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Why the log and exp series are mutually inverse
Darij Grinberg, May 11, 2018

The purpose of this note is to detail an argument that I have only briefly men-
tioned in class: namely, the (algebraic) proof of the fact that the power series exp
and log (or, more precisely, exp x− 1 and log (1 + x)) are mutually inverse. Along
the way, I will prove a few basic properties of the derivative of formal power series.
A significant part of this note is copy-pasted from [GriRei18, solution to Exercise
1.7.20].

First, let us recall the setting in which we are working.
We let k be a commutative Q-algebra. For example, k can be one of the fields Q,

R and C. (If you are curious: A Q-algebra is a ring whose elements can be divided
by 1, 2, 3, . . .. Thus, Z is not a Q-algebra, since 2 cannot be divided by 3 inside Z.)

(In class, I used the notation K for k.)
We consider the ring k [[x]] of formal power series in one indeterminate x over

k. We shall abbreviate the notion “formal power series” by “FPS”.
If f ∈ k [[x]] and g ∈ k [[x]] are two FPSs such that the constant term of g is 0,

then we can define a new FPS f [g] ∈ k [[x]] by

f [g] = ∑
n≥0

fngn,

where f0, f1, f2, . . . are the coefficients of f (so that f = ∑
n≥0

fnxn). The sum ∑
n≥0

fngn

is well-defined, because the family ( fngn)n∈N is summable (i.e., for each i ∈N, only
finitely many entries of this family have a nonzero xi-coefficient); this is thanks
to our assumption that the constant term of g is 0. The FPS f [g] is called the
composition of f with g (or the result of substituting g into f ). An alternative notation
for f [g] is f ◦ g. (Some authors also write f (g) instead of f [g], but this is dangerous
notation, since f (g) may just as well mean the product of f with g; thus, we shall
stick to the notation f [g].)

We define two FPSs exp ∈ k [[x]] and log ∈ k [[x]] by

exp = ∑
n≥0

1
n!

xn and log = ∑
n≥1

(−1)n−1

n
xn.

Here, we are using that k is a Q-algebra. (If we only knew that k is a ring, then we
wouldn’t be able to divide by n! and by n in these formulas.)

The FPS log defined above is commonly called log (1 + x) (because it is precisely
the Taylor series of the log (1 + z) function from complex analysis). However, I
will avoid the “log (1 + x)” notation, because it looks like it is a combination of
something called “log” with something called “1 + x”, but I have not introduced
anything called “log”. (In fact, there is no FPS called “log”.)

The FPS log has constant term 0 (because the sum in its definition starts at n = 1).

The FPS exp has constant term
1
0!

= 1; thus, the FPS exp−1 has constant term
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1− 1 = 0. Let us denote the FPS exp−1 by exp. Then, both FPSs exp and log have
constant term 0; hence, they can be substituted into one another. We now claim the
following:

Theorem 0.1. We have exp
[
log
]
= x and log [exp] = x.

Theorem 0.1 is an “algebraic analogue” of the well-known fact from calculus
that the exponential function and the natural logarithm function are each other’s
inverse. It is often used in enumerative combinatorics (for computing generating
functions). We shall give a purely algebraic proof (somewhat similar to the one
given in [Loehr11, Example 7.67]). Other proofs (some combinatorial, some ana-
lytic) can be found in the literature.

The proof of Theorem 0.1 uses the concept of the derivative of an FPS. This concept
is very simple (a lot simpler than the concept of derivative in analysis, where it re-
quires dealing with the intricacies of convergence and differentiability): The deriva-
tive of an FPS f ∈ k [[x]] is defined to be the FPS ∑

n≥1
n fnxn−1, where f0, f1, f2, . . .

are the coefficients of f (so that f = ∑
n≥0

fnxn). This derivative is denoted by f ′ or

by
d

dx
f .

The following properties of derivatives are easy to check:

Proposition 0.2. (a) We have
d

dx
( f + g) =

d
dx

f +
d

dx
g for any f ∈ k [[x]] and

g ∈ k [[x]].

