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1. Tournaments and the Vandermonde determinant

The goal of this lecture is to demonstrate a curious application of digraphs: a
combinatorial proof of the Vandermonde determinant identity. This proof – which
was found by Gessel in 1979 – is neither the simplest nor the shortest proof (several
others can be found in [Grinbe15, §6.7] and in most textbooks on linear algebra), but
it illustrates several techniques in enumerative combinatorics and in the application
of combinatorics to other fields.

1.1. 3-cycles in tournaments

We shall use the notations introduced in [lec7, §1.1 and §1.4]. In particular, we
use the word “digraph” as shorthand for “simple digraph”. When i and j are two
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vertices of a digraph, we sometimes use the notation ij for the pair (i, j). We recall
that a tournament is a loopless simple digraph D that satisfies the tournament axiom:
For any two distinct vertices u and v of D, exactly one of the two pairs (u, v) = uv
and (v, u) = vu is an arc of D.

We shall focus on counting certain triples of vertices, which we will refer to as
“3-cycles”:

Definition 1.1.1. Let D = (V, A) be a simple digraph. A 3-cycle of D shall mean
a triple (u, v, w) of distinct vertices u, v, w ∈ V satisfying uv, vw, wu ∈ A.

Example 1.1.2. Consider the following digraph:

1

2

3

4

5 .

This digraph has nine 3-cycles:

(1, 4, 3) , (1, 5, 3) , (2, 5, 3) , (3, 1, 4) , (3, 1, 5) ,
(3, 2, 5) , (4, 3, 1) , (5, 3, 1) , (5, 3, 2) .

(We do not count the two 3-cycles (1, 4, 3) and (4, 3, 1) as identical, even though
they are just cyclic rotations of one another.) On the other hand, the triple (1, 2, 3)
is not a 3-cycle (since 23 is not an arc). The triple (1, 3, 4) is not a 3-cycle either
(since none of 13, 34 and 41 is an arc).

We note that our notion of 3-cycles is essentially equivalent to the notion of
cycles1 of length 3. Indeed, if (u, v, w) is a 3-cycle of a simple digraph D, then
(u, v, w, u) is a cycle of length 3. Conversely, if (u, v, w, u) is a cycle of length 3, then
(u, v, w) is a 3-cycle.

Definition 1.1.3. Let D = (V, A) be a digraph, and let (u, v) be an arc of D. To
reverse this arc (u, v) means to replace this arc (u, v) by (v, u) in the arc set of D.
The result of this operation is a new digraph (V, (A \ {uv}) ∪ {vu}).

We note that if D is a tournament, then the new digraph (V, (A \ {uv}) ∪ {vu})
obtained by reversing the arc (u, v) will again be a tournament.

1See [lec7, Definition 1.5.1 (b)] for the definition of our notion of cycles.
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Convention 1.1.4. In the following, the symbol “#” stands for the word “num-
ber” (as in “the number of”). For example,

(# of subsets of {1, 2, 3}) = 23 = 8.

Proposition 1.1.5. Let D be a tournament. Let (u, v, w) be a 3-cycle of D. Let D′

be the tournament obtained from D by reversing the arcs uv, vw and wu (this
means replacing them by vu, wv and uw). Then,(

# of 3-cycles of D′) = (# of 3-cycles of D) .

Here is an illustration for Proposition 1.1.5 showing D on the left and D′ on the
right (the arcs uv, vw and wu of D are painted blue; the arcs vu, wv and uw of D′

are painted red; all other arcs are the same in D and in D′):

u

v

w

u

v

w

D D′

.

We shall give two proofs of Proposition 1.1.5. The first relies on the notion of
indegrees, which we shall now recall along with that of outdegrees:

Definition 1.1.6. Let D = (V, A) be a digraph. Let v ∈ V be any vertex. Then:

(a) The outdegree of v denotes the number of arcs of D whose source is v. This
outdegree is denoted deg+ v.

(b) The indegree of v denotes the number of arcs of D whose target is v. This
indegree is denoted deg− v.

For instance, if D is the digraph in Example 1.1.2, then deg+ 2 = 1 and deg− 2 =
3.
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We also recall the following fact (Exercise 5 on homework set #2; see [hw2s] for
a solution):

Proposition 1.1.7. Let D = (V, A) be a tournament. Set n = |V| and m =

∑
v∈V

(
deg− v

2

)
. Then:

(a) We have m = ∑
v∈V

(
deg+ v

2

)
.

(b) The number of 3-cycles in D is 3
((

n
3

)
− m

)
.

First proof of Proposition 1.1.5. Proposition 1.1.7 (b) yields that the # of 3-cycles in D

is 3
((

n
3

)
− m

)
, where m = ∑

v∈V

(
deg− v

2

)
. Thus, the # of 3-cycles of D depends

only on V and the indegrees deg− v of the vertices v ∈ V. But these indegrees do
not change when we reverse the arcs uv, vw and wu (since each of the vertices u,
v and w loses one incoming arc2 and gains another). Hence, the # of 3-cycles, too,
does not change when we reverse these arcs. This proves Proposition 1.1.5.

Second proof of Proposition 1.1.5. Write the digraph D in the form D = (V, A).
The 3-cycles of D can be classified into the following three types:

• Type 1: those 3-cycles that contain at most one of the vertices u, v and w.

• Type 2: those 3-cycles that contain precisely two of the vertices u, v and w.

• Type 3: those 3-cycles that contain all three of the vertices u, v and w.

The 3-cycles of Type 2 can be classified further: Any 3-cycle of Type 2 contains
precisely two of the vertices u, v and w and one further vertex. If this further vertex
is x, then we call this 3-cycle a “3-cycle of Type 2x”. Thus, a 3-cycle of Type 2x (for
a vertex x ∈ V \ {u, v, w}) means a 3-cycle that contains the vertex x and precisely
two of the vertices u, v and w.

The 3-cycles of D′ can be classified in the exact same way.
Now, when we reverse the arcs uv, vw and wu of the digraph D, all 3-cycles of

Type 1 are preserved, and no new 3-cycles of Type 1 are created. Thus,(
# of 3-cycles of D′ of Type 1

)
= (# of 3-cycles of D of Type 1) . (1)

2An “incoming arc” of a vertex r ∈ V means an arc whose target is r. The number of such arcs is
the indegree deg− r of r.
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Furthermore, for each x ∈ V \ {u, v, w}, we have(
# of 3-cycles of D′ of Type 2x

)
= (# of 3-cycles of D of Type 2x) . (2)

[Proof of (2): Let x ∈ V \ {u, v, w}. We must prove that the two numbers(
# of 3-cycles of D′ of Type 2x

)
and (# of 3-cycles of D of Type 2x)

are equal. These numbers depend only on the presence or absence of the pairs
(x, u), (x, v), (x, w), (u, x), (v, x) and (w, x) in the set A (since a 3-cycle of Type 2x
must consist entirely of vertices from the set {u, v, w, x}, and thus its existence or
non-existence depends only on the arcs that join the four vertices in this set); thus,
we only have finitely many cases to check. Moreover, since D is a tournament,
it suffices to know which of the three pairs (x, u), (x, v) and (x, w) belong to A,
because the tournament axiom shows that (e.g.) the pair (u, x) belongs to A if and
only if the pair (x, u) does not. Thus, we have eight cases left to consider:

Case 1: We have (x, u) ∈ A and (x, v) ∈ A and (x, w) ∈ A (and thus (u, x) /∈ A
and (v, x) /∈ A and (w, x) /∈ A).

Case 2: We have (x, u) ∈ A and (x, v) ∈ A and (x, w) /∈ A (and thus (u, x) /∈ A
and (v, x) /∈ A and (w, x) ∈ A).

Case 3: We have (x, u) ∈ A and (x, v) /∈ A and (x, w) ∈ A (and thus (u, x) /∈ A
and (v, x) ∈ A and (w, x) /∈ A).

Case 4: We have (x, u) ∈ A and (x, v) /∈ A and (x, w) /∈ A (and thus (u, x) /∈ A
and (v, x) ∈ A and (w, x) ∈ A).

Case 5: We have (x, u) /∈ A and (x, v) ∈ A and (x, w) ∈ A (and thus (u, x) ∈ A
and (v, x) /∈ A and (w, x) /∈ A).

Case 6: We have (x, u) /∈ A and (x, v) ∈ A and (x, w) /∈ A (and thus (u, x) ∈ A
and (v, x) /∈ A and (w, x) ∈ A).

Case 7: We have (x, u) /∈ A and (x, v) /∈ A and (x, w) ∈ A (and thus (u, x) ∈ A
and (v, x) ∈ A and (w, x) /∈ A).

Case 8: We have (x, u) /∈ A and (x, v) /∈ A and (x, w) /∈ A (and thus (u, x) ∈ A
and (v, x) ∈ A and (w, x) ∈ A).

