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1. Hamiltonian paths in simple digraphs

1.1. Introduction

We shall now study some questions on Hamiltonian paths in digraphs, proving (in
particular) Rédei’s theorem on Hamiltonian paths in tournaments.

We let N denote the set {0, 1, 2, . . .} of all nonnegative integers.
We recall some basic notions from graph theory:

Definition 1.1.1. A simple digraph is a pair (V, A), where V is a finite set, and
where A is a subset of V × V.

If D = (V, A) is a simple digraph, then the elements of V are called the vertices
of D, while the elements of A are called the arcs (or directed edges) of D.

We shall visually represent a simple digraph D = (V, A) by a picture in which
each vertex v ∈ V is represented by a node (usually a circle with the name of v
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written in it), and each arc a = (v, w) is represented as an arrow from the node
representing the vertex v to the node representing the vertex w.

Example 1.1.2.

(a) The simple digraph

({1, 2, 3, 4} , {(1, 2) , (1, 3) , (1, 4) , (2, 2) , (3, 3) , (4, 1) , (4, 2)}) (1)

has vertices 1, 2, 3, 4 and arcs (1, 2) , (1, 3) , (1, 4) , (2, 2) , (3, 3) , (4, 1) , (4, 2).
It can be represented by the picture

1 2

3 4 ,

but also by the picture

1

2

3

4

and many others.

(b) The simple digraph

({1, 2, 3, 4} , {{1, 3} , (2, 1) , (2, 3) , (3, 3)}) (2)

can be represented by the picture

1 2

3 4 .

Simple digraphs are one of the most primitive notions of directed graphs (in
particular, they do not allow multiple arcs); but they are exactly what we need for
the following considerations. Thus, we shall simply call them “digraphs”:
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Convention 1.1.3. For the total of this lecture, we shall use the word “digraph”
as a shorthand for “simple digraph”.

A few more notations will be useful:

Definition 1.1.4. Let D = (V, A) be a digraph.

(a) If a = (v, w) ∈ A is an arc of D, then the vertex v is called the source of a,
while the vertex w is called the target of a.

(b) We shall use the shorthand notation “vw” for any pair (v, w) ∈ V × V
(thus, in particular, for any arc of D). Do not confuse this notation with the
product of two numbers or a two-digit number.

(c) A loop means an arc of the form vv for some v ∈ V. In other words, a loop
means an arc whose source is also its target.

1.2. Hamiltonian paths (“hamps”)

We recall the classical concepts of walks and paths in digraphs:

Definition 1.2.1. Let D = (V, A) be a digraph.

(a) A walk of D means a list of the form (v0, v1, . . . , vk) (with k ≥
0), where v0, v1, . . . , vk are vertices of D with the property that each
i ∈ {0, 1, . . . , k − 1} satisfies vivi+1 ∈ A (that is, all of the pairs
v0v1, v1v2, . . . , vk−1vk are arcs of D).

(b) A path of D means a walk (v0, v1, . . . , vk) of D such that the vertices
v0, v1, . . . , vk are distinct.

(c) A walk (v0, v1, . . . , vk) is said to contain a vertex v ∈ V if and only if v ∈
{v0, v1, . . . , vk}.

(d) If w = (v0, v1, . . . , vk) is a walk of D, then the arcs v0v1, v1v2, . . . , vk−1vk
are called the arcs of w.

(e) Let u and v be two vertices of D. A walk from u to v means a walk
(v0, v1, . . . , vk) of D satisfying v0 = u and vk = v.

For example, in the digraph given in (1), the 3-tuple (4, 2, 2) is a walk (since 42
and 22 are arcs) but not a path (since the vertices 4, 2, 2 are not distinct), whereas
the 3-tuple (4, 1, 2) is a walk and a path.

Sometimes we say “walk in D” instead of “walk of D” when D is a digraph; this
language is synonymous.
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We can now define a special kind of paths:

Definition 1.2.2. Let D = (V, A) be a digraph.
A Hamiltonian path of D means a path of D that contains each vertex of D.
In other words, a Hamiltonian path of D means a path (v0, v1, . . . , vk) of D such

that V = {v0, v1, . . . , vk}.
We shall abbreviate “Hamiltonian path” as “hamp”.

For example, the digraph

1 2

3 4

has a hamp (4, 3, 2, 1), whereas the digraphs given in (2) and in (1) have no hamps.

1.3. The reverse and complement digraphs

Definition 1.3.1. Let D = (V, A) be a digraph. Then:

(a) The elements of (V × V) \ A (that is, the pairs (i, j) ∈ V × V that are not
arcs of D) will be called the non-arcs of D.

(b) The reversal of a pair (i, j) ∈ V × V is defined to be the pair (j, i).

(c) Furthermore, Drev is defined as the digraph (V, Arev), where

Arev = {(j, i) | (i, j) ∈ A} .

That is, Drev is the digraph D with all its arcs reversed (meaning that each
arc is replaced by its reversal; in other words, sources become targets, and
targets become sources). We call Drev the reversal of the digraph D.

(d) Furthermore, D is defined as the digraph
(
V, A

)
, where

A = (V × V) \ A.

That is, D is the digraph D with all its arcs removed and all its non-arcs
added in as arcs. We call D the complement of the digraph D.
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Example 1.3.2. Let

D =

1 2

3 4 .

(Formally speaking, we mean “Let D be the digraph represented by this picture”;
rigorously, this digraph is given by (1).)

Then,

Drev =

1 2

3 4 and D =

1 2

3 4 .

Convention 1.3.3. In the following, the symbol “#” stands for the word “num-
ber” (as in “the number of”). For example,

(# of subsets of {1, 2, 3}) = 23 = 8.

We will be interested in the # of hamps of a digraph. In particular, we will ask
ourselves when a digraph has a hamp at all. We begin with a simple case:

Proposition 1.3.4. Let n ∈ N. Let V be the set {1, 2, . . . , n}. Let A be the set

{(i, j) ∈ V × V | i < j} = {12, 13, 14, . . . , 1n,
23, 24, . . . , 2n,

. . .
(n − 1) n}

(where we are again using the notation ij for the pair (i, j)). Let D be the digraph
(V, A). Then,

(# of hamps of D) = 1.

Before we prove this easy fact, let us show an example: When n = 4, the digraph
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D in Proposition 1.3.4 takes the following form:

1 2

3 4

and has the unique hamp (1, 2, 3, 4).

Proof of Proposition 1.3.4. We must prove that the digraph D has a unique hamp.
Clearly, (1, 2, . . . , n) is a hamp of D; thus, it remains to show that this hamp is the
only hamp of D. In other words, we need to prove that any hamp of D equals
(1, 2, . . . , n).

Let σ be a hamp of D. Thus, σ is a path of D that contains each vertex of D
(by the definition of a “hamp”). Hence, σ contains each vertex of D exactly once
(because if the list σ contained a vertex more than once, then it would not be a
path). In other words, σ is a list of all vertices of D, listed without multiplicities
(since σ clearly is a list of vertices of D). In other words, σ is a list of all elements of
V, listed without multiplicities (since the vertices of D are the elements of V). Since
V = {1, 2, . . . , n}, this entails that σ is a list of the numbers 1, 2, . . . , n in some order,
without multiplicities. In particular, σ is an n-tuple. Write σ as σ = (σ1, σ2, . . . , σn).

