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All mentioned theorems/propositions from the lecture notes are taken from the 2017-05-27 version.

Exercise 1

(a) It is sufficient to prove that there are at least two triangle-or-anti-triangles for |V (G)| = 6, because any graph with more
than 6 vertices can be viewed as a graph with 6 vertices by removing the extra vertices and their edges. For example,

becomes

(the dotted vertex and edges in the second picture are understood to be absent) when we remove the vertex g. According to
Proposition 2.4.1 from the notes, G already has at least one triangle-or-anti-triangle. Let this triangle-or-anti-triangle be a
triangle with vertices a, b, and c¢. Consider the other three vertices x, y, and z. If zy, yz, and zz are all edges, then xyz is
a triangle and we’re done. So, assume that at least one edge, xy is a non-edge. Either two out of the three xza, xb, xc are
edges, or two out of the three are non-edges. If two out of the three are edges, then we’re done. So assume that two of the
three edges are non-edges. Similarly, assume that two out of the three edges ya, yb, and yc are non-edges. By the pigeonhole
principle, either za and ya, b and yb, or xc and yc are both non-edges, which forms an anti-triangle with xy.

An analogous argument for when abc is an anti-triangle comes to a similar conclusion, replacing edge with non-edge and etc.

(b) When m =0, |(V(G))| = 6, so by Proposition 2.4.1 from the notes, G has one triangle-or-anti-triangle.

Assume there are k + 1 triangle-or-anti-triangles when m = k.

Suppose there is a graph H where |V (H)| = (k4 1) + 6. According to Proposition 2.4.1 from the notes, this graph must
have at least one triangle-or-anti-triangle with vertices a, b, and c. Ignore vertex a, so that you're viewing a graph with &
vertices. This graph must have k + 1 triangle-or-anti-triangles, none of which are abc because we have ignored a. Thus, abc
plus these k + 1 triangle-or-anti-triangles means that H has (k + 1) + 1 triangle-or-anti-triangles total.

Thus, by induction, G has at least m + 1 triangle-or-anti-triangles.

Exercise 2.
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A graph G = (V, E) has |V(G)| = n. The most number of edges G could have is (;L) or I EG)] < YR
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the graph G has over n(n2 ) — n(n4 ) Sl 1 non 1 - % non-edges. Mantel’s theorem (Theorem 2.5.10 in
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the notes) states that a simple graph with more than T edges must have a, b, c € G such that ab, bc, and ca are edges. As

2
n
such, it should still be true if we consider those T edges as non-edges, and ab, bc, and ca as non-edges. Since we have more
2
n
than T non-edges, there must be a, b, c € G such that ab, bc, cb are not edges.

Exercise 3.

By definition, w in G has vertices vg,v1, va....v; such that for 0 < i,5 < k, v; # v;. Let 0 < n,m < k, and w be
(V0, V1, .- Uny Unt1s - Umy Um1...0k ). If W has a repeated ege, then {vy,, vny1} = {Vm, Um41} for some n, m. However, v; # v;,
SO Uy, # Uy # Um+1. Thus, each edge must be distinct.

Exercise 4.

A cycle is a walk w with vertices (vo,v1, ..., v%) and vi = vy but for 0 < i,j < k,v; # v;.
Label Cj3, as follows:

Thus, C3n has edges V1,101,2,V1,2V1,3, - -+, Un 2Un 3, Un 3011

Say we’re constructing a dominating set U. Each vertex v of C3,, has degree exactly 2. So if we choose a vertex v to be
part of U, its each of its two neighbors satisfies the conditions that it has a neighbor in U.

So at most, choosing one vertex v accounts for 3 vertices: v itself, which is in U, and its 2 neighbors.

So the minimum number of vertices needed to dominate Cs,, is |V (Cs,)| /3 = 3n/3 = n.

For example, choose all the vy o vertices to form U.

Exercise 5.

Proposition 0.2

(i) If A and B are true, [A] =1, [B] = 1.
If A and B are false, [A] =0, [B] = 0.

In either case, we obtain [A] = [B].

(ii) If A is true, then [A] =1, [not A] =0, and 1 — [A] = 0.
If A is false, then [A] =0, [not A] =1, and 1 — [A] = 1.

In either case, we see that [not A] =1 — [A].



(iii) If both A and B are true, then Al =1,[B]=1,[AAB] =1, and [A][B] =1.