All eight cases are straightforward. For example, in Case 5, the relevant parts of
the digraphs D and D′ (that is, the vertices u, v, w, x and the arcs that join them)
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look as follows:

u

v

w

x u

v

w

x

D D′

.

In this case, the 3-cycles of D′ of Type 2x are (x, v, u), (v, u, x) and (u, x, v) (this is, of
course, essentially just one 3-cycle and its cyclic rotations), whereas the 3-cycles of
D of Type 2x are (x, w, u), (w, u, x) and (u, x, w). The number of the former equals
the number of the latter (namely, both numbers are 3). This proves (2) in Case 5. A
similar argument works in each of the other seven cases. Thus, (2) is proved.]

Finally, the only 3-cycles of D′ of Type 3 are (u, w, v), (w, v, u) and (v, u, w),
whereas those of D are (u, v, w), (v, w, u) and (w, u, v). Thus, we have(

# of 3-cycles of D′ of Type 3
)

= (# of 3-cycles of D of Type 3) (3)

(since both of these numbers equal 3).
Now, recall that each 3-cycle of D has exactly one of the three Types 1, 2 and 3;

moreover, if it has Type 2, then it has Type 2x for a unique x ∈ V \ {u, v, w}. Thus,

(# of 3-cycles of D)

= (# of 3-cycles of D of Type 1) + ∑
x∈V\{u,v,w}

(# of 3-cycles of D of Type 2x)

+ (# of 3-cycles of D of Type 3) . (4)

The same argument can be made for D′ instead of D, and thus we obtain(
# of 3-cycles of D′)
=
(
# of 3-cycles of D′ of Type 1

)
+ ∑

x∈V\{u,v,w}

(
# of 3-cycles of D′ of Type 2x

)
+
(
# of 3-cycles of D′ of Type 3

)
. (5)
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The equalities (1), (2) and (3) show that the right hand side of (5) equals the right
hand side of (4). Hence, the left hand side of (5) equals the left hand side of (4). In
other words, we have(

# of 3-cycles of D′) = (# of 3-cycles of D) .

This proves Proposition 1.1.5 again.

1.2. Reminders on permutations

Now, let us recall the definitions and a few basic properties of permutations and
symmetric groups:

Definition 1.2.1. A permutation of a set X means a bijection from X to X.

Definition 1.2.2. For each n ∈ N, we let Sn denote the set of all permutations of
{1, 2, . . . , n}. Note that |Sn| = n!.

There are several ways to represent (i.e., write down) a permutation σ ∈ Sn for a
given n ∈ N:

• One-line notation: We can represent σ by the n-tuple [σ (1) , σ (2) , . . . , σ (n)]
of all its values. (Note that we would normally use parentheses rather than
square brackets here, but it is a habit of combinatorialists to use square brack-
ets in this specific situation.)

• Two-line notation: We can represent σ by the 2×n-table
(

1 2 · · · n
σ (1) σ (2) · · · σ (n)

)
.

• Cycle digraph: We can represent σ by the digraph

({1, 2, . . . , n} , {(i, σ (i)) | i ∈ {1, 2, . . . , n}}) .

This is the digraph whose vertices are 1, 2, . . . , n, and whose arcs are the pairs
(i, σ (i)) for all i ∈ {1, 2, . . . , n}. This digraph is called the cycle digraph of σ.

Example 1.2.3. Let σ be the permutation of {1, 2, 3, 4, 5, 6} that sends

1 7→ 3, 2 7→ 2, 3 7→ 6, 4 7→ 5, 5 7→ 4, 6 7→ 1.

Then:

• The one-line notation for σ is [3, 2, 6, 5, 4, 1]. (Some combinatorialists would
drop the brackets and commas, and shorten this to 326541; but we have no
need for this much shorthand.)

• The two-line notation for σ is
(

1 2 3 4 5 6
3 2 6 5 4 1

)
.
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• The cycle digraph of σ is

1

3

6
4 5

2

.

Remark 1.2.4. Let n ∈ N, and let σ ∈ Sn. Then, the cycle digraph of σ has the
property that each vertex v satisfies

deg− v = 1 and deg+ v = 1.

From this fact, it follows easily that this digraph is a disjoint union of cycles
(including cycles of length 1). This is easily seen to be equivalent to the classical
result that the permutation σ can be uniquely written as a composition of disjoint
cycles. We will not need this fact, but we found it worth mentioning; details can
be found in [Grinbe21, proof of Theorem 5.5.2].

For the theory of determinants, the most important feature of a permutation is
its sign. Let us recall its definition:

Definition 1.2.5. Let n ∈ N, and let σ ∈ Sn.

(a) An inversion of σ means a pair (i, j) of integers i and j such that

1 ≤ i < j ≤ n and σ (i) > σ (j) .

(b) The length of σ is defined to be the number of inversions of σ. It is denoted
by ℓ (σ).

(c) The sign of σ is defined to be the number (−1)ℓ(σ). It is denoted by (−1)σ

or sign σ or sgn σ or ε (σ). (We will use the notation sign σ.)

For example, the permutation σ ∈ S6 from Example 1.2.3 has inversions (1, 2),
(1, 6), (2, 6), (3, 4), (3, 5), (3, 6), (4, 5), (4, 6) and (5, 6), and thus has length ℓ (σ) = 9
and sign sign σ = (−1)ℓ(σ) = (−1)9 = −1.

Here are some well-known properties of signs and lengths:
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Proposition 1.2.6. Let n ∈ N.

(a) For any σ ∈ Sn, we have sign σ ∈ {1,−1}.

(b) The identity permutation id ∈ Sn has sign sign (id) = 1.

(c) If τ ∈ Sn is any transposition, then sign τ = −1.

(d) For any two permutations σ, τ ∈ Sn, we have sign (σ ◦ τ) = sign σ · sign τ.

(e) For any σ ∈ Sn, we have sign
(
σ−1) = sign σ.

(f) If the cycle digraph of σ has r cycles (counted up to rotation – so that, e.g.,
the cycle digraph in Example 1.2.3 has 3 cycles), then sign σ = (−1)n−r.

(g) We have sign σ = ∏
1≤i<j≤n

σ (i)− σ (j)
i − j

.

(h) If you write down the one-line notation for σ, and sort it into increasing
order by repeatedly swapping adjacent entries (this way of sorting a tuple
is called “bubblesort”, or more precisely, is a more general version of bub-
blesort), then ℓ (σ) is the smallest possible number of swaps you will need.
(Actually, it is the exact number of swaps you will need if you don’t waste
time by swapping pairs of entries that already are in increasing order.)

Proofs of the claims of Proposition 1.2.6 can be found in [Grinbe15, §5.1–§5.3],
[Conrad], [Day16, Chapter 6.B], [Strick20, Appendix B] and various other sources
(including most serious texts on linear algebra or introductory abstract algebra).
We will not need them here, however.

1.3. Determinants

Using the notion of signs, we now recall the definition of a determinant:

Definition 1.3.1. Let A be an n× n-matrix (say, with real entries – more generally,
it can have entries from an arbitrary commutative ring).

For all i, j ∈ {1, 2, . . . , n}, we let ai,j be the (i, j)-th entry of A (that is, the entry
of A in the i-th row and the j-th column).

Then, the determinant of A is the number det A defined by

det A := ∑
σ∈Sn

sign σ ·
n

∏
i=1

ai,σ(i). (6)

The formula (6) is known as the Leibniz formula. Among many equivalent defini-
tions of the determinant, it is the most explicit one.
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1.4. The Vandermonde determinant

We can now state the theorem we shall apply our graph-theoretical machinery to:

Theorem 1.4.1 (Vandermonde determinant). Let n ∈ N.
Let x1, x2, . . . , xn be n numbers (or, more generally, n elements of a commuta-

tive ring).
Let V be the n × n-matrix whose (i, j)-th entry is xi−1

j for all i, j ∈ {1, 2, . . . , n}.
That is, let

V :=


1 1 1 · · · 1
x1 x2 x3 · · · xn

x2
1 x2

2 x2
3 · · · x2

n
...

...
... . . . ...

xn−1
1 xn−1

2 xn−1
3 · · · xn−1

n

 .

Then,
det V = ∏

1≤i<j≤n

(
xj − xi

)
. (7)

This theorem is one of several equivalent versions of the “Vandermonde deter-
minant”. Some algebraic proofs can be found in [Grinbe15, §6.7] and in [Grinbe21,
Theorem 6.4.31]. We shall here give a combinatorial proof using tournaments. (This
proof is a mild variation of the proof found by Ira Gessel, published in [Gessel79].)

1.5. Tournaments on {1, 2, . . . , n}
Definition 1.5.1. The vertex set of a digraph D = (V, A) is defined to be the set
V. This is the set of vertices of D.