Therefore, σ1σ2, σ2σ3, . . . , σn−1σn are arcs of D (since σ is a path of D). However,
the definition of A shows that any arc ij of D satisfies i < j. Therefore, since we
know that σ1σ2, σ2σ3, . . . , σn−1σn are arcs of D, we conclude that σ1 < σ2 < · · · <
σn. In other words, the list σ is strictly increasing.

But we know that σ is a list of the numbers 1, 2, . . . , n in some order. Hence, σ is
a strictly increasing list of the numbers 1, 2, . . . , n in some order. But the only such
list is (1, 2, . . . , n). Hence, we must have σ = (1, 2, . . . , n).

Forget that we fixed σ. We thus have shown that any hamp σ of D satisfies
σ = (1, 2, . . . , n). In other words, any hamp of D equals (1, 2, . . . , n). This proves
Proposition 1.3.4.

What happens to the # of hamps of a digraph when we reverse all arcs of the
digraph? The answer is simple:

Proposition 1.3.5. Let D be a digraph. Then,

(# of hamps of Drev) = (# of hamps of D) .

Proof. The hamps of Drev are just the hamps of D, walked backwards. In more
detail: If (v0, v1, . . . , vk) is a hamp of D, then (vk, vk−1, . . . , v0) is a hamp of Drev,
and vice versa. Thus, we have a bijection

{hamps of D} → {hamps of Drev} ,
(v0, v1, . . . , vk) 7→ (vk, vk−1, . . . , v0) .
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This entails that |{hamps of D}| = |{hamps of Drev}|. In other words, we have
(# of hamps of D) = (# of hamps of Drev). Thus, Proposition 1.3.5 is proved.

A more interesting question is what happens to the # of hamps of a digraph D
when we pass to the complement D. This # can change, but surprisingly, its change
is not completely arbitrary. The following result is due to Berge ([Berge91, §10.1,
Theorem 1], [Tomesc85, Problem 7.7, directed case]):

Theorem 1.3.6 (Berge). Let D be a digraph. Then,(
# of hamps of D

)
≡ (# of hamps of D)mod 2.

Example 1.3.7. Let D be the following digraph:

D =
1 2 3 .

This digraph has 3 hamps: (1, 2, 3) and (2, 3, 1) and (3, 1, 2).
Its complement D looks as follows:

D =
1 2 3 .

It has only 1 hamp: (1, 3, 2).
Thus, in this case, Theorem 1.3.6 says that 1 ≡ 3 mod 2.

Proof of Theorem 1.3.6. (We follow [Berge91, §10.1, Theorem 1].)
Write the digraph D as D = (V, A) (so that V is its set of vertices, and A is its

set of arcs). We WLOG assume that V ̸= ∅, since otherwise the claim is obvious.
Set n = |V|. A V-listing will mean a list of elements of V that contains each

element of V exactly once. (Thus, each V-listing is an n-tuple, and there are exactly
n! many V-listings.) Note that a V-listing is the same as a hamp of the digraph
(V, V × V) (since any pair of two elements of V is an arc of this digraph). Any
hamp of D or of D is a V-listing, but not every V-listing is a hamp of D or of D.

If σ = (σ1, σ2, . . . , σn) is a V-listing, then we define a set

P (σ) := {σ1σ2, σ2σ3, σ3σ4, . . . , σn−1σn} .

(Recall that we are using Definition 1.1.4 (b), so σiσi+1 means the pair (σi, σi+1).)
Note that P (σ) is the set of all arcs of σ (when σ is viewed as a hamp of the digraph
(V, V × V)). If σ = (σ1, σ2, . . . , σn) is a V-listing, then the arcs
σ1σ2, σ2σ3, σ3σ4, . . . , σn−1σn are distinct (since their sources σ1, σ2, . . . , σn−1 are
distinct), and thus P (σ) is an (n − 1)-element set.

We make four simple observations:
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Observation 0: If σ is a hamp of D, then P (σ) is a subset of A.

[Proof of Observation 0: Let σ be a hamp of D. Then, σ is a path of D. Hence,
each of the pairs σ1σ2, σ2σ3, σ3σ4, . . . , σn−1σn is an arc of D and thus belongs
to A. In other words, {σ1σ2, σ2σ3, σ3σ4, . . . , σn−1σn} is a subset of A. In other
words, P (σ) is a subset of A (since P (σ) = {σ1σ2, σ2σ3, σ3σ4, . . . , σn−1σn}).
This proves Observation 0.]

Observation 1: We can reconstruct a V-listing σ from the set P (σ) (that
is, the map σ 7→ P (σ) that sends each V-listing σ to the set P (σ) is
injective).

[Proof of Observation 1: Let σ = (σ1, σ2, . . . , σn) be a V-listing. Thus, (σ1, σ2, . . . , σn)
is a list of elements of V that contains each element of V exactly once. Hence, the n
elements σ1, σ2, . . . , σn are distinct and we have V = {σ1, σ2, . . . , σn}. Therefore, σ1
is the unique vertex of D distinct from σ2, σ3, . . . , σn.

The set P (σ) consists of the pairs σ1σ2, σ2σ3, σ3σ4, . . . , σn−1σn (by the defini-
tion of P (σ)). The second entries of these pairs are σ2, σ3, . . . , σn. Hence, σ1 is the
unique vertex of D that does not appear as a second entry of any pair in P (σ) (since
σ1 is the unique vertex of D distinct from σ2, σ3, . . . , σn). Thus, σ1 can be recovered
from P (σ). Furthermore, σ2 is the unique vertex of D such that σ1σ2 ∈ P (σ) (since
σ1, σ2, . . . , σn are distinct); thus, σ2 can be recovered from P (σ) as well (once σ1 is
known). Furthermore, σ3 is the unique vertex of D such that σ2σ3 ∈ P (σ) (since
σ1, σ2, . . . , σn are distinct); thus, σ3 can be recovered from P (σ) as well (once σ2 is
known). Proceeding likewise, we can (successively) recover σ1, σ2, . . . , σn. Thus, we
can recover the whole V-listing σ from P (σ). This proves Observation 1.]

Observation 2: Let σ be a V-listing. Then, σ is a hamp of D if and only if
P (σ) ⊆ A.

[Proof of Observation 2: We have the following chain of logical equivalences:

(σ is a hamp of D)

⇐⇒ (σ is a path of D) (since σ contains each vertex of D)

⇐⇒ (σ is a walk of D) (since the vertices in σ are distinct)
⇐⇒ (σ1σ2, σ2σ3, σ3σ4, . . . , σn−1σn are arcs of D)

⇐⇒ (σ1σ2, σ2σ3, σ3σ4, . . . , σn−1σn belong to A)

⇐⇒ ({σ1σ2, σ2σ3, σ3σ4, . . . , σn−1σn} ⊆ A)

⇐⇒ (P (σ) ⊆ A) (since P (σ) = {σ1σ2, σ2σ3, σ3σ4, . . . , σn−1σn}) .