(b) We have
d

dx
(λ f ) = λ

d
dx

f for any f ∈ k [[x]] and λ ∈ k.

(c) We have
d

dx
( f g) =

(
d

dx
f
)

g + f
(

d
dx

g
)

for any f ∈ k [[x]] and g ∈ k [[x]].

(Keep in mind that f
(

d
dx

g
)

means the product of f with
d

dx
g, not the compo-

sition of f with
d

dx
g. The latter would be denoted by f

[
d

dx
g
]

.)

(d) We have
d

dx
(wn) = n

(
d

dx
w
)

wn−1 for any w ∈ k [[x]] and any positive

integer n.

(e) If v ∈ k [[x]] is an FPS that has a multiplicative inverse v−1, then
d

dx
(
v−1) =

−v−2
(

d
dx

v
)

.

Proposition 0.2 (c) is known as the Leibniz rule.

Proof of Proposition 0.2. We leave the easy proofs of parts (a) and (b) to the reader.
(c) Let f ∈ k [[x]] and g ∈ k [[x]].



Why log and exp are inverse page 3

Let f0, f1, f2, . . . be the coefficients of f ; thus,

f = ∑
n≥0

fnxn. (1)

Hence, the definition of
d

dx
f yields

d
dx

f = ∑
n≥1

n fnxn−1 = ∑
n≥0

(n + 1) fn+1xn (2)

(here, we have substituted n + 1 for n in the sum).
Let g0, g1, g2, . . . be the coefficients of g; thus,

g = ∑
n≥0

gnxn. (3)

Hence, the definition of
d

dx
g yields

d
dx

g = ∑
n≥1

ngnxn−1 = ∑
n≥0

(n + 1) gn+1xn (4)

(here, we have substituted n + 1 for n in the sum).
Multiplying the equalities (2) and (3), we obtain(

d
dx

f
)

g =

(
∑
n≥0

(n + 1) fn+1xn

)(
∑
n≥0

gnxn

)

= ∑
n≥0

(
n

∑
k=0

(k + 1) fk+1gn−k

)
xn (5)

(by the definition of the product of two FPSs).
Multiplying the equalities (1) and (4), we obtain

f
(

d
dx

g
)
=

(
∑
n≥0

fnxn

)(
∑
n≥0

(n + 1) gn+1xn

)

= ∑
n≥0

(
n

∑
k=0

fk (n− k + 1) gn−k+1

)
xn (6)

(by the definition of the product of two FPSs).
Adding the equalities (5) and (6) together, we find(

d
dx

f
)

g + f
(

d
dx

g
)

= ∑
n≥0

(
n

∑
k=0

(k + 1) fk+1gn−k

)
xn + ∑

n≥0

(
n

∑
k=0

fk (n− k + 1) gn−k+1

)
xn

= ∑
n≥0

(
n

∑
k=0

(k + 1) fk+1gn−k +
n

∑
k=0

fk (n− k + 1) gn−k+1

)
xn (7)
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(by the definition of the sum of two FPSs).
Multiplying the equalities (1) and (3), we obtain

f g =

(
∑
n≥0

fnxn

)(
∑
n≥0

gnxn

)
= ∑

n≥0

(
n

∑
k=0

fkgn−k

)
xk

(by the definition of the product of two FPSs). Thus,
0
∑

k=0
fkg0−k,

1
∑

k=0
fkg1−k,

2
∑

k=0
fkg2−k, . . .

are the coefficients of the FPS f g. Hence, the definition of a derivative yields

d
dx

( f g) = ∑
n≥1

n

(
n

∑
k=0

fkgn−k

)
xn−1. (8)

But each n ∈N satisfies

n

(
n

∑
k=0

fkgn−k

)

=
n

∑
k=0

n︸︷︷︸
=k+(n−k)

fkgn−k =
n

∑
k=0

(k + (n− k)) fkgn−k︸ ︷︷ ︸
=k fkgn−k+ fk(n−k)gn−k

=
n

∑
k=0

(k fkgn−k + fk (n− k) gn−k)