Convention 1.5.2. We fix n ∈ N, and we also fix n numbers x1, x2, . . . , xn.
We let T be the set of all tournaments with vertex set {1, 2, . . . , n}.

Thus, a tournament D ∈ T has vertices 1, 2, . . . , n. We introduce another convenient
notion:

Definition 1.5.3. Let i and j be two elements of {1, 2, . . . , n}. If i < j, then the pair
(i, j) is said to be increasing. If i > j, then the pair (i, j) is said to be decreasing.

Thus, for each increasing pair (i, j), there is a corresponding decreasing pair (j, i).
There are exactly n (n − 1) /2 many increasing pairs:

(1, 2) , (1, 3) , . . . , (1, n) ,
(2, 3) , . . . , (2, n) ,

. . . ...
(n − 1, n) .
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Example 1.5.4. The following table shows all eight tournaments D ∈ T in the
case when n = 3 (where we are drawing all increasing arcs in blue and all
decreasing arcs in red):

1

2 3

{}

1

2 3

{(1, 2)}

1

2 3

{(1, 3)}

1

2 3

{(2, 3)}

1

2 3

{(1, 2) , (1, 3)}

1

2 3

{(1, 2) , (2, 3)}

1

2 3

{(1, 3) , (2, 3)}

1

2 3

{(1, 2) , (1, 3) , (2, 3)}

Underneath each tournament, we have written down the set of all increasing
arcs of this tournament.

Now, let D ∈ T be a tournament. Then, D is loopless (by definition), so that
each of its arcs is either increasing or decreasing. Moreover, the tournament axiom
shows that for any increasing pair (i, j), exactly one of the two pairs (i, j) and (j, i)
is an arc of D. In other words, an increasing pair (i, j) is an arc of D if and only if
the corresponding decreasing pair (j, i) is not. Thus, D is uniquely determined if
we know which increasing pairs are arcs of D.

Forget that we fixed D. We thus have shown that a tournament D ∈ T is
uniquely determined if we know which increasing pairs are arcs of D. In other
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words, a tournament D ∈ T is uniquely determined by the set of all increasing
arcs of D. Moreover, for any set S of increasing pairs, there is a unique tournament
D ∈ T such that S is the set of all increasing arcs of D. Thus, the map

T → {all sets of increasing pairs} ,
D 7→ {all increasing arcs of D}

is a bijection from the set T to the set of all sets of increasing pairs. The bijection
principle3 therefore yields

|T | = |{all sets of increasing pairs}| = 2n(n−1)/2

(since there are exactly n (n − 1) /2 many increasing pairs).

Convention 1.5.5. We shall use the Iverson bracket notation: If A is any logical

statement, then [A] will mean the number

{
1, if A is true;
0, if A is false.

For instance, [2 + 2 = 4] = 1 and [2 + 2 = 5] = 0.
The number [A] is called the truth value of the statement A.

Definition 1.5.6. Let D ∈ T be a tournament. Then:

(a) The sign of D is defined to be the integer

sign D := ∏
(i,j) is an
arc of D

(−1)[i>j] ∈ {1,−1} . (8)

(b) The x-weight of D is defined to be the number

w (D) := ∏
(i,j) is an
arc of D

(
(−1)[i>j] xj

)
. (9)

Example 1.5.7. For n = 3, the tournament

({1, 2, 3} , {(2, 1) , (2, 3) , (3, 1)})

can be drawn as follows:
1

2 3 .
3The bijection principle says that if f : X → Y is a bijection from a set X to a set Y, then |X| = |Y|.
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Its sign is

(−1)[2>1]︸ ︷︷ ︸
=(−1)1=−1

· (−1)[2>3]︸ ︷︷ ︸
=(−1)0=1

· (−1)[3>1]︸ ︷︷ ︸
=(−1)1=−1

= (−1) · 1 · (−1) = 1.

Its x-weight is

(−1)[2>1]︸ ︷︷ ︸
=(−1)1=−1

x1 · (−1)[2>3]︸ ︷︷ ︸
=(−1)0=1

x3 · (−1)[3>1]︸ ︷︷ ︸
=(−1)1=−1

x1 = (−1) x1 · 1x3 · (−1) x1 = x2
1x3.

Example 1.5.8. For n = 3, here are all the tournaments D ∈ T listed along with
their x-weights w (D):

1

2 3

−x2
1x2

1

2 3

x1x2
2

1

2 3

x1x2x3

1

2 3

x2
1x3

1

2 3

−x2
2x3

1

2 3

−x1x2x3

1

2 3

−x1x2
3

1

2 3

x2x2
3
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The equality (8) can be rewritten as follows:

Proposition 1.5.9. Let D ∈ T be a tournament. Then,

sign D = (−1)(# of decreasing arcs of D) .

Proof. Let us simplify the product ∏
(i,j) is an
arc of D

(−1)[i>j]. The factor (−1)[i>j] of this

product equals 1 if the arc (i, j) is increasing (because in this case, we have i < j,
and thus [i > j] = 0, and therefore (−1)[i>j] = (−1)0 = 1), and equals −1 if the arc
(i, j) is decreasing (because in this case, we have i > j, and thus [i > j] = 1, and
therefore (−1)[i>j] = (−1)1 = −1). Since any arc (i, j) of D is either increasing or
decreasing (but cannot be both at the same time), we thus conclude that

∏
(i,j) is an
arc of D

(−1)[i>j] =

 ∏
(i,j) is an
increasing
arc of D

1


︸ ︷︷ ︸

=1

·

 ∏
(i,j) is a

decreasing
arc of D

(−1)


︸ ︷︷ ︸

=(−1)(# of decreasing arcs of D)

= (−1)(# of decreasing arcs of D) .

Hence, (8) becomes

sign D = ∏
(i,j) is an
arc of D

(−1)[i>j] = (−1)(# of decreasing arcs of D) .

This proves Proposition 1.5.9.

The equality (9) can be rewritten as follows:

Proposition 1.5.10. Let D ∈ T be a tournament. Then,

w (D) = (sign D) ·
n

∏
j=1

xdeg− j
j ,

where deg− j denotes the indegree of j as a vertex of D.

Proof. From (9), we obtain

w (D) = ∏
(i,j) is an
arc of D

(
(−1)[i>j] xj

)
=

 ∏
(i,j) is an
arc of D

(−1)[i>j]


 ∏

(i,j) is an
arc of D

xj

 .
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Now, let us consider the product ∏
(i,j) is an
arc of D

xj. How often does the factor xj (for a

given j ∈ {1, 2, . . . , n}) appear in this product? It appears once for each arc of D
whose target is j. Thus, in total, it appears deg− j many times (since deg− j is the
# of arcs of D whose target is j). Hence, the product ∏

(i,j) is an
arc of D

xj contains each xj

exactly deg− j many times (and contains no further factors). Consequently,

∏
(i,j) is an
arc of D

xj =
n

∏
j=1

xdeg− j
j . (10)

Now,

w (D) =

 ∏
(i,j) is an
arc of D

(−1)[i>j]


︸ ︷︷ ︸

=sign D
(by (8))

 ∏
(i,j) is an
arc of D

xj


︸ ︷︷ ︸

=
n
∏
j=1

xdeg− j
j

(by (10))

= (sign D) ·
n

∏
j=1

xdeg− j
j .

This proves Proposition 1.5.10.

On the other hand, the x-weights of the tournaments D ∈ T are precisely the
terms that appear in the expansion of the product ∏

1≤i<j≤n

(
xj − xi

)
:

Proposition 1.5.11. We have

∏
1≤i<j≤n

(
xj − xi

)
= ∑

D∈T
w (D) .

We shall derive this proposition from the following more general formula:

Lemma 1.5.12. For each pair (i, j) ∈ {1, 2, . . . , n}2, let y(i,j) be a number. Then,

∏
1≤i<j≤n

(
y(i,j) + y(j,i)

)
= ∑

D∈T
∏

a is an
arc of D

ya.

Proof of Lemma 1.5.12. The idea is to expand the product ∏
1≤i<j≤n

(
y(i,j) + y(j,i)

)
(which

has n (n − 1) /2 many factors) into a huge sum (a sum of 2n(n−1)/2 many addends),
and to match up the resulting addends with the tournaments D ∈ T .
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Before we explain this in the general case, let us first explore the case n = 3 as
an example. In this case, we have

∏
1≤i<j≤n

(
y(i,j) + y(j,i)

)
= ∏

1≤i<j≤3

(
y(i,j) + y(j,i)

)
=
(

y(1,2) + y(2,1)

) (
y(1,3) + y(3,1)

) (
y(2,3) + y(3,2)

)
= y(1,2)y(1,3)y(2,3) + y(1,2)y(1,3)y(3,2) + y(1,2)y(3,1)y(2,3) + y(1,2)y(3,1)y(3,2)

+ y(2,1)y(1,3)y(2,3) + y(2,1)y(1,3)y(3,2) + y(2,1)y(3,1)y(2,3) + y(2,1)y(3,1)y(3,2).