This proves Observation 2.]

Observation 3: Let σ be a V-listing. Then, σ is a hamp of D if and only if
P (σ) ⊆ (V × V) \ A.
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[Proof of Observation 3: This is proved by the same argument as Observation 2,
but with D and A replaced by D and (V × V) \ A (since (V × V) \ A is the set of
all arcs of D).]

Now, let N be the number of pairs (σ, B) where σ is a V-listing and B is a subset
of A satisfying B ⊆ P (σ). Then,

N = ∑
σ is a V-listing

Nσ, (3)

where
Nσ := (# of subsets B of A satisfying B ⊆ P (σ)) .

But we also have
N = ∑

B is a subset of A
NB, (4)

where
NB := (# of V-listings σ such that B ⊆ P (σ)) .

(The “B” in “NB” is not an exponent but just a superscript.)
Let us now relate these two sums to hamps. We begin with the sum in (3). We

shall use the Iverson bracket notation – i.e., the notation [A] for the truth value of a
statement A. (This truth value is defined to be 1 if A is true, and to be 0 if A is
false.) Clearly, if A and B are two equivalent statements, then [A] = [B]. We will
use this fact without explicit mention. Also, if S is a set, and if A (s) is a statement
for each s ∈ S, then

∑
s∈S

[A (s)] = (# of elements s ∈ S satisfying A (s)) . (5)

Also, it is easy to see that
2m ≡ [m = 0]mod 2 (6)

for each m ∈ N.
For any V-listing σ, we have

Nσ = (# of subsets B of A satisfying B ⊆ P (σ))

= (# of subsets of A ∩ (P (σ)))(
since a subset B of A satisfying B ⊆ P (σ)

is the same thing as a subset of A ∩ (P (σ))

)
= 2|A∩(P(σ))|

≡ [|A ∩ (P (σ))| = 0] (by (6))
= [A ∩ (P (σ)) = ∅]

= [P (σ) ⊆ (V × V) \ A] (since P (σ) is a subset of V × V)

=
[
σ is a hamp of D

]
mod 2 (7)
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(by Observation 3 above). Hence, (3) becomes

N = ∑
σ is a V-listing

Nσ︸︷︷︸
≡[σ is a hamp of D] mod 2

(by (7))

≡ ∑
σ is a V-listing

[
σ is a hamp of D

]
=

(
# of V-listings σ such that σ is a hamp of D

)
(by (5))

=
(
# of hamps of D

)
mod 2 (8)

(because each hamp of D is a V-listing).
Now, let us study the numbers NB more closely. Fix a subset B of A. Then,

NB = (# of V-listings σ such that B ⊆ P (σ)) .

When is this # odd?
To find out, let us define another word: A path cover of V shall mean a set of paths

in the digraph (V, V × V) (not (V, A)) such that each vertex v ∈ V is contained in
exactly one of these paths. (Recall that a path is allowed to consist of a single
vertex, but cannot have 0 vertices.)

For example, if V = {1, 2, 3, 4, 5, 6, 7}, then

{(1, 3, 5) , (2) , (6) , (7, 4)}

is a path cover of V, and so is

{(1) , (2) , (3, 4, 6, 5, 7)} ,

and so is
{(1) , (2) , (3) , (4) , (5) , (6) , (7)}

(in this path cover, each vertex belongs to its own path), and so is

{(1, 2, 3, 4, 5, 6, 7)}

(a path cover consisting of just a single path). We can visualize these path covers
by drawing the paths in the obvious manner (i.e., we represent each element of V
as a node, and we draw arrows for the arcs of each path in our path cover). Thus,
the four above-listed examples of path covers look as follows:

1 3 5 2 6 7 4

and

1 2 3 4 6 5 7
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and

1 2 3 4 6 5 7

and

1 2 3 4 5 6 7 .

Note that the notion of a path cover of V depends only on V, not on A.
If C is a path cover of V, then the paths that belong to C will be called the C-

paths. For example, if C = {(1) , (2) , (3, 4, 6, 5, 7)}, then the C-paths are (1), (2)
and (3, 4, 6, 5, 7).

If C is a path cover of V, then we let Arcs C denote the set of arcs of all C-paths.
In other words, we let

Arcs C :=
⋃

(a1,a2,...,ak) is a C-path

{a1a2, a2a3, . . . , ak−1ak} .

We call this set Arcs C the arc set of C. For example, the four above-listed examples
of path covers have arc sets

{13, 35, 74} ,
{34, 46, 65, 57} ,
∅,
{12, 23, 34, 45, 56, 67} ,

respectively.
Now, assume that NB is odd. Thus, NB ̸= 0, so that there exists some V-listing σ

such that B ⊆ P (σ) (since NB is the # of such V-listings). From this, we can easily
see that there exists a path cover C of V such that B = Arcs C.

[Proof: We have just shown that there exists some V-listing σ such that B ⊆ P (σ).
Consider this σ, and write it as σ = (σ1, σ2, . . . , σn). Note that σ is a hamp of the
digraph (V, V × V) (since σ is a V-listing). The set P (σ) is the set of arcs of this
hamp.

However, if we remove an arc from a path, then this path breaks into two smaller
paths1. Thus, if we remove several arcs from a path, then this path breaks into
several smaller paths. Hence, in particular, if we remove some arcs from a hamp of
(V, V × V), then this hamp breaks into several smaller paths, and the latter paths
form a path cover of V (because each v ∈ V is contained in exactly one of them)2.

1For instance, removing the arc 34 from the path (1, 2, 3, 4, 5) breaks it into the two smaller paths
(1, 2, 3) and (4, 5).

2For instance, if we remove the arcs 23 and 34 from the hamp (1, 2, 3, 4, 5, 6) (assuming that V =
{1, 2, 3, 4, 5, 6}), then this hamp breaks into three paths (1, 2), (3) and (4, 5, 6), which form the
path cover {(1, 2) , (3) , (4, 5, 6)} of V.
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In other words, if we remove some arcs from a hamp τ of (V, V × V), then the set
of all remaining arcs of τ is the arc set of a path cover of V. 3

Applying this to τ = σ, we conclude that if we remove some arcs from σ, then
the set of all remaining arcs of σ is the arc set of a path cover of V. In other words,
any subset of P (σ) is the arc set of a path cover of V (since any subset of P (σ) can
be obtained by removing some arcs from σ). Thus, B is the arc set of a path cover
of V (since B is a subset of P (σ)). 4 In other words, there exists a path cover C of
V such that B = Arcs C.]

So we have shown that there exists a path cover C of V such that B = Arcs C.
Consider this C.

Let r be the number of C-paths. Thus, C consists of r paths, and each vertex
v ∈ V is contained in exactly one of these r paths. Note that there exists at least
one C-path (since V ̸= ∅, but each vertex v ∈ V must be contained in a C-path). In
other words, r ≥ 1.

