Math 4707 Fall 2017 (Darij Grinberg): midterm 2

due date: Wednesday 8 Nov 2017 at the beginning of class, or before that by email or moodle

Please solve at most 4 of the 7 exercises!

0.1. Idempotent maps

If *S* is a set, then a map $f: S \to S$ is said to be *idempotent* if and only if $f \circ f = f$. For instance, the map $[3] \to [3]$ sending 1, 2, 3 to 1, 3, 3 (respectively) is idempotent.

Exercise 1. Let $n \in \mathbb{N}$.

- (a) Prove that a map $f : [n] \to [n]$ is idempotent if and only if f(y) = y for every y in the image of f.
 - **(b)** Prove that the number of idempotent maps $[n] \to [n]$ is $\sum_{k=0}^{n} {n \choose k} k^{n-k}$.
- (c) Prove that the number of idempotent maps $[n] \to [n]$ has the form an + 1 for some $a \in \mathbb{N}$. (Of course, a will depend on n.)

[**Hint:** When is $\binom{n}{k} k^{n-k}$ divisible by n ?]

0.2. Fixed points

Exercise 2. Let *S* be a finite set. For any map $f: S \to S$, we let Fix *f* denote the set of all fixed points of *f*. (That is, Fix $f = \{s \in S \mid f(s) = s\}$.)

- (a) Prove that $|\operatorname{Fix}(f \circ g)| = |\operatorname{Fix}(g \circ f)|$ for any two maps $f: S \to S$ and $g: S \to S$.
- **(b)** Is it true that every three maps f, g, h from S to S satisfy $|\text{Fix}(f \circ g \circ h)| = |\text{Fix}(g \circ f \circ h)|$?

[Hint: For (a), find a bijection.]

0.3. A binomial coefficient in a denominator

Exercise 3. Let *n* and *a* be two integers with $n \ge a \ge 1$. Prove that

$$\sum_{k=a}^{n} \frac{(-1)^k}{k} \binom{n-a}{k-a} = \frac{(-1)^a}{a \binom{n}{a}}.$$

0.4. Derangements with at most 1 descent

Exercise 4. Let $n \in \mathbb{N}$. How many derangements σ of [n] have at most 1 descent? (See homework set #5 for the definitions of descents and of derangements.)

0.5. Connected permutations

Definition 0.1. Let n be a positive integer. A permutation σ of [n] is said to be *connected* if and only if there exists no $k \in [n-1]$ such that $\sigma([k]) = [k]$.

For example, the permutation σ of [5] sending 1, 2, 3, 4, 5 to 2, 4, 1, 5, 3 is connected, since it satisfies

$$\begin{split} \sigma\left([1]\right) &= \{2\} \neq [1]\,, & \sigma\left([2]\right) &= \{2,4\} \neq [2]\,, \\ \sigma\left([3]\right) &= \{2,4,1\} \neq [3]\,, & \sigma\left([4]\right) &= \{2,4,1,5\} \neq [4]\,. \end{split}$$

But the permutation σ of [4] sending 1,2,3,4 to 2,1,4,3 is not connected, because it satisfies $\sigma([2]) = [2]$. Likewise, a permutation σ of [n] (for n > 1) satisfying $\sigma(1) = 1$ is never connected (since $\sigma([1]) = [1]$); the same holds for a permutation σ satisfying $\sigma(n) = n$ (since $\sigma([n-1]) = [n-1]$).

Exercise 5. For each positive integer n, let c_n denote the number of all connected permutations of [n]. (Thus, $c_1 = 1$, $c_2 = 1$ and $c_3 = 3$.)

Prove that

$$n! = \sum_{k=1}^{n} c_k (n-k)!$$
 for each positive integer n .

0.6. Permutations and intervals

An *integer interval* means a set of the form $\{a, a+1, ..., b\}$ for some integers a and b. (If a > b, then this set is understood to be empty.)

Exercise 6. Let $n \in \mathbb{N}$ and $r \in [n]$. A permutation σ of [n] is said to be *r-friendly* if for each $k \in \{r, r+1, \ldots, n\}$, the set $\sigma([k])$ is an integer interval.

(For example, the permutation σ of [6] sending 1,2,3,4,5,6 to 2,4,3,5,1,6 is 3-friendly (since $\sigma([3]) = \{2,3,4\}, \sigma([4]) = \{2,3,4,5\}, \sigma([5]) = \{1,2,3,4,5\}$ and $\sigma([6]) = \{1,2,3,4,5,6\}$ are integer intervals), and thus also r-friendly for each $r \geq 3$, but not 2-friendly (since $\sigma([2]) = \{2,4\}$ is not an integer interval).)

Prove that the number of *r*-friendly permutations of [n] is $2^{n-r}r!$.

0.7. Inverting a power series

Exercise 7. Find and prove an explicit formula for the coefficient of x^n in the formal power series $\frac{1}{1-x-x^2+x^3}$.

[Hint: The standard strategy is to factor $1 - x - x^2 + x^3$, then do partial fraction decomposition. But it is perfectly legitimate to guess the formula based on

solving

$$(1 - x - x^2 + x^3) (b_0 + b_1 x + b_2 x^2 + b_3 x^3 + b_4 x^4 + \cdots) = 1$$

for the first few of the unknown coefficients b_0, b_1, b_2, \ldots , and then prove it by multiplying out. Either option works.]