The right hand side of this is a sum of 8 addends, and each of these addends
has the form ∏

a is an
arc of D

ya for some tournament D ∈ T . For example, the addend

y(2,1)y(1,3)y(3,2) comes from the tournament D ∈ T whose arcs are (2, 1), (1, 3) and
(3, 2).

Here is the argument in the general case:
We first recall that if F is any finite set, and if

(
a f
)

f∈F and
(
b f
)

f∈F are two families of
numbers, then

∏
f∈F

(
a f + b f

)
= ∑

S is a subset of F
∏
f∈F

{
a f , if f ∈ S;

b f , if f /∈ S.

Applying this fact to F = {increasing pairs} and a(i,j) = y(i,j) and b(i,j) = y(j,i), we obtain

∏
(i,j)∈{increasing pairs}

(
y(i,j) + y(j,i)

)

= ∑
S is a set of

increasing pairs

∏
(i,j)∈{increasing pairs}

{
y(i,j), if (i, j) ∈ S;

y(j,i), if (i, j) /∈ S.

Recalling the definition of an increasing pair, we can rewrite this as follows:

∏
1≤i<j≤n

(
y(i,j) + y(j,i)

)

= ∑
S is a set of

increasing pairs

∏
1≤i<j≤n

{
y(i,j), if (i, j) ∈ S;

y(j,i), if (i, j) /∈ S.
(11)

In the discussion following Example 1.5.4, we have found a bijection from the set T to
the set of all sets of increasing pairs. Specifically, this bijection sends each tournament
D ∈ T to the set of all increasing arcs of D. Let us denote this bijection by Φ. Let us now
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substitute Φ (D) for S in the sum on the right hand side of (11). We thus obtain

∑
S is a set of

increasing pairs

∏
1≤i<j≤n

{
y(i,j), if (i, j) ∈ S;

y(j,i), if (i, j) /∈ S

= ∑
D∈T

∏
1≤i<j≤n

{
y(i,j), if (i, j) ∈ Φ (D) ;

y(j,i), if (i, j) /∈ Φ (D) .

Hence, we can rewrite (11) as

∏
1≤i<j≤n

(
y(i,j) + y(j,i)

)

= ∑
D∈T

∏
1≤i<j≤n

{
y(i,j), if (i, j) ∈ Φ (D) ;

y(j,i), if (i, j) /∈ Φ (D) .
(12)

Now, let D ∈ T be a tournament. Recall that Φ (D) is the set of all increasing arcs of D
(by the definition of Φ). Thus,

∏
1≤i<j≤n;
(i,j)∈Φ(D)

y(i,j) = ∏
1≤i<j≤n;

(i,j) is an increasing arc of D

y(i,j) = ∏
(i,j) is an increasing arc of D

y(i,j)

(since each increasing arc (i, j) of D automatically satisfies 1 ≤ i < j ≤ n).
Recall again that Φ (D) is the set of all increasing arcs of D. Thus,

∏
1≤i<j≤n;
(i,j)/∈Φ(D)

y(j,i) = ∏
1≤i<j≤n;

(i,j) is not an increasing arc of D

y(j,i) = ∏
1≤i<j≤n;

(i,j) is not an arc of D

y(j,i)

(here, we have dropped the “increasing” condition under the product sign, since any arc
(i, j) satisfying 1 ≤ i < j ≤ n is automatically increasing). However, if i and j are two
integers satisfying 1 ≤ i < j ≤ n, then the condition “(i, j) is not an arc of D” is equivalent
to the condition “(j, i) is an arc of D” (by the tournament axiom, since the vertices i and
j of D are distinct4). Hence, we can replace the condition “(i, j) is not an arc of D” under
the summation sign ∏

1≤i<j≤n;
(i,j) is not an arc of D

by the equivalent condition “(j, i) is an arc of D”. We

thus obtain

∏
1≤i<j≤n;

(i,j) is not an arc of D

y(j,i) = ∏
1≤i<j≤n;

(j,i) is an arc of D

y(j,i)

= ∏
1≤j<i≤n;

(i,j) is an arc of D

y(i,j)

(
here, we have renamed the

index (i, j) as (j, i)

)

= ∏
(i,j) is an arc of D;

j<i

y(i,j) = ∏
(i,j) is a decreasing arc of D

y(i,j)

4because i < j
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(because an arc (i, j) of D satisfying j < i is the same as a decreasing arc of D). Now,

∏
1≤i<j≤n

{
y(i,j), if (i, j) ∈ Φ (D) ;

y(j,i), if (i, j) /∈ Φ (D)

=

 ∏
1≤i<j≤n;
(i,j)∈Φ(D)

y(i,j)


︸ ︷︷ ︸

= ∏
(i,j) is an increasing arc of D

y(i,j)

·

 ∏
1≤i<j≤n;
(i,j)/∈Φ(D)

y(j,i)


︸ ︷︷ ︸

= ∏
1≤i<j≤n;

(i,j) is not an arc of D

y(j,i)

= ∏
(i,j) is a decreasing arc of D

y(i,j)

=

 ∏
(i,j) is an increasing arc of D

y(i,j)

 ·

 ∏
(i,j) is a decreasing arc of D

y(i,j)


= ∏

(i,j) is an arc of D
y(i,j) (13)

(since any arc (i, j) of D is either increasing or decreasing, but cannot be both at the same
time).

Forget that we fixed D. We thus have proved (13) for each D ∈ T . Thus, (12) becomes

∏
1≤i<j≤n

(
y(i,j) + y(j,i)

)
= ∑

D∈T
∏

1≤i<j≤n

{
y(i,j), if (i, j) ∈ Φ (D) ;

y(j,i), if (i, j) /∈ Φ (D)︸ ︷︷ ︸
= ∏

(i,j) is an arc of D
y(i,j)

(by (13))

= ∑
D∈T

∏
(i,j) is an arc of D

y(i,j)︸ ︷︷ ︸
= ∏

a is an
arc of D

ya

= ∑
D∈T

∏
a is an

arc of D

ya.

This proves Lemma 1.5.12.

Proof of Proposition 1.5.11. For each pair (i, j) ∈ {1, 2, . . . , n}2, we define a number

y(i,j) := (−1)[i>j] xj.

Then, Lemma 1.5.12 yields

∏
1≤i<j≤n

(
y(i,j) + y(j,i)

)
= ∑

D∈T
∏

a is an
arc of D

ya. (14)
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However, if (i, j) is a pair of integers satisfying 1 ≤ i < j ≤ n, then

y(i,j) + y(j,i) = (−1)[i>j] xj + (−1)[j>i] xi

(
by the definition of y(i,j) and of y(j,i)

)
= (−1)0 xj + (−1)1 xi

 since [i > j] = 0 (because we don’t
have i > j (since i < j)) and [j > i] = 1

(since j > i (because i < j))


= 1xj + (−1) xi = xj − xi.

Thus, we can rewrite (14) as

∏
1≤i<j≤n

(
xj − xi

)
= ∑

D∈T
∏

a is an
arc of D

ya

︸ ︷︷ ︸
= ∏
(i,j) is an
arc of D

y(i,j)

= ∑
D∈T

∏
(i,j) is an
arc of D

y(i,j)︸︷︷︸
=(−1)[i>j]xj

(by the definition
of y(i,j))(

here, we have renamed the index a
as (i, j) in the product

)
= ∑

D∈T
∏

(i,j) is an
arc of D

(
(−1)[i>j] xj

)
︸ ︷︷ ︸

=w(D)
(by (9))

= ∑
D∈T

w (D) .

This proves Proposition 1.5.11.

1.6. Tournaments with no 3-cycles

Recall that our goal is to prove the equality (7). Proposition 1.5.11 interprets the
right hand side of this equality in terms of tournaments. We shall next find a
similar interpretation for its left hand side.

To this purpose, we shall study the tournaments D ∈ T that have no 3-cycles.
As we will soon see, they have a rather specific form:

Definition 1.6.1. Let σ ∈ Sn be a permutation. Then, we define a digraph Tσ by

Tσ := ({1, 2, . . . , n} , {(σ (i) , σ (j)) | i and j are integers with 1 ≤ i < j ≤ n}) .

Thus, the vertices of the digraph Tσ are 1, 2, . . . , n, and its arcs are the pairs
(σ (i) , σ (j)), where i and j range over integers satisfying 1 ≤ i < j ≤ n.

Example 1.6.2. If n = 6, and if σ ∈ S6 is the permutation from Example 1.2.3,
then Tσ is the following digraph (again, we draw the increasing arcs blue and
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the decreasing arcs red):

1

23

4

5 6

The usefulness of these digraphs Tσ for us is due to the following theorem:

Theorem 1.6.3.

(a) For each permutation σ ∈ Sn, the digraph Tσ is a tournament in T and has
no 3-cycles.