Now, what are the V-listings σ that satisfy B ⊆ P (σ) ? These are the V-listings
σ that satisfy Arcs C ⊆ P (σ) (since B = Arcs C). In other words, these are the
V-listings σ with the property that each arc of each C-path is also an arc of σ (since
Arcs C is the set of all arcs of all C-paths, whereas P (σ) is the set of all arcs of
σ). In other words, these are the V-listings σ with the property that if a vertex a is
followed by a vertex b on some C-path, then a is also followed by b in the V-listing
σ. Hence, each C-path must appear as a contiguous block on such a V-listing
σ, with its vertices appearing in the same order in σ as they do on the C-path.
Therefore, each V-listing σ that satisfies B ⊆ P (σ) can be constructed as follows:

1. Start with the empty list ().

2. Pick some C-path, and append all its vertices (in the order in which they
appear on this C-path) to the end of the list.

3We can even describe the latter path cover explicitly: Let τ = (τ1, τ2, . . . , τn) be a hamp of
(V, V × V), and let us remove the arcs

τi1 τi1+1, τi2 τi2+1, . . . , τip τip+1

from τ, where i1, i2, . . . , ip are some elements of {1, 2, . . . , n − 1} satisfying i1 < i2 < · · · < ip.
Then, the hamp τ breaks into the p + 1 smaller paths(

τ1, τ2, . . . , τi1
)

,(
τi1+1, τi1+2, . . . , τi2

)
,(

τi2+1, τi2+2, . . . , τi3
)

,
. . . ,(

τip+1, τip+2, . . . , τn

)
,

and these p + 1 smaller paths form a path cover of V. The set of all remaining arcs of τ is the
arc set of this path cover.

4For example, if σ = (1, 2, 3, 4, 5, 6) and B = {12, 45, 56}, then B is obtained by removing the arcs
23 and 34 from the hamp σ, and thus B is the arc set of the path cover {(1, 2) , (3) , (4, 5, 6)}.
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3. Then, pick another C-path, and do the same for its vertices.

4. Then, pick another C-path, and do the same for its vertices.

5. And so on, until all C-paths have been listed.

In other words, each V-listing σ that satisfies B ⊆ P (σ) can be obtained by
concatenating5 the C-paths in some order6. The only freedom we have is to choose
this order. For this, we have r! options (since the number of C-paths is r). Each of
these r! options yields a different V-listing (because the C-paths are nonempty and
have no vertex in common).

Thus, NB = r! (since NB is the # of V-listings σ such that B ⊆ P (σ)). Since NB is
odd, we thus see that r! is odd. However, a factorial m! is always even for m > 1;
therefore, we must have r ≤ 1 (since r! is odd). Combining this with r ≥ 1, we
obtain r = 1. In other words, there is only one C-path. This C-path must contain
each v ∈ V (because C is a path cover of V, and thus each v ∈ V is contained in a
C-path), and thus is a hamp of the digraph (V, V × V). Let τ be this hamp. Thus,
τ is the only C-path; in other words, C = {τ}. Hence, Arcs C is the set of arcs of
the path τ. In other words, Arcs C = P (τ). Thus, B = Arcs C = P (τ), so that
P (τ) = B ⊆ A (since B is a subset of A); in other words, each arc of τ belongs
to A. Hence, τ is a path of D. Therefore, τ is a hamp of D (since τ is a hamp of
(V, V × V)).

Now, forget that we assumed that NB is odd. We thus have shown that

if NB is odd, then B = P (τ) for some hamp τ of D. (9)

The converse of this statement holds as well:

if B = P (τ) for some hamp τ of D, then NB is odd (10)

(and actually NB equals 1 in this case).
[Proof of (10): Assume that B = P (τ) for some hamp τ of D. Consider this τ.

Thus, τ is a V-listing σ such that B ⊆ P (σ). Furthermore, it is easy to see that τ

5Concatenating several lists a1, a2, . . . , ak means combining them into a single list, which begins
with the entries of a1 (in the order in which they appear in a1), continues with the entries of
a2 (in the order in which they appear in a2), and so on. For instance, concatenating three lists
(a1, a2, a3), (b1, b2) and (c1, c2, c3) yields the list (a1, a2, a3, b1, b2, c1, c2, c3). Since the C-paths are
lists (of vertices), we can concatenate them.

6For an example, let us assume that V = {1, 2, 3, 4, 5, 6} and P = {(1, 3, 2) , (4) , (6, 5)}, so that
r = 3. The path cover P looks as follows:

1 3 2 4 6 5 .

Then, the V-listings σ that satisfy B ⊆ P (σ) are

(1, 3, 2, 4, 6, 5) , (1, 3, 2, 6, 5, 4) , (4, 1, 3, 2, 6, 5) ,
(4, 6, 5, 1, 3, 2) , (6, 5, 1, 3, 2, 4) , (6, 5, 4, 1, 3, 2) .
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is the only such V-listing7. Therefore, there is exactly 1 such V-listing. In other
words, the # of such V-listings is 1. In other words, NB is 1 (since NB is this #).
Hence, NB is odd. This proves (10).]

Combining (9) with (10), we obtain the following: The number NB is odd if and

Here is how they look like (the dashed arrows connect different C-paths):

1 3 2 4 6 5 ;

1 3 2 4 6 5

;

1 3 2 4 6 5

;

1 3 2 4 6 5

;

1 3 2 4 6 5

;

1 3 2 4 6 5

.

7Proof. Let σ be a V-listing such that B ⊆ P (σ). We must show that σ = τ.
From B = P (τ), we obtain P (τ) = B ⊆ P (σ). However, the sets P (σ) and P (τ) are two finite

sets of the same size (since they are both (n − 1)-element sets). Thus, if one of them is a subset
of the other, then they must be equal. Hence, from P (τ) ⊆ P (σ), we obtain P (τ) = P (σ). Using
Observation 1, we thus conclude that τ = σ. Hence, σ = τ, qed.
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only if B = P (τ) for some hamp τ of D. Therefore,[
NB is odd

]
= [B = P (τ) for some hamp τ of D] .

However, it is easy to see that m ≡ [m is odd]mod 2 for each integer m. Thus,

NB ≡
[

NB is odd
]

= [B = P (τ) for some hamp τ of D]mod 2. (11)

Forget that we fixed B. We thus have proved the congruence (11) for each subset
B of A. Hence, (4) becomes

N = ∑
B is a subset of A

NB︸︷︷︸
≡[B=P(τ) for some hamp τ of D]mod 2

(by (11))

≡ ∑
B is a subset of A

[B = P (τ) for some hamp τ of D]

= (# of subsets B of A such that B = P (τ) for some hamp τ of D) (by (5))
= (# of sets of the form P (τ) for some hamp τ of D)(

since each set of the form P (τ) for some hamp τ of D
is a subset of A (by Observation 0, applied to σ = τ)

)
= (# of hamps τ of D)mod 2

(because Observation 1 shows that different hamps τ yield different sets P (τ)).
Therefore,

(# of hamps τ of D) ≡ N ≡
(
# of hamps of D

)
mod 2

(by (8)). Thus,(
# of hamps of D

)
≡ (# of hamps τ of D) = (# of hamps of D)mod 2.