If both A and B are false, then [A] =0, [B] = 0,[AA B] =0, and [A][B] = 0.
If A is true and B is false, then [A] = 1,[B] = 0,[[AA B] =0, and [A][B] = 0.
If A is false and B is true, then [A] = 0,[B] = 1,[A A B] =0, and [A][B] = 0.
Thus, [AA B] = [A][B].
(iv) If both A and B are true, then [A] =1, [B] = 1,[AV B] = 1, and [A] + [B] — [A][B] = 1.
If both A and B are false, then [A] =0, [B] =0,[AV B] =0, and [A] + [B] — [A][B] = 0.
If A is true and B is false, then [A] = 1,[B] =0,[AV B] =1, and [A] + [B] — [A][B] = 1.
If A is false and B is true, then [A] = 0,[B] = 1,[AV B] =1, and [A] + [B] — [A4][B] = 1
Thus, [A v 5] = |A|[B][A] + 8] — [A]B]

Proposition 0.3
(i) |@Q| is equivalent to the number of elements of P are in ). Thus, each p is in Q) gives the statement p € @ is true, with

a truth value of 1. if p is not in @, then p € @ is 0. So the sum Z[p € Q)] accurately gives |Q)].

peP

(ii) Z[p € Qlay, = (0)a, = 0if p ¢ Q. Thus, if we rewrite the sum by skipping over all p ¢ Q, we get Z[p € Qla,

peP PeEQ

[peQ]=1forallpeq. Thu&Z[pEQ Zap
PEQ PeEQ
(iii) [p = ¢q] = 0 when p # ¢. Thus, [p =qla, =0forallp e P #¢q. Whenp=g¢,[p=¢q] =1, so [p = glag = aq.
Then, Z:[p:q]ap:0~ap1 +0-ap, +...+1-a5+..+0-ap, =aq.
peP

(c) By Definition 2.5.1, we have degv = [{u € V | wv € E}|.
[uv € E] =0if uv ¢ E, and 1 if wv € G. Thus, for every uv ¢ E, the sum increases by nothing. For every uv € E, the
sum increases by 1. Thus, by definition, the degv = Z [uv € EJ.

ueV
(d) According to result (c),
Z Z[uv € FE] = Z deg u.
ucV veV ucV

Think of degw as the number of edges that have u as an endpoint. That is, if degu = 5, then u is the endpoint of 5
edges. Then the sum of all the degrees of u are equal to twice the number of edges because each edge has two endpoints,
implying that the sum of all the degrees of u double counts the edges. So,

2|E| = Zdegu: Z Z[UUEE].

ueV ueVoeV

Exercise 6.

A k-path-dominating subset U of V(G) can be thought of as a 1-path-dominating subset of V(G) by drawing an edge between
all u,v € V such that the smallest path w from u — v has length k. Since 1-path-dominating subsets have an odd number
of subsets according to Brouwer’s theorem, so do k-path-dominating subsets which can be thought of as 1-path-dominating
subsets!

Exercise 7.

Write our graph G as (V, E).

First let’s show that Statement 1 = Statement 2.

Assume that Statement 1 holds.

The definition of a graph G being connected is that for each u,v € V, there exists a path from u to v. Suppose V was
divided into nonempty subsets A, B such that for all a € A and b € B, we have ab ¢ E. Then, pick any v € A and v € B.
Since G is connected, there must exist a path from u to v. This path must at some point cross over from A into B (since it
starts in A and ends in B). This means that there is an edge between a vertex in A and a vertex in B. This contradicts the
fact that for all « € A and b € B, we have ab ¢ E.

Next let’s show that Statement 2 = Statement 1.

Assume that Statement 2 holds. Let n = |V|. A subset S of V shall be called connected if for any two vertices u,v € S,
there exists a path from w to v that uses only vertices in S.

We claim that for each k € {1,2,...,n}, there exists a connected k-element subset S of V.



Indeed, we shall prove this claim by induction on k. The base case k = 1 is obvious (just pick any 1-element subset). In
the induction step, we fix some k € {1,2,...,n — 1} and assume that there exists a connected k-element subset A of V. We
must then show that there exists a connected (k + 1)-element subset A’ of V.