(b) The tournaments D ∈ T that have no 3-cycles are precisely the digraphs of
the form Tσ with σ ∈ Sn.

(c) If σ and τ are two distinct permutations in Sn, then the digraphs Tσ and
Tτ are distinct. (In other words, any permutation σ ∈ Sn can be uniquely
reconstructed from Tσ.)

(d) Let σ ∈ Sn. Then,
sign (Tσ) = sign σ (15)

and

w (Tσ) = sign σ ·
n

∏
i=1

xi−1
σ(i). (16)

Also, each vertex v of Tσ has indegree

deg− v = σ−1 (v)− 1. (17)

Proof of Theorem 1.6.3. (a) Let σ ∈ Sn be a permutation. The arcs of the digraph Tσ

are the pairs (σ (i) , σ (j)), where i and j range over integers satisfying 1 ≤ i < j ≤
n. Such an arc (σ (i) , σ (j)) cannot be a loop (since i < j entails i ̸= j and therefore
σ (i) ̸= σ (j) 5). Hence, the digraph Tσ is loopless.

For any pair (u, v) ∈ {1, 2, . . . , n}2, we have the following equivalence:

((u, v) is an arc of Tσ) ⇐⇒
(

σ−1 (u) < σ−1 (v)
)

. (18)

[Proof of (18): Let (u, v) ∈ {1, 2, . . . , n}2 be a pair. We must prove the equivalence (18).
We shall prove its “=⇒” and “⇐=” directions separately:

5because σ is injective
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=⇒: Assume that (u, v) is an arc of Tσ. We must prove that σ−1 (u) < σ−1 (v).
The arcs of the digraph Tσ are the pairs (σ (i) , σ (j)), where i and j range over integers

satisfying 1 ≤ i < j ≤ n. Hence, (u, v) is such a pair (since (u, v) is an arc of Tσ). In
other words, (u, v) = (σ (i) , σ (j)) for some integers i and j satisfying 1 ≤ i < j ≤ n.
Consider these i and j. From (u, v) = (σ (i) , σ (j)), we obtain u = σ (i) and v = σ (j). Thus,
i = σ−1 (u) and j = σ−1 (v). Hence, the inequality i < j (which we know to be true) can
be rewritten as σ−1 (u) < σ−1 (v). Thus, σ−1 (u) < σ−1 (v) is true. This proves the “=⇒”
direction of the equivalence (18).

⇐=: Assume that σ−1 (u) < σ−1 (v). We must prove that (u, v) is an arc of Tσ.
The arcs of the digraph Tσ are the pairs (σ (i) , σ (j)), where i and j range over integers

satisfying 1 ≤ i < j ≤ n. Thus, in particular, one of these arcs is
(
σ
(
σ−1 (u)

)
, σ
(
σ−1 (v)

))
(obtained by setting i = σ−1 (u) and j = σ−1 (v)), since σ−1 (u) and σ−1 (v) are two integers
satisfying 1 ≤ σ−1 (u) < σ−1 (v) ≤ n. In other words, one of these arcs is (u, v) (since
σ
(
σ−1 (u)

)
= u and σ

(
σ−1 (v)

)
= v). Thus, (u, v) is an arc of Tσ. This proves the “⇐=”

direction of the equivalence (18).
Thus, the proof of the equivalence (18) is complete.]

Now, it is easy to see that this digraph Tσ is a tournament.
[Proof: Since we know that Tσ is loopless, we only need to verify the tournament axiom.

In other words, we need to show that for any two distinct vertices u and v of Tσ, exactly
one of the two pairs (u, v) and (v, u) is an arc of Tσ.

Let u and v be two distinct vertices of Tσ. Thus, u and v are two distinct elements of
{1, 2, . . . , n}. We must show that exactly one of the two pairs (u, v) and (v, u) is an arc of
Tσ.

We WLOG assume that σ−1 (u) ≤ σ−1 (v) (since otherwise, we can swap u with v).
Combining this with σ−1 (u) ̸= σ−1 (v) (this follows from u ̸= v), we obtain σ−1 (u) <
σ−1 (v). Thus, (u, v) is an arc of Tσ (by (18)). Moreover, we do not have σ−1 (v) < σ−1 (u)
(since this would contradict σ−1 (u) < σ−1 (v)). However, from (18) (applied to (v, u)
instead of (u, v)), we obtain the equivalence

((v, u) is an arc of Tσ) ⇐⇒
(

σ−1 (v) < σ−1 (u)
)

.

Thus, (v, u) is not an arc of Tσ (since we do not have σ−1 (v) < σ−1 (u)).
We now know that (u, v) is an arc of Tσ, but (v, u) is not. Therefore, exactly one of the

two pairs (u, v) and (v, u) is an arc of Tσ. This completes the proof of the tournament axiom
for Tσ. Hence, Tσ is a tournament.]

Since Tσ is a tournament with vertex set {1, 2, . . . , n}, we have Tσ ∈ T . It remains
to show that Tσ has no 3-cycles.

Indeed, assume the contrary. Thus, Tσ has a 3-cycle (u, v, w). Consider this
(u, v, w). Since (u, v, w) is a 3-cycle, all three pairs uv, vw and wu are arcs of
Tσ. In particular, uv is an arc of Tσ. In other words, (u, v) is an arc of Tσ. By
(18), we thus conclude that σ−1 (u) < σ−1 (v). Similarly, σ−1 (v) < σ−1 (w) and
σ−1 (w) < σ−1 (u). Therefore, σ−1 (u) < σ−1 (v) < σ−1 (w) < σ−1 (u), which is
absurd. This contradiction shows that our assumption was wrong. Hence, we have
shown that Tσ has no 3-cycles. This completes the proof of Theorem 1.6.3 (a).
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(b) Theorem 1.6.3 (a) tells us that each digraph of the form Tσ with σ ∈ Sn is a
tournament D ∈ T that has no 3-cycles. It thus remains to prove the converse: i.e.,
that each tournament D ∈ T that has no 3-cycles is a digraph of the form Tσ with
σ ∈ Sn.

So let D ∈ T be a tournament that has no 3-cycles. We must find a permutation
σ ∈ Sn such that D = Tσ.

We first show the following:

Claim 1: Let u and v be two distinct vertices of D such that deg− v ≤
deg− u. Then, vu is an arc of D.

[Proof of Claim 1: Assume the contrary. Thus, vu is not an arc of D.
The tournament axiom shows that exactly one of the two pairs uv and vu is an

arc of D. Hence, uv is an arc of D (since vu is not an arc of D).
Let X be the set of all vertices z of D for which zu is an arc of D. Thus, the

vertices in X are in 1-to-1 correspondence with the arcs of D that have target u.
Hence, |X| equals the number of such arcs. But the latter number is deg− u (by the
definition of indegrees). Hence, we have shown that |X| = deg− u.

Let Y be the set of all vertices z of D for which zv is an arc of D. Then, |Y| =
deg− v (indeed, we can show this in the same way as we showed |X| = deg− u).

The digraph D is loopless (since it is a tournament); thus, uu is not an arc of D.
In other words, we have u /∈ X (by the definition of X). However, we have u ∈ Y
(since uv is an arc of D). Hence, X ̸= Y (because if we had X = Y, then u /∈ X = Y
would contradict u ∈ Y).

Now, |Y| = deg− v ≤ deg− u, so that deg− u ≥ |Y|. Thus, |X| = deg− u ≥ |Y|.
However, if X was a subset of Y, then X would be a proper subset of Y (since
X ̸= Y), which would entail |X| < |Y|; but this would contradict |X| ≥ |Y|. Thus,
X is not a subset of Y. Hence, there exists a vertex w ∈ X such that w /∈ Y. Consider
this w.

Since w ∈ X, the pair wu is an arc of D (by the definition of X). As a consequence,
w ̸= u (since uu is not an arc of D) and w ̸= v (since vu is not an arc of D).
Combining this with u ̸= v, we see that the three vertices u, v and w are distinct.

Since w /∈ Y, the pair wv is not an arc of D. However, w ̸= v; thus, the tournament
axiom shows that exactly one of the two pairs wv and vw is an arc of D. Since wv
is not an arc of D, we thus conclude that vw is an arc of D.

We now know that u, v and w are three distinct vertices of D and that uv, vw and
wu are arcs of D. In other words, (u, v, w) is a 3-cycle. But this contradicts the fact
that D has no 3-cycles. This contradiction shows that our assumption was false;
hence, Claim 1 is proven.]

Pick a permutation τ ∈ Sn of {1, 2, . . . , n} that sorts the vertices of D in the order
of increasing outdegree – i.e., that satisfies

deg− (τ (1)) ≤ deg− (τ (2)) ≤ · · · ≤ deg− (τ (n)) . (19)
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(Such a permutation τ exists, since we can sort any n numbers in increasing order.)
We shall show that D = Tτ.