This proves Theorem 1.3.6.

1.4. Tournaments

We now define two more restrictive classes of digraphs:

Definition 1.4.1. A digraph D is said to be loopless if it has no loops (i.e., it has
no arcs of the form (v, v)).

Definition 1.4.2. A tournament is defined to be a loopless digraph D that satisfies
the following axiom:

Tournament axiom: For any two distinct vertices u and v of D, exactly one of
the two pairs (u, v) and (v, u) is an arc of D.
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Example 1.4.3. The following digraph is a tournament:

1

2

3 .

The following digraph is a tournament as well:

1

2

3 .

However, the following digraph is not a tournament:

1

2

3 ,

because the tournament axiom is not satisfied for u = 1 and v = 3 (since nei-
ther (1, 3) nor (3, 1) is an arc of the digraph). Nor is the following digraph a
tournament:

1

2

3 ,

because the tournament axiom is not satisfied for u = 1 and v = 2 (since both
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(1, 2) and (2, 1) are arcs of the digraph). Finally, the digraph

1

2

3

is not a tournament either, since it is not loopless (having the loop (1, 1)).
The digraph D in Proposition 1.3.4 always is a tournament.

A tournament can be viewed as a model for the outcome of a round-robin tour-
nament between a number of contestants (assuming that each contest ends in a
victory by one of the contestants). The vertices are the contestants, and the arcs
encode the winner of each contest (namely, if contestant u wins against contestant
v, then we encode it as an arc (u, v)). This is the reason for the name “tournament”.

Here is a quick consequence of the definition of a tournament:

Proposition 1.4.4. Let D be a tournament. Then, the arcs of D that are not loops
are precisely the arcs of Drev.

Proof. The definition of Drev shows that the arcs of Drev are precisely the reversals
of the arcs of D.

The definition of D shows that the arcs of D are precisely the non-arcs of D.
The digraph D is a tournament. Thus, D is loopless (by the definition of a

tournament), i.e., has no loops. In other words, none of the arcs of D is a loop.
Hence, none of the reversals of the arcs of D is a loop either (since the reversal of
an arc a is a loop only when a itself is a loop). In other words, none of the arcs of
Drev is a loop (since the arcs of Drev are precisely the reversals of the arcs of D).

For any two distinct vertices u and v of D, we have the following chain of logical
equivalences:(

(u, v) is an arc of D
)

⇐⇒ ((u, v) is a non-arc of D)

(
since the arcs of D are precisely

the non-arcs of D

)
⇐⇒ ((u, v) is not an arc of D) (by the definition of a “non-arc”)

⇐⇒ ((v, u) is an arc of D)

 since the tournament axiom tells us that
exactly one of the two

pairs (u, v) and (v, u) is an arc of D


⇐⇒ ((u, v) is an arc of Drev)

(
since the arcs of Drev are precisely

the reversals of the arcs of D

)
.
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Thus, the arcs of D that are not loops are precisely the arcs of Drev that are not
loops. Since none of the arcs of Drev is a loop, we can simplify this as follows:
The arcs of D that are not loops are precisely the arcs of Drev. This proves the
Proposition 1.4.4.

We note that Proposition 1.4.4 also has a converse (which we shall not use and
thus won’t prove either):

Proposition 1.4.5. Let D be a loopless digraph. Then, D is a tournament if and
only if the arcs of D that are not loops are precisely the arcs of Drev.

Here are three other obvious properties of tournaments:

Proposition 1.4.6. Let D be a tournament. Then, Drev is a tournament as well.

Proposition 1.4.7. Let D = (V, A) be a tournament, and let vw ∈ A be an arc
of D. Let D′ be the digraph obtained from D by reversing the arc vw (that is,
replacing it by wv). (In other words, let D′ = (V, (A \ {vw}) ∪ {wv}).) Then,
D′ is again a tournament.

Proposition 1.4.8. Let D be a tournament with n vertices. Then, D has exactly(
n
2

)
many arcs.

With so many arcs, one might hope that a tournament has better chances than a
random digraph to have a hamp (Hamiltonian path). And indeed:

Theorem 1.4.9 (Rédei’s Little Theorem). Any tournament has a hamp. Here, we
agree to consider the empty list () as a hamp of the empty tournament with 0
vertices.

We will now briefly outline a quick proof of this theorem, but it is not strictly
needed since we will later prove a much stronger result (Theorem 1.6.1) from which
Theorem 1.4.9 will also follow.

Proof of Theorem 1.4.9 (sketched). We shall prove this by strong induction on the num-
ber of vertices of the tournament. Thus, we fix a tournament D = (V, A), and as-
sume that all tournaments with fewer vertices than D have hamps. Now we want
to find a hamp of D.

If V is empty, then () is a hamp (according to our agreement). Hence, we WLOG
assume that V is not empty. Choose any v ∈ V. Let

X := {u ∈ V | uv ∈ A} and Y := {u ∈ V | vu ∈ A} .

By the definition of a tournament, the sets X, Y and {v} are disjoint, and their
union is V. Hence, the two sets X and Y have smaller size than V.
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Now, consider the two tournaments (X, A ∩ (X × X)) and (Y, A ∩ (Y × Y)).
These two tournaments have fewer vertices than D (since the two sets X and Y
have smaller size than V), and thus have hamps (by the induction hypothesis). Let
(x1, x2, . . . , xa) and (y1, y2, . . . , yb) be these hamps (these can be empty lists if X or
Y is empty). Then, it is easy to see that (x1, x2, . . . , xa, u, y1, y2, . . . , yb) is a hamp of
D. Thus, D has a hamp. This completes the induction step, and thus Theorem 1.4.9
is proved.

1.5. Hamiltonian cycles in tournaments

Encouraged by Theorem 1.4.9, we can ask a stronger question: Is it true that any
tournament has a Hamiltonian cycle? Let us first define this concept:

Definition 1.5.1. Let D = (V, A) be a digraph.

(a) A closed walk of D means a walk (v0, v1, . . . , vk) of D satisfying vk = v0.

(b) A cycle of D means a closed walk (v0, v1, . . . , vk) of D such that k ≥ 1 and
such that the vertices v0, v1, . . . , vk−1 are distinct.

(c) A Hamiltonian cycle of D means a cycle of D that contains each vertex of D.

In other words, a Hamiltonian cycle of D means a cycle (v0, v1, . . . , vk) of D
such that V = {v0, v1, . . . , vk}.

For example, in the digraph D constructed in Example 1.3.7, the 3-tuple (1, 2, 1)
is a cycle (but not a Hamiltonian one, since it fails to contain the vertex 3), and the
4-tuple (2, 3, 1, 2) is a Hamiltonian cycle.

Now, it is clear that not every tournament has a Hamiltonian cycle; for example,

the tournament 1 2 has none. One reason for this is obvious:

Definition 1.5.2. Let D = (V, A) be a digraph with at least one vertex. We say
that the digraph D is strongly connected if for every two vertices u and v in V,
there exists a walk from u to v in D.

