, there must exist a path from u to v. This path must at some point cross over from A into B (since it
starts in A and ends in B). This means that there is an edge between a vertex in A and a vertex in B. This contradicts the
fact that for all a ∈ A and b ∈ B, we have ab /∈ E.

Next let’s show that Statement 2 ⇒ Statement 1.
Assume that Statement 2 holds. Let n = |V |. A subset S of V shall be called connected if for any two vertices u, v ∈ S,

there exists a path from u to v that uses only vertices in S.
We claim that for each k ∈ {1, 2, . . . , n}, there exists a connected k-element subset S of V .
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Indeed, we shall prove this claim by induction on k. The base case k = 1 is obvious (just pick any 1-element subset). In
the induction step, we fix some k ∈ {1, 2, . . . , n− 1} and assume that there exists a connected k-element subset A of V . We
must then show that there exists a connected (k + 1)-element subset A′ of V .

Indeed, set B = V \ A. Then, A and B are subsets of V satisfying A ∩ B = ∅ and A ∪ B = V , and furthermore are
nonempty (since |A| = k ∈ {1, 2, . . . , n− 1}). Hence, according to Statement 2, there exist a ∈ A and b ∈ B such that ab ∈ E.
Consider these a and b. Then, it is easy to see that the (k + 1)-element subset A ∪ {b} of V is also connected (indeed, the
new vertex b is connected by an edge to a ∈ A, and thus also connected by paths to all other elements of A, since A is a
connected subset). Hence, there exists a connected (k + 1)-element subset A′ of V (namely, A ∪ {b}). This completes the
induction step.

Thus, our claim is proven. Applying it to k = n, we conclude that there exists a connected n-element subset S of V . This
subset must be the whole V . Thus, V is connected. In other words, the graph G is connected.

Exercise 8.

Suppose that G is not connected, that is, there is some u0, v0 ∈ V such that there is no path from u0 to v0 in G. Thus, a
path from u0 to v0 exists in H (by assumption).

Let a be any vertex. We claim that a path u0 → a exists in H.
Indeed, two cases are possible:

• Case 1: There exists a path a → v0 in G.

• Case 2: There is no path a → v0 in G.

Consider Case 1 first. Here, a path a → v0 exists in G. Thus, a path u0 → a does not. (Otherwise, a walk (u0, ..., a, ..., v0)
could be constructed from the paths u0 → a and a → v0, which would imply that there is a path from u0 to v0, which we
have said cannot exist.) Therefore, a path u0 → a exists in H.

Now, consider Case 2. In this case, a path a → v0 does not exist in G. Hence, a path a → v0 must exist in H. Thus,
there is a walk (u0, ..., v0, ..., a) in H (constructed from the paths u0 → v0 and a → v0), which means that there is a path
u0 → a in H.

Thus, in either case, a path u0 → a exists in H.
We have proven this for each vertex a. Hence, for any two vertices a1 and a2, there exist paths u0 → a1 and u0 → a2 in

H. Therefore, for any two vertices a1 and a2, there exist a walk a1 → a2 in H (indeed, such a walk can be constructed by
joining a path u0 → a1 with a path u0 → a2), and hence also a path a1 → a2 in H. Thus, H is connected.

Exercise 9.

Let Statement 1 not hold for G, i.e. not all vertices u, v ∈ G have a path w from u → v such that |w| ≤ 3.
What could the graph G look like?
For every u, v ∈ G there are several cases.
One, u and v are not adjacent in G. Thus, uv /∈ G and uv ∈ G. So path w′(u, v) ∈ G exists, and |w′| = 1 ≤ 2.
Two, u and v are adjacent in G.
Let A = {a | au ∈ G ∧ a ̸= v} and B = {b | bv ∈ G ∧ b /∈ A ∧ b ̸= u}.
All a ∈ A are connected by a a path (a, u, v, b) of length 3 to all b ∈ B, by a path (a, u, v) of length 2 to v, and by a path

(a, u) of length 1 to u.
Similarly, all b ∈ B are connected by a a path (b, v, u, a) of length 3 to all a ∈ A, by a path (b, v, u) of length 2 to u, and

by a path (b, v) of length 1 to v.
Thus, there must be a vertex w s.t. wu,wv /∈ G, otherwise Statement 1 would hold, which imples wu,wv ∈ G, which

creates a path w′ (u,w, v) where |w′| ≤ 2.
Thus, ∀ u, v ∈ V,∃ a path w in G s.t. |w| ≤ 2.
Let Statement 2 not hold for G.
For every u, v ∈ G there are several cases.
One, u and v are not adjacent in G. Thus, uv /∈ G and uv ∈ G. So path w′(u, v) ∈ G exists, and |w′| = 1 ≤ 3.
Two, u and v are adjacent in G.
Let C = {c | cv, cw ∈ G} (which could be empty) and A = {a | au ∈ G ∧ a ̸= v ∧ a /∈ C} and B = {b | bv ∈ G ∧ b /∈

A ∧ b ̸= u ∧ b /∈ C}.
All a ∈ A are connected by a a path (a, u, v, b) of length 3 to all b ∈ B, by a path (a, u, v) of length 2 to v, by a path

(a, u, c) of length 2 to c (if C ̸= ø) and by a path (a, u) of length 1 to u.
Similarly, all b ∈ B are connected by a a path (b, v, u, a) of length 3 to all a ∈ A, by a path (b, v, u) of length 2 to u, by a

path (a, v, c) of length 2 to c (if C ̸= ø) and by a path (b, v) of length 1 to v.
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Thus, there must be vertices a1 ∈ A and b1 ∈ B such that ab /∈ G. If not, then there would be a path (a, b) of length 1
for all a and b.

As such, ab, va, ub are not in G ⇒ ab, va, ub ∈ G. So there is a path w′ (u, a, b, v) where |w′| ≤ 3.
Thus, ∀ u, v ∈ V,∃ a path w in G s.t. |w| ≤ 3.
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