Indeed, the digraphs D and Tτ have the same vertex set (namely, {1, 2, . . . , n});
thus, we only need to show that they have the same arcs. To do so, we will first
show the following two claims:

Claim 2: Any arc of Tτ is an arc of D.

[Proof of Claim 2: Let (v, u) be an arc of Tτ. We must prove that (v, u) is an arc of
D.

However, the arcs of the digraph Tτ are the pairs (τ (i) , τ (j)), where i and j
range over integers satisfying 1 ≤ i < j ≤ n (by the definition of Tτ). Hence, (v, u)
is such a pair (since (v, u) is an arc of Tτ). In other words, (v, u) = (τ (i) , τ (j))
for some two integers i and j satisfying 1 ≤ i < j ≤ n. Consider these i and
j. From (v, u) = (τ (i) , τ (j)), we obtain v = τ (i) and u = τ (j). From i < j, we
obtain deg− (τ (i)) ≤ deg− (τ (j)) (by (19)). In other words, deg− v ≤ deg− u (since
v = τ (i) and u = τ (j)). Moreover, the vertices i and j are distinct (since i < j);
thus, the vertices τ (i) and τ (j) are distinct as well (since τ is injective). In other
words, v and u are distinct (since v = τ (i) and u = τ (j)). In other words, u and v
are distinct. Hence, Claim 1 yields that vu is an arc of D. In other words, (v, u) is
an arc of D. This completes the proof of Claim 2.]

Claim 3: Any arc of D is an arc of Tτ.

[Proof of Claim 3: Let (u, v) be an arc of D. We must prove that (u, v) is an arc of
Tτ.

Assume the contrary. Thus, (u, v) is not an arc of Tτ.
The digraph D is loopless (since it is a tournament). Thus, its arc (u, v) cannot

be a loop. In other words, u and v are distinct. Hence, exactly one of the two pairs
(u, v) and (v, u) is an arc of D (by the tournament axiom, since D is a tournament).
Therefore, the pair (v, u) is not an arc of D (since (u, v) is an arc of D).

However, Tτ is a tournament (by Theorem 1.6.3 (a), applied to σ = τ), and u and
v are two distinct vertices. Hence, exactly one of the two pairs (u, v) and (v, u) is
an arc of Tτ (by the tournament axiom). Therefore, (v, u) is an arc of Tτ (because
(u, v) is not an arc of Tτ). By Claim 2, this entails that (v, u) is an arc of D. But this
contradicts the fact that (v, u) is not an arc of D. This contradiction shows that our
assumption was false. Hence, (u, v) is an arc of Tτ. This proves Claim 3.]

Claim 2 and Claim 3 (combined) yield that the arcs of D are precisely the arcs of
Tτ. In other words, the digraphs D and Tτ have the same arcs. Since they also have
the same vertex set, we thus conclude that they are equal. In other words, D = Tτ.
Hence, D is a digraph of the form Tσ with σ ∈ Sn (namely, σ = τ).

Forget that we fixed D. We thus have shown that each tournament D ∈ T that
has no 3-cycles is a digraph of the form Tσ with σ ∈ Sn. This completes the proof
of Theorem 1.6.3 (b).
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(d) Let σ ∈ Sn. Let v be a vertex of Tσ. Thus, v ∈ {1, 2, . . . , n}.
Set k := σ−1 (v). By the definition of an indegree, we have

deg− v
= (# of arcs of Tσ whose target is v)
= (# of arcs of Tσ that have the form (u, v) for some u ∈ {1, 2, . . . , n})(

since an arc of Tσ whose target is v is the same as an
arc of Tσ that has the form (u, v) for some u ∈ {1, 2, . . . , n}

)
= (# of u ∈ {1, 2, . . . , n} such that (u, v) is an arc of Tσ)

=
(

# of u ∈ {1, 2, . . . , n} such that σ−1 (u) < σ−1 (v)
)

 here, we have replaced the condition “ (u, v) is an arc of Tσ”
by the equivalent condition “σ−1 (u) < σ−1 (v) ”

(the equivalence follows from (18))


=
(

# of u ∈ {1, 2, . . . , n} such that σ−1 (u) < k
) (

since σ−1 (v) = k
)

= (# of j ∈ {1, 2, . . . , n} such that j < k)(
here, we have substituted j for σ−1 (u) , since the

map σ−1 : {1, 2, . . . , n} → {1, 2, . . . , n} is a bijection

)
= k − 1

(since the numbers j ∈ {1, 2, . . . , n} such that j < k are precisely the numbers
1, 2, . . . , k − 1, and thus there are k − 1 of them). In view of k = σ−1 (v), this
rewrites as deg− v = σ−1 (v)− 1. This proves (17).

Forget that we fixed v. We thus have proved (17) for each vertex v of Tσ.
Next, we shall prove (15). Indeed, the definition of sign (Tσ) yields

sign (Tσ) = ∏
(i,j) is an
arc of Tσ

(−1)[i>j] = ∏
(u,v) is an
arc of Tσ

(−1)[u>v]

(here, we have renamed the index (i, j) as (u, v) in the product). However, the arcs
of Tσ are the pairs (σ (i) , σ (j)), where i and j range over integers satisfying 1 ≤ i <
j ≤ n (by the definition of Tσ). Thus, we can rewrite the product ∏

(u,v) is an
arc of Tσ

(−1)[u>v]

as follows:
∏

(u,v) is an
arc of Tσ

(−1)[u>v] = ∏
1≤i<j≤n

(−1)[σ(i)>σ(j)]

(here, we have tacitly used the fact that the pairs (σ (i) , σ (j)) for all pairs of inte-
gers (i, j) satisfying 1 ≤ i < j ≤ n are distinct6, and therefore each arc of Tσ can be

6This is clear because σ is injective.
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written in the form (σ (i) , σ (j)) for a unique pair (i, j)). Hence,

sign (Tσ) = ∏
(u,v) is an
arc of Tσ

(−1)[u>v] = ∏
1≤i<j≤n

(−1)[σ(i)>σ(j)]

=

 ∏
1≤i<j≤n;
σ(i)>σ(j)

(−1)[σ(i)>σ(j)]

 ·

 ∏
1≤i<j≤n;

not σ(i)>σ(j)

(−1)[σ(i)>σ(j)]


(since each pair (i, j) in our product either satisfies σ (i) > σ (j) or doesn’t). In view
of

∏
1≤i<j≤n;
σ(i)>σ(j)

(−1)[σ(i)>σ(j)]︸ ︷︷ ︸
=(−1)1

(since σ(i)>σ(j)
and thus [σ(i)>σ(j)]=1)

= ∏
1≤i<j≤n;
σ(i)>σ(j)

(−1)1︸ ︷︷ ︸
=−1

= ∏
1≤i<j≤n;
σ(i)>σ(j)

(−1)

= (−1)(# of pairs (i,j) of integers satisfying 1≤i<j≤n and σ(i)>σ(j))

= (−1)(# of inversions of σ)

 since the pairs (i, j) of integers
satisfying 1 ≤ i < j ≤ n and σ (i) > σ (j)

are known as the inversions of σ


= (−1)ℓ(σ) (since the # of inversions of σ is called ℓ (σ))

= sign σ
(

because sign σ is defined to be (−1)ℓ(σ)
)

and
∏

1≤i<j≤n;
not σ(i)>σ(j)

(−1)[σ(i)>σ(j)]︸ ︷︷ ︸
=(−1)0

(since we don’t
have σ(i)>σ(j), and thus
we have [σ(i)>σ(j)]=0)

= ∏
1≤i<j≤n;

not σ(i)>σ(j)

(−1)0︸ ︷︷ ︸
=1

= 1,

we can simplify this to

sign (Tσ) =

 ∏
1≤i<j≤n;
σ(i)>σ(j)

(−1)[σ(i)>σ(j)]


︸ ︷︷ ︸

=sign σ

·

 ∏
1≤i<j≤n;

not σ(i)>σ(j)

(−1)[σ(i)>σ(j)]


︸ ︷︷ ︸

=1

= sign σ.

This proves (15).
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It remains to prove (16). We first consider the product
n
∏
j=1

xdeg− j
j , where deg− j

denotes the indegree of j as a vertex of Tσ. We can substitute σ (i) for j in this
product (since σ is a bijection from {1, 2, . . . , n} to {1, 2, . . . , n}). Thus, we obtain

n

∏
j=1

xdeg− j
j =

n

∏
i=1

xdeg−(σ(i))
σ(i) . (20)

However, each i ∈ {1, 2, . . . , n} satisfies

deg− (σ (i)) = σ−1 (σ (i))︸ ︷︷ ︸
=i

−1 (by (17), applied to v = σ (i))

= i − 1.