Example 1.5.3. The digraph

2 3

4 5

1
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is strongly connected, whereas the digraph

1 2 3 4

is not (for example, it has no walk from 2 to 1).

Proposition 1.5.4. Let D be a digraph. If D has a Hamiltonian cycle, then D is
strongly connected.

Proof (sketched). Assume that D has a Hamiltonian cycle. Then, for any two vertices
u and v of D, we can obtain a walk from u to v by walking along this cycle. Thus,
D is strongly connected.

Proposition 1.5.4 gives only a necessary, not a sufficient condition for the exis-
tence of a Hamiltonian cycle. However, it turns out that it is also sufficient when
the digraph is a tournament with at least two vertices:

Theorem 1.5.5 (Camion’s theorem). Let D be a strongly connected tournament
with at least two vertices. Then, D has a Hamiltonian cycle.

Before we prove this, we show a simple proposition about strongly connected
digraphs:

Proposition 1.5.6. Let D = (V, A) be a strongly connected digraph. Then:

(a) If V has at least two vertices, then D has a cycle.

(b) Each arc a ∈ A is contained in at least one cycle of D.

Proof of Proposition 1.5.6 (sketched). (b) Let a = uv ∈ A be an arc. Then, there is a
walk from v to u in D (since D is strongly connected). Hence, there is a path from
v to u in D as well (by the “if there is a walk, then there is a path” theorem8). Pick
such a path and combine it with the arc a to get a cycle that contains the arc a.
Thus, Proposition 1.5.6 (b) is proved.

(a) Assume that V has at least two vertices. Thus, V has two distinct vertices
u and v. Consider these u and v. Then, there is a walk from v to u in D (since
D is strongly connected). This walk must have at least one arc (since u and v are
distinct). Hence, D has an arc. From Proposition 1.5.6 (b), we conclude that this
arc is contained in at least one cycle of D. Hence, D has a cycle. This proves
Proposition 1.5.6 (a).

We are now ready to prove Theorem 1.5.5:

8We have previously stated this theorem for undirected graphs, but it exists in the same form (and
with the same proof) for digraphs.
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Proof of Theorem 1.5.5. (We are following [Berge91, §10.2, Theorem 4].)
Write D as (V, A). Proposition 1.5.6 (a) shows that D has a cycle. Thus, D has a

cycle of maximum length9 (since the total set of cycles of D is finite10). Let

c = (v0, v1, . . . , vk) (with vk = v0)

be a cycle (of D) having maximum length. We claim that c is a Hamiltonian cycle.
To prove this, we assume the contrary. Thus, c does not contain some vertex of

D. Our goal is to obtain a contradiction by finding a cycle that is longer than c.
Let C = {v0, v1, . . . , vk} be the set of all vertices of the cycle c. Thus, C is a proper

subset of V (since c does not contain some vertex of D). Hence, V \ C ̸= ∅.
The vertices w ∈ V \ C are precisely the vertices not contained in the cycle c.

Thus, they are distinct from each of v0, v1, . . . , vk. Hence, for each vertex w ∈ V \ C,
exactly one of the pairs wv0 and v0w must belong to A (by the tournament axiom).
In other words, the set V \ C is the union of its two subsets

X := {w ∈ V \ C | wv0 ∈ A} and
Y := {w ∈ V \ C | v0w ∈ A} ,

and furthermore these two subsets X and Y are disjoint. Thus, X ∪ Y = V \ C and
X ∩ Y = ∅.

We shall now prove the following:

Observation 1: Let w ∈ X. Then, wvi ∈ A for each i ∈ {0, 1, . . . , k}.

[Proof of Observation 1: The claim we must prove is “wvi ∈ A for each i ∈
{0, 1, . . . , k}”. Substituting k − i for i in this claim, we can restate it as “wvk−i ∈ A
for each i ∈ {0, 1, . . . , k}”.

We shall prove this restated claim by induction on i:
Induction base: From w ∈ X, we immediately obtain wv0 ∈ A. In view of vk−0 =

vk = v0, we can rewrite this as wvk−0 ∈ A. Hence, the claim “wvk−i ∈ A for each
i ∈ {0, 1, . . . , k}” holds for i = 0.

Induction step: Let j ∈ {1, 2, . . . , k}. Assume that wvk−(j−1) ∈ A. We must show
that wvk−j ∈ A.

Assume the contrary. Thus, wvk−j /∈ A.
Let r = k − j; thus, r ∈ {0, 1, . . . , k − 1}. Also, wvr = wvk−j /∈ A. We have w ̸= vr

(since w ∈ X ⊆ X ∪Y = V \C). Thus, by the tournament axiom, we see that exactly
one of the pairs wvr and vrw must belong to A. Hence, vrw ∈ A (since wvr /∈ A).

Also, from r = k − j, we obtain r + 1 = k − j + 1 = k − (j − 1), so that wvr+1 =
wvk−(j−1) ∈ A. Hence, we can “detour” our cycle c to pass through w, obtaining a
longer cycle (v0, v1, . . . , vr, w, vr+1, vr+2, . . . , vk) (because vrw ∈ A and wvr+1 ∈ A).
However, this contradicts the fact that c is a cycle having maximum length. This
contradiction shows that our assumption was wrong; hence, we have shown that
wvk−j ∈ A. This completes the induction step; thus, we have proved Observation
1.]

9The length of a walk (v0, v1, . . . , vk) is defined to be the number k.
10This is because a cycle cannot have length > |V|.
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Observation 2: Let w ∈ Y. Then, viw ∈ A for each i ∈ {0, 1, . . . , k}.

[Proof of Observation 2: We shall prove this by induction on i:
Induction base: From w ∈ Y, we immediately obtain v0w ∈ A. Hence, Observation

2 is proved for i = 0.
Induction step: Let j ∈ {1, 2, . . . , k}. Assume that vj−1w ∈ A. We must show that

vjw ∈ A.
Assume the contrary. Thus, vjw /∈ A. However, w ̸= vj (since w ∈ Y ⊆

X ∪ Y = V \ C). Thus, by the tournament axiom, we see that exactly one of
the pairs wvj and vjw must belong to A. Hence, wvj ∈ A (since vjw /∈ A).
Hence, we can “detour” our cycle c to pass through w, obtaining a longer cycle(
v0, v1, . . . , vj−1, w, vj, vj+1, . . . , vk

)
(because vj−1w ∈ A and wvj ∈ A). However,

this contradicts the fact that c is a cycle having maximum length. This contradic-
tion shows that our assumption was wrong; hence, we have shown that vjw ∈ A.
This completes the induction step; thus, we have proved Observation 2.]

Observation 3: Let w ∈ X and z ∈ C. Then, zw /∈ A.

[Proof of Observation 3: We have z ∈ C = {v0, v1, . . . , vk}, so that z = vi for some
i ∈ {0, 1, . . . , k}. Consider this i. Observation 1 yields wvi ∈ A (since w ∈ X). In
other words, wz ∈ A (since z = vi). However, w ̸= z (since w ∈ X ⊆ X ∪ Y = V \ C
and z ∈ C). Thus, by the tournament axiom, exactly one of the two pairs wz and
zw must belong to A. Hence, from wz ∈ A, we obtain zw /∈ A. This proves
Observation 3.]