Indeed, set B =V \ A. Then, A and B are subsets of V satisfying AN B = @ and AU B =V, and furthermore are
nonempty (since |[A| =k € {1,2,...,n — 1}). Hence, according to Statement 2, there exist a € A and b € B such that ab € E.
Consider these ¢ and b. Then, it is easy to see that the (k + 1)-element subset AU {b} of V is also connected (indeed, the
new vertex b is connected by an edge to a € A, and thus also connected by paths to all other elements of A, since A is a
connected subset). Hence, there exists a connected (k 4 1)-element subset A’ of V' (namely, A U {b}). This completes the
induction step.

Thus, our claim is proven. Applying it to k = n, we conclude that there exists a connected n-element subset S of V. This
subset must be the whole V. Thus, V is connected. In other words, the graph G is connected.

Exercise 8.

Suppose that G is not connected, that is, there is some ugp,vg € V such that there is no path from ug to vy in G. Thus, a
path from wg to vy exists in H (by assumption).

Let a be any vertex. We claim that a path uy — a exists in H.

Indeed, two cases are possible:

e (Case 1: There exists a path a — vg in G.
e (Case 2: There is no path a — vy in G.

Consider Case 1 first. Here, a path a — vy exists in G. Thus, a path ug — a does not. (Otherwise, a walk (ug, ..., @, ..., vg)
could be constructed from the paths uyg — a and a — vy, which would imply that there is a path from wg to vy, which we
have said cannot exist.) Therefore, a path ug — a exists in H.

Now, consider Case 2. In this case, a path a — vy does not exist in G. Hence, a path a — vg must exist in H. Thus,
there is a walk (ug, ..., vp,...,a) in H (constructed from the paths ug — vg and a — vg), which means that there is a path
ug — ain H.

Thus, in either case, a path ug — a exists in H.

We have proven this for each vertex a. Hence, for any two vertices a; and ao, there exist paths ug — a1 and ug — as in
H. Therefore, for any two vertices a; and asg, there exist a walk a; — a2 in H (indeed, such a walk can be constructed by
joining a path ug — a; with a path uy — a2), and hence also a path a; — a9 in H. Thus, H is connected.

Exercise 9.

Let Statement 1 not hold for G, i.e. not all vertices u,v € G have a path w from « — v such that |w| < 3.

What could the graph G look like?

For every u,v € G there are several cases.

One, u and v are not adjacent in G. Thus, uv ¢ G and uv € G. So path w/(u,v) € G exists, and |w/| =1 < 2.

Two, u and v are adjacent in G.

Let A={a|auece GAha#v}and B={b|bv e GAb¢ ANDF# u}.

All a € A are connected by a a path (a,u,v,b) of length 3 to all b € B, by a path (a,u,v) of length 2 to v, and by a path
(a,u) of length 1 to w.

Similarly, all b € B are connected by a a path (b, v,u,a) of length 3 to all @ € A, by a path (b,v,u) of length 2 to u, and
by a path (b,v) of length 1 to v.

Thus, there must be a vertex w s.t. wu,wv ¢ G, otherwise Statement 1 would hold, which imples wu,wv € G, which
creates a path w' (u, w,v) where |w'| < 2.

Thus, V u,v € V,3 a path w in G s.t. |w| < 2.

Let Statement 2 not hold for G.

For every u,v € G there are several cases.

One, v and v are not adjacent in G. Thus, uv ¢ G and uv € G. So path w'(u,v) € G exists, and |w/| =1 < 3.

Two, u and v are adjacent in G.

Let C = {c | ev,cw € G} (which could be empty) and A = {a |au € GAa#vAag C}and B={b|bve GAb¢
ANbAunbéCY.

All @ € A are connected by a a path (a,u,v,b) of length 3 to all b € B, by a path (a,u,v) of length 2 to v, by a path
(a,u,c) of length 2 to ¢ (if C' # ¢) and by a path (a,u) of length 1 to u.

Similarly, all b € B are connected by a a path (b, v, u,a) of length 3 to all a € A, by a path (b,v,u) of length 2 to u, by a
path (a,v,c) of length 2 to ¢ (if C' # ¢) and by a path (b,v) of length 1 to v.



Thus, there must be vertices a; € A and by € B such that ab ¢ G. If not, then there would be a path (a,b) of length 1
for all a and b.

As such, ab,va,ub are not in G = ab,va,ub € G. So there is a path w’ (u, a, b, v) where |w’'| < 3.

Thus, V u,v € V,3 a path w in G s.t. |w| < 3.