In view of this, we can rewrite (20) as
n

∏
j=1

xdeg− j
j =

n

∏
i=1

xi−1
σ(i). (21)

Now, Proposition 1.5.10 (applied to D = Tσ) yields

w (Tσ) = (sign (Tσ))︸ ︷︷ ︸
=sign σ
(by (15))

·
n

∏
j=1

xdeg− j
j︸ ︷︷ ︸

=
n
∏
i=1

xi−1
σ(i)

(by (21))

= sign σ ·
n

∏
i=1

xi−1
σ(i),

and thus (16) is proven. This completes the proof of Theorem 1.6.3 (d).

(c) Let σ and τ be two distinct permutations in Sn. We must prove that the
digraphs Tσ and Tτ are distinct.

Assume the contrary. Thus, Tσ = Tτ. Hence, for each v ∈ {1, 2, . . . , n}, the
indegree of v as a vertex of Tσ equals the indegree of v as a vertex of Tτ. Thus,
we can allow ourselves to denote both of these indegrees by deg− v. From (17), we
know that deg− v = σ−1 (v)− 1. Similarly, deg− v = τ−1 (v)− 1. Comparing these
two equalities, we find σ−1 (v)− 1 = τ−1 (v)− 1. Hence, σ−1 (v) = τ−1 (v).

Forget that we fixed v. We thus have shown that σ−1 (v) = τ−1 (v) for each
v ∈ {1, 2, . . . , n}. In other words, σ−1 = τ−1. Hence, σ = τ. This contradicts the
fact that σ and τ are distinct. This contradiction shows that our assumption was
false. Thus, Theorem 1.6.3 (c) is proved.

Remark 1.6.4. One alternative way to prove Theorem 1.6.3 (b) uses the fact
(known as Rédei’s Little Theorem) that any tournament has a Hamiltonian path
(see, e.g., [lec7, Theorem 1.4.9] for a proof). Indeed, once this fact is known, we
can pick a Hamiltonian path (τ (1) , τ (2) , . . . , τ (n)) of D, and argue (by strong
induction on j − i) that each pair (τ (i) , τ (j)) with i < j must be an arc of D. But
the above proof is more elementary.
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Remark 1.6.5. It can be shown that for a tournament D ∈ T , the following four
statements are equivalent:

1. The tournament D has no 3-cycles.

2. The tournament D has no cycles of length 3.

3. The tournament D has no cycles (of any length).

4. The tournament D has the form Tσ for some σ ∈ Sn.

Indeed, the equivalence 1⇐⇒4 is furnished by Theorem 1.6.3 (b), whereas the
implications 4=⇒3=⇒2=⇒1 are easy to check.

A tournament D satisfying the four equivalent statements 1, 2, 3, 4 is said to
be transitive.

We can now represent the left hand side of (7) as a sum that looks enticingly like
the right hand side in Proposition 1.5.11:

Proposition 1.6.6. Define the n × n-matrix V as in Theorem 1.4.1. Then,

det V = ∑
D∈T ;

D has no 3-cycles

w (D) .

Proof. The (i, j)-th entry of the matrix V is xi−1
j for all i, j ∈ {1, 2, . . . , n}. Thus, the

definition of a determinant yields

det V = ∑
σ∈Sn

sign σ ·
n

∏
i=1

xi−1
σ(i)︸ ︷︷ ︸

=w(Tσ)
(by (16))

= ∑
σ∈Sn

w (Tσ) . (22)

However, Theorem 1.6.3 (b) yields that the tournaments D ∈ T that have no
3-cycles are precisely the digraphs of the form Tσ with σ ∈ Sn. Furthermore, The-
orem 1.6.3 (c) yields that each such tournament can be written as Tσ for a unique
permutation σ ∈ Sn (since distinct permutations σ lead to distinct tournaments Tσ).
Thus,

∑
D∈T ;

D has no 3-cycles

w (D) = ∑
σ∈Sn

w (Tσ) .

Comparing this with (22), we obtain det V = ∑
D∈T ;

D has no 3-cycles

w (D). This proves

Proposition 1.6.6.
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1.7. The numbers w0, w1, w2, . . .

Our goal is to prove that the left hand sides in Proposition 1.6.6 and in Proposition
1.5.11 are equal. To that purpose, we shall show that the right hand sides are equal.
These right hand sides are already very similar:

∑
D∈T ;

D has no 3-cycles

w (D) versus ∑
D∈T

w (D) .

Yet, they at least look different: The latter is a sum containing a lot of addends that
the former does not.

We shall reconcile this difference by showing that all these addends (i.e., all the
addends corresponding to tournaments D ∈ T that have at least one 3-cycle) cancel
each other out. This will be achieved by reversing the arcs of a cycle; Proposition
1.1.5 will come rather handy here.

First, we introduce some notations:

Convention 1.7.1. For each k ∈ N, we let

wk := ∑
D∈T ;

D has k many 3-cycles

w (D) .

(Here, “k many” means “exactly k many”.)

Thus,
∑

D∈T
w (D) = w0 + w1 + w2 + · · · (23)

(this infinite sum is well-defined, since all sufficiently large k ∈ N satisfy wk = 0).
7 Proposition 1.6.6 says that

det V = ∑
D∈T ;

D has no 3-cycles

w (D) = ∑
D∈T ;

D has 0 many 3-cycles

w (D)

= w0 (24)

(by the definition of w0). If we can now show that all integers k > 0 satisfy wk = 0,
then we will see that the right hand sides of (24) and (23) are equal, and thus we
will obtain

det V = ∑
D∈T

w (D) = ∏
1≤i<j≤n

(
xj − xi

)
(by Proposition 1.5.11) ;

this will prove Theorem 1.4.1.

7Note that, because of the way we defined 3-cycles, the # of 3-cycles in a tournament D is always
a multiple of 3, since each 3-cycle (u, v, w) leads to two other 3-cycles (v, w, u) and (w, u, v). So
we have wk = 0 for all k ∈ N that are not multiples of 3.
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1.8. The great cancelling

So how do we prove that all k > 0 satisfy wk = 0 ? We begin with lemmas:

Lemma 1.8.1. Let D ∈ T be a tournament. Let (u, v, w) be a 3-cycle of D. Let D′

be the digraph obtained from D by reversing the arcs uv, vw and wu (this means
replacing them by vu, wv and uw). Then, D′ is again a tournament in T , and
satisfies

sign
(

D′) = − sign D.

Proof. Clearly, D′ is again a tournament (since reversing an arc in a tournament
yields a tournament). It remains to prove that sign (D′) = − sign D.

The pairs uv, vw and wu are arcs of D (since (u, v, w) is a 3-cycle of D). Hence,
none of the pairs vu, wv and uw is an arc of D (by the tournament axiom, since D
is a tournament).

We know that the digraph D′ is obtained from D by reversing the arcs uv, vw
and wu. Let us refer to all the other arcs of D as inert.

Thus, the arcs of D are uv, vw, wu and all the inert arcs of D. Therefore, the
arcs of D′ are vu, wv, uw and all the inert arcs of D (since D′ is obtained from D
by reversing the arcs uv, vw and wu). Note that none of the arcs vu, wv and uw
appears among the inert arcs of D, since none of the pairs vu, wv and uw is an arc
of D.

Now, the definition of sign D yields

sign D = ∏
(i,j) is an
arc of D

(−1)[i>j] = (−1)[u>v] · (−1)[v>w] · (−1)[w>u] · ∏
(i,j) is an

inert arc of D

(−1)[i>j]

(since the arcs of D are uv, vw, wu and all the inert arcs). The definition of sign (D′)
yields

sign
(

D′) = ∏
(i,j) is an
arc of D′

(−1)[i>j] = (−1)[v>u] · (−1)[w>v] · (−1)[u>w] · ∏
(i,j) is an

inert arc of D

(−1)[i>j]

(since the arcs of D′ are vu, wv, uw and all the inert arcs of D).
However, the vertices u and v are distinct (since (u, v, w) is a 3-cycle). Thus,

exactly one of the two inequalities u > v and v > u holds. In other words, exactly
one of the two truth values [u > v] and [v > u] equals 1, while the other equals 0.
Hence, exactly one of the two numbers (−1)[u>v] and (−1)[v>u] equals −1, while
the other equals 1. Therefore, these two numbers differ in sign but have the same
magnitude. Consequently,

(−1)[u>v] = − (−1)[v>u] .
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Similarly, (−1)[v>w] = − (−1)[w>v] and (−1)[w>u] = − (−1)[u>w]. Now, our above
formula for sign D becomes

sign D = (−1)[u>v]︸ ︷︷ ︸
=−(−1)[v>u]

· (−1)[v>w]︸ ︷︷ ︸
=−(−1)[w>v]

· (−1)[w>u]︸ ︷︷ ︸
=−(−1)[u>w]

· ∏
(i,j) is an

inert arc of D

(−1)[i>j]

= − (−1)[v>u] · (−1)[w>v] · (−1)[u>w] · ∏
(i,j) is an

inert arc of D

(−1)[i>j]

︸ ︷︷ ︸
=sign(D′)

(by our above formula for sign(D′))

= − sign
(

D′) .