Observation 4: Let w ∈ Y and z ∈ C. Then, wz /∈ A.

[Proof of Observation 4: We have z ∈ C = {v0, v1, . . . , vk}, so that z = vi for some
i ∈ {0, 1, . . . , k}. Consider this i. Observation 2 yields viw ∈ A (since w ∈ Y). In
other words, zw ∈ A (since z = vi). However, w ̸= z (since w ∈ Y ⊆ X ∪ Y = V \ C
and z ∈ C). Thus, by the tournament axiom, exactly one of the two pairs wz and
zw must belong to A. Hence, from zw ∈ A, we obtain wz /∈ A. This proves
Observation 4.]

Observation 5: We have X ̸= ∅.

[Proof of Observation 5: There exists some vertex q ∈ V \ C (since V \ C ̸= ∅).
Consider this q. Since D is strongly connected, there exists a walk from q to v0. This
walk must cross from the set V \ C into the set C at some point11 (since q ∈ V \ C
whereas v0 ∈ C). Hence, there exists an arc wz whose source w belongs to V \ C
and whose target z belongs to C. Consider this arc. Thus, w ∈ V \ C and z ∈ C
and wz ∈ A. If we had w ∈ Y, then Observation 4 would yield wz /∈ A, which
would contradict wz ∈ A. Hence, we cannot have w ∈ Y. Thus, w /∈ Y. However,
w ∈ V \ C = X ∪ Y. Combining this with w /∈ Y, we obtain w ∈ (X ∪ Y) \ Y ⊆ X.
Hence, X ̸= ∅. Thus, Observation 5 is proved.]
11By this we mean the following: One of the arcs of this walk must have its source in V \ C and its

target in C.
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Observation 6: We have Y ̸= ∅.

[Proof of Observation 6: This is very similar to the proof of Observation 5 above:
There exists some vertex q ∈ V \ C (since V \ C ̸= ∅). Consider this q. Since D

is strongly connected, there exists a walk from v0 to q. This walk must cross from
the set C into the set V \ C at some point (since v0 ∈ C whereas q ∈ V \ C). Hence,
there exists an arc zw whose source z belongs to C and whose target w belongs to
V \ C. Consider this arc. Thus, z ∈ C and w ∈ V \ C and zw ∈ A. If we had w ∈ X,
then Observation 3 would yield zw /∈ A, which would contradict zw ∈ A. Hence,
we cannot have w ∈ X. Thus, w /∈ X. However, w ∈ V \C = X ∪Y. Combining this
with w /∈ X, we obtain w ∈ (X ∪ Y) \ X ⊆ Y. Hence, Y ̸= ∅. Thus, Observation 6
is proved.]

Observation 7: There exists an arc yx ∈ A with y ∈ Y and x ∈ X.

[Proof of Observation 7: There exists at least one vertex u ∈ X (by Observation 5)
and at least one vertex v ∈ Y (by Observation 6). Consider these u and v. From
u ∈ X, we obtain u /∈ Y (since X ∩ Y = ∅) and thus u ∈ V \ Y. Since D is strongly
connected, there exists a walk from v to u. This walk must cross from the set Y
into the set V \ Y at some point (since v ∈ Y and u ∈ V \ Y). Hence, there exists
an arc yx ∈ A whose source y belongs to Y and whose target x belongs to V \ Y.
Consider this arc yx. Thus, y ∈ Y and x ∈ V \ Y and yx ∈ A. If we had x ∈ C,
then Observation 4 (applied to w = y and z = x) would yield yx /∈ A, which
would contradict yx ∈ A. Hence, we cannot have x ∈ C. Thus, x /∈ C, so that
x ∈ V \C = X ∪Y. Since we also have x /∈ Y (because x ∈ V \Y), we thus conclude
that x ∈ (X ∪ Y) \ Y ⊆ X. Hence, we have found an arc yx ∈ A with y ∈ Y and
x ∈ X. This proves Observation 7.]

We are almost done now. Observation 7 shows that there exists an arc yx ∈ A
with y ∈ Y and x ∈ X. Consider this arc. Observation 1 (applied to w = x and
i = 1) yields xv1 ∈ A. Observation 2 (applied to w = y and i = 0) yields v0y ∈ A.
Thus, we can “detour” our cycle c to pass through y and x, obtaining a longer cycle
(v0, y, x, v1, v2, v3, . . . , vk) (because v0y ∈ A and yx ∈ A and xv1 ∈ A). However, this
contradicts the fact that c is a cycle having maximum length. This contradiction
finishes our proof that c is a Hamiltonian cycle. Thus, Theorem 1.5.5 follows.

1.6. Rédei’s theorem

We now come to the highlight of this lecture, a result of L. Rédei from 1933
([Redei33, §I]):

Theorem 1.6.1 (Rédei’s Strong Theorem). Let D be a tournament. Then,
(# of hamps of D) is odd. Here, we agree to consider the empty list () as a
hamp of the empty tournament with 0 vertices.
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Theorem 1.6.1 clearly implies Theorem 1.4.9 (because if the # of hamps of D
is odd, then this # is clearly nonzero, and therefore D has a hamp). However,
Theorem 1.6.1 is much harder to prove than Theorem 1.4.9. The proof we shall
give below is not Rédei’s original proof (which relied on subtle manipulation of
determinants12), but rather Berge’s proof from [Berge91, §10.2, Theorem 6] (which
also appears in [Tomesc85, solution to problem 7.8]).13 We have already done most
of the hard work when we proved Theorem 1.3.6, which will come useful in the
proof; but we will need one more lemma:

Lemma 1.6.2. Let D = (V, A) be a tournament, and let vw ∈ A be an arc of D.
Let D′ be the digraph obtained from D by reversing the arc vw (that is, replacing
it by wv). (In other words, let D′ = (V, (A \ {vw}) ∪ {wv}).) Then,

(# of hamps of D) ≡
(
# of hamps of D′)mod 2.

Proof of Lemma 1.6.2. (We follow [Berge91, §10.2, Theorem 6].)
The digraph D is a tournament, thus loopless. Hence, the arc vw is not a loop.

In other words, v ̸= w. Hence, the tournament axiom entails that exactly one of the
two pairs vw and wv is an arc of D. Hence, wv is not an arc of D (since vw is an
arc of D).

Define two further digraphs D0 and D2 by

D0 := (the digraph D with the arc vw removed) = (V, A \ {vw})

and
D2 := (the digraph D with the arc wv added) = (V, A ∪ {wv}) .

Note that neither D0 nor D2 is a tournament.
The digraph D0 is the digraph D with the arc vw removed. Hence, the digraph

D0 is the digraph D with the arc vw added.
The digraph D2 is the digraph D with the arc wv added. Hence, the digraph

(D2)
rev is the digraph Drev with the arc vw added.