In other words, sign (D′) = − sign D. This completes the proof of Lemma 1.8.1.

Lemma 1.8.2. Let k be a positive integer. Let (d1, d2, . . . , dn) ∈ Nn be any n-tuple
of nonnegative integers. Then,

∑
D∈T ;

D has k many 3-cycles;
deg− i=di for each i

sign D = 0.

(Here, deg− i means the indegree of the vertex i in the digraph D. Also, “for
each i” means “for each i ∈ {1, 2, . . . , n}”.)

Proof. A flippy pair shall mean a pair (D, α), where

• D ∈ T is a tournament having k many 3-cycles and satisfying deg− i = di for
each i;

• α is a 3-cycle of D.

If (D, α) is a flippy pair, then we define a new flippy pair flip (D, α) as follows:

• Let (u, v, w) be the 3-cycle α.

• We obtain a new digraph D′ from D by reversing the arcs uv, vw and wu (this
means replacing them by vu, wv and uw). Note that this digraph D′ is again
a tournament in T , and again has k many 3-cycles (because Proposition 1.1.5
shows that (# of 3-cycles of D′) = (# of 3-cycles of D) = k). This tournament
D′ furthermore satisfies the equalities deg− i = di for each i (since D satisfies
these equalities, and since the indegrees of the vertices have not changed from
D to D′ 8).

• We let α′ be the 3-cycle (u, w, v) of D′. (This is indeed a 3-cycle of D′, due to
the construction of D′.)

8because each of the three vertices u, v and w lost one incoming arc and gained another when we
reversed the arcs uv, vw and wu
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• We let flip (D, α) be the flippy pair (D′, α′). (This is indeed a flippy pair,
because we have seen that D′ is a tournament in T having k many 3-cycles
and satisfying deg− i = di for each i, and that α′ is a 3-cycle of D′.)

Thus, we have defined a map flip that sends flippy pairs to flippy pairs. It is
easy to see that this map is its own inverse: That is, if (D, α) is a flippy pair, and if
(D′, α′) = flip (D, α), then (D, α) = flip (D′, α′) (because D′ is obtained from D by
reversing the arcs uv, vw and wu, and thus D can be recovered from D′ by reversing
the arcs uw, wv and vu).

Furthermore, the map flip changes the sign of a tournament: That is, if (D, α) is
a flippy pair, and if (D′, α′) = flip (D, α), then

sign
(

D′) = − sign D. (25)

[Proof of (25): Let (D, α) be a flippy pair. Let (D′, α′) = flip (D, α). By the defini-
tion of the map flip, we know that the digraph D′ is obtained from D by reversing
the arcs uv, vw and wu, where (u, v, w) is the 3-cycle α. Thus, Lemma 1.8.1 yields
sign (D′) = − sign D. This proves (25).]

Thus, if (D, α) is a flippy pair satisfying sign D = 1, and if (D′, α′) = flip (D, α),
then (D′, α′) is a flippy pair satisfying sign (D′) = −1 (because (25) yields sign (D′) =
− sign D︸ ︷︷ ︸

=1

= −1). Hence, we obtain a map

from the set {flippy pairs (D, α) satisfying sign D = 1}
to the set {flippy pairs (D, α) satisfying sign D = −1} ,

which sends each flippy pair (D, α) to flip (D, α). Similarly, we obtain a map

from the set {flippy pairs (D, α) satisfying sign D = −1}
to the set {flippy pairs (D, α) satisfying sign D = 1} ,

which sends each flippy pair (D, α) to flip (D, α). These two maps are mutually
inverse (since the map flip is its own inverse), and thus are bijections. Hence, the
bijection principle yields that

|{flippy pairs (D, α) satisfying sign D = 1}|
= |{flippy pairs (D, α) satisfying sign D = −1}| .

In other words, there are as many flippy pairs (D, α) satisfying sign D = 1 as there
are flippy pairs (D, α) satisfying sign D = −1. Hence, in the sum

∑
(D,α) is a flippy pair

sign D,
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the addends equal to 1 and the addends equal to −1 are equinumerous, and con-
sequently these addends cancel each other out. The sum therefore equals 0 (since
each addend of this sum is either a 1 or a −1). In other words,

∑
(D,α) is a flippy pair

sign D = 0. (26)

However, recall that the D in a flippy pair (D, α) has to be a tournament in T
having k many 3-cycles and satisfying deg− i = di for each i, whereas the α has to
be a 3-cycle of D. Thus, the summation sign ∑

(D,α) is a flippy pair
can be rewritten as

follows:
∑

(D,α) is a flippy pair
= ∑

D∈T ;
D has k many 3-cycles;

deg− i=di for each i

∑
α is a 3-cycle of D

.

Thus,

∑
(D,α) is a flippy pair

sign D = ∑
D∈T ;

D has k many 3-cycles;
deg− i=di for each i

∑
α is a 3-cycle of D

sign D︸ ︷︷ ︸
=(# of 3-cycles of D)·sign D

= ∑
D∈T ;

D has k many 3-cycles;
deg− i=di for each i

(# of 3-cycles of D)︸ ︷︷ ︸
=k

(since D has k many 3-cycles)

· sign D

= ∑
D∈T ;

D has k many 3-cycles;
deg− i=di for each i

k · sign D = k ∑
D∈T ;

D has k many 3-cycles;
deg− i=di for each i

sign D.

Therefore, (26) can be rewritten as

k ∑
D∈T ;

D has k many 3-cycles;
deg− i=di for each i

sign D = 0.

We can divide this equality by k (since k is positive), and obtain

∑
D∈T ;

D has k many 3-cycles;
deg− i=di for each i

sign D = 0.

This proves Lemma 1.8.2.

Lemma 1.8.3. Let k be a positive integer. Let (d1, d2, . . . , dn) ∈ Nn be any n-tuple
of nonnegative integers. Then,

∑
D∈T ;

D has k many 3-cycles;
deg− i=di for each i

w (D) = 0.



Math 5707 Spring 2017 (Darij Grinberg): Lecture 8 page 33

(Here, deg− i means the indegree of the vertex i in the digraph D. Also, “for
each i” means “for each i ∈ {1, 2, . . . , n}”.)

Proof. We have

∑
D∈T ;

D has k many 3-cycles;
deg− i=di for each i

w (D)︸ ︷︷ ︸
=(sign D)·

n
∏
j=1

xdeg− j
j

(by Proposition 1.5.10)

= ∑
D∈T ;

D has k many 3-cycles;
deg− i=di for each i

(sign D) ·
n

∏
j=1

xdeg− j
j︸ ︷︷ ︸
=x

dj
j

(since deg− j=dj

(because deg− i=di for each i))

= ∑
D∈T ;

D has k many 3-cycles;
deg− i=di for each i

(sign D) ·
n

∏
j=1

x
dj
j =

(
n

∏
j=1

x
dj
j

)
∑

D∈T ;
D has k many 3-cycles;

deg− i=di for each i

sign D

︸ ︷︷ ︸
=0

(by Lemma 1.8.2)

= 0.

This proves Lemma 1.8.3.

Lemma 1.8.4. Let k be a positive integer. Then, wk = 0.

Proof. The definition of wk yields

wk = ∑
D∈T ;

D has k many 3-cycles

w (D)

= ∑
(d1,d2,...,dn)∈Nn

∑
D∈T ;

D has k many 3-cycles;
deg− i=di for each i

w (D)

︸ ︷︷ ︸
=0

(by Lemma 1.8.3)(
here, we have split up the sum according

to the n-tuple
(
deg− 1, deg− 2, . . . , deg− n

) )
= 0.

This proves Lemma 1.8.4.
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1.9. The finish line

Proving Theorem 1.4.1 is now a matter of combining what we know:

Proof of Theorem 1.4.1. Proposition 1.5.11 yields

∏
1≤i<j≤n

(
xj − xi

)
= ∑

D∈T
w (D) = w0 + w1 + w2 + · · · (by (23))

= ∑
k∈N

wk = w0 + ∑
k>0

wk︸︷︷︸
=0

(by Lemma 1.8.4)

= w0 + ∑
k>0

0︸︷︷︸
=0

= w0 = det V

(by (24)). Thus follows Theorem 1.4.1.

Here ends our scenic route to the Vandermonde determinant. A different com-
binatorial proof – also using tournaments – is sketched in [Bresso99, Exercises
2.4.1–2.4.6]. Yet another (not using tournaments) appears in [BenDre07]. More-
over, several variants of the Vandermonde determinant (type-B, type-C and type-D
versions, for those who know the lingo of Coxeter groups) have been proved using
tournaments by Bressoud [Bresso87].
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