Here are visualizations of the four digraphs D, D′, D0 and D2 (we are only
showing the arcs between the vertices v and w, since all other arcs are exactly the

12An English translation of this proof can be found in Moon’s booklet [Moon13, proof of Theorem
14].

13Another proof appears in [Lass02, Corollaire 5.1].
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same in all four digraphs):

v wD :

;

v wD′ :

;

v wD0 :

;

v wD2 :

.

We shall use the following notation: If two digraphs E1 and E2 with the same set
of vertices have the same arcs except possibly the loops (i.e., if the arcs of E1 that
are not loops are precisely the arcs of E2 that are not loops), then we shall write
E1

◦
= E2. In other words, two digraphs E1 and E2 satisfy E1

◦
= E2 if and only if they

are “equal up to loops” (i.e., they have the same vertices and the same arcs except
possibly for the loops). In other words, two digraphs E1 and E2 satisfy E1

◦
= E2 if

and only if one can be obtained from the other by adding and removing loops.
It is clear that if p is a path of a digraph, then none of the arcs of p is a loop

(because the vertices of a path have to be distinct, but a loop would contribute two
equal vertices to p). In other words, a loop cannot be an arc of any path. Thus, if
we add or remove a loop to a digraph, then the paths of the digraph do not change;
in particular, the hamps of the digraph do not change. Hence, if E1 and E2 are two
digraphs satisfying E1

◦
= E2, then

(# of hamps of E1) = (# of hamps of E2) . (12)

However, D is a tournament; thus, Proposition 1.4.4 yields that the arcs of D
that are not loops are precisely the arcs of Drev. Hence, D ◦

= Drev (but we don’t
generally have D = Drev, since the digraph D has loops whereas the digraph Drev

does not). This entails D0
◦
= (D2)

rev (because the digraph D0 is the digraph D with
the arc vw added, whereas the digraph (D2)

rev is the digraph Drev with the arc vw
added). Therefore, (12) (applied to E1 = D0 and E2 = (D2)

rev) yields(
# of hamps of D0

)
=

(
# of hamps of (D2)

rev) = (# of hamps of D2)

(by Proposition 1.3.5, applied to D2 instead of D). Hence,

(# of hamps of D2) =
(
# of hamps of D0

)
≡ (# of hamps of D0)mod 2 (13)
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(by Theorem 1.3.6, applied to D0 instead of D).
However, recall that D2 is the digraph D with the arc wv added (and this arc wv

is not an arc of D). Hence, the hamps of D are exactly the hamps of D2 that do not
use14 the arc wv. Therefore,

(# of hamps of D)

= (# of hamps of D2 that do not use the arc wv)
= (# of hamps of D2)

− (# of hamps of D2 that use the arc wv) . (14)

However, the digraph D2 is the digraph D′ with the arc vw added (this follows
by comparing the definitions of D2 and D′). Thus, the digraph D′ is the digraph
D2 with the arc vw removed (since vw is not an arc of D′). Thus, the hamps of D′

are exactly the hamps of D2 that do not use the arc vw. In particular, any hamp of
D′ is a hamp of D2. Therefore, any hamp of D′ that uses the arc wv is a hamp of
D2 that uses the arc wv.

On the other hand, a path of D2 cannot use both arcs vw and wv simultane-
ously15. Thus, any path of D2 that uses the arc wv cannot use the arc vw. Hence,
in particular, any hamp of D2 that uses the arc wv cannot use the arc vw, and thus
must be a hamp of D′ (since the hamps of D′ are exactly the hamps of D2 that do
not use the arc vw). Thus, any hamp of D2 that uses the arc of wv is a hamp of
D′ that uses the arc wv. Conversely, as we have already shown, any hamp of D′

that uses the arc wv is a hamp of D2 that uses the arc wv. Combining the results
of the previous two sentences, we see that the hamps of D2 that use the arc wv are
precisely the hamps of D′ that use the arc wv. Hence,

(# of hamps of D2 that use the arc wv)
=

(
# of hamps of D′ that use the arc wv

)
. (15)

The digraph D0 is the digraph D′ with the arc wv removed (this follows by
comparing the definitions of D0 and D′). Hence, the hamps of D0 are precisely the
hamps of D′ that do not use the arc wv. Therefore,

(# of hamps of D0)

=
(
# of hamps of D′ that do not use the arc wv

)
=

(
# of hamps of D′)

−
(
# of hamps of D′ that use the arc wv

)
. (16)

14A walk w is said to use an arc a if a is an arc of w.
15since the vertices of a path must be distinct, but having both vw and wv as arcs would cause at

least one of the vertices v and w to appear twice



Math 5707 Spring 2017 (Darij Grinberg): Lecture 7 page 27

Now, (14) becomes

(# of hamps of D)

= (# of hamps of D2)︸ ︷︷ ︸
≡(# of hamps of D0)mod 2

(by (13))

− (# of hamps of D2 that use the arc wv)︸ ︷︷ ︸
=(# of hamps of D′ that use the arc wv)

(by (15))

≡ (# of hamps of D0)−
(
# of hamps of D′ that use the arc wv

)
≡ (# of hamps of D0) +

(
# of hamps of D′ that use the arc wv

)
(since x − y ≡ x + y mod 2 for any two integers x and y)

=
(
# of hamps of D′)mod 2 (by (16)) .

This proves Lemma 1.6.2.

At last, we are now ready to prove Rédei’s Strong Theorem:

Proof of Theorem 1.6.1. Write the digraph D as D = (V, A). We WLOG assume that
V = {1, 2, . . . , n} for some n ∈ N (indeed, we can always achieve this by renaming
the vertices of D).

We want to show that (# of hamps of D) is odd. Lemma 1.6.2 shows that if we
reverse any arc of D (that is, if we pick some arc vw of D and replace it by the arc
wv), then the number (# of hamps of D) remains unchanged modulo 2 (that is, it
stays even if it was even, and stays odd if it was odd). Thus, of course, the same
holds if we reverse several arcs of D (because we can perform these reversals one
by one, and our digraph remains a tournament throughout the process16). Since
we are only interested in this number modulo 2 (after all, we are trying to show
that it is odd), we can therefore WLOG assume that

A = {(i, j) ∈ V × V | i < j} = {12, 13, 14, . . . , 1n,
23, 24, . . . , 2n,

. . .
(n − 1) n}

(because we can always achieve this situation by reversing each arc ij of D that
satisfies i > j). Assume this. Then, Proposition 1.3.4 yields

(# of hamps of D) = 1.

Thus, (# of hamps of D) is odd. This proves Theorem 1.6.1.

One might wonder whether Theorem 1.6.1 has a converse: Does every odd pos-
itive integer equal the # of hamps of some tournament? Surprisingly, the answer
is “no”: By a mix of theoretical reasoning and computer-assisted brute force, it
has been proved that a tournament cannot have exactly 7 hamps, nor can it have
exactly 21 hamps. Each other odd number between 1 and 80555 has been verified
to appear as # of hamps of some tournament, but the question for higher numebrs
is still open. See [MO232751] for more about this peculiar question.
16Here we are using Proposition 1.4.7.
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