=
n

∑
k=0

k fkgn−k︸ ︷︷ ︸
=0 f0gn−0+

n
∑

k=1
k fkgn−k

+
n

∑
k=0

fk (n− k) gn−k︸ ︷︷ ︸
=

n−1
∑

k=0
fk(n−k)gn−k+ fn(n−n)gn−n

= 0 f0gn−0︸ ︷︷ ︸
=0

+
n

∑
k=1

k fkgn−k +
n−1

∑
k=0

fk (n− k) gn−k + fn (n− n) gn−n︸ ︷︷ ︸
=0

(since n−n=0)

=
n

∑
k=1

k fkgn−k +
n−1

∑
k=0

fk (n− k) gn−k

=
n−1

∑
k=0

(k + 1) fk+1gn−(k+1) +
n−1

∑
k=0

fk (n− k) gn−k

(here, we have substituted k + 1 for k in the first sum) .
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Thus, (8) becomes

d
dx

( f g)

= ∑
n≥1

n

(
n

∑
k=0

fkgn−k

)
︸ ︷︷ ︸

=
n−1
∑

k=0
(k+1) fk+1gn−(k+1)+

n−1
∑

k=0
fk(n−k)gn−k

xn−1

= ∑
n≥1

(
n−1

∑
k=0

(k + 1) fk+1gn−(k+1) +
n−1

∑
k=0

fk (n− k) gn−k

)
xn−1

= ∑
n≥0


(n+1)−1

∑
k=0︸ ︷︷ ︸
=

n
∑

k=0

(k + 1) fk+1 g(n+1)−(k+1)︸ ︷︷ ︸
=gn−k

+
(n+1)−1

∑
k=0︸ ︷︷ ︸
=

n
∑

k=0

fk ((n + 1)− k)︸ ︷︷ ︸
=n−k+1

g(n+1)−k︸ ︷︷ ︸
=gn−k+1


xn

(here, we have substituted n + 1 for n in the sum)

= ∑
n≥0

(
n

∑
k=0

(k + 1) fk+1gn−k +
n

∑
k=0

fk (n− k + 1) gn−k+1

)
xn

=

(
d

dx
f
)

g + f
(

d
dx

g
)

(by (7)). This proves Proposition 0.2 (c).
(d) Proposition 0.2 (d) follows easily by induction over n using Proposition 0.2

(c).
(e) Let v ∈ k [[x]] be an FPS that has a multiplicative inverse v−1. The Leibniz

rule (applied to v and v−1) yields

d
dx

(
v · v−1

)
=

(
d

dx
v
)

v−1 + v
d

dx

(
v−1
)

.

Comparing this with
d

dx

(
v · v−1

)
︸ ︷︷ ︸

=1

=
d

dx
1 = 0, we obtain

(
d

dx
v
)

v−1 + v
d

dx
(
v−1) =

0. Solving this equality for
d

dx
(
v−1), we find

d
dx

(
v−1
)
= −1

v

(
d

dx
v
)

v−1 = −v−2
(

d
dx

v
)

.

This proves Proposition 0.2 (e).
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Next, we notice that

exp = exp︸︷︷︸
= ∑

n≥0

1
n!

xn

−1 = ∑
n≥0

1
n!

xn − 1 =
1
0!︸︷︷︸

=
1
1
=1

x0︸︷︷︸
=1

+ ∑
n≥1

1
n!

xn − 1

(here, we have split off the addend for n = 0 from the sum)

= 1 + ∑
n≥1

1
n!

xn − 1 = ∑
n≥1

1
n!

xn. (9)

Hence, the FPS exp has constant term 0. Hence, the FPS log [exp] is well-defined.
Also,

log = ∑
n≥1

(−1)n−1

n
xn. (10)

Hence, the FPS log has constant term 0. Hence, the FPS exp
[
log
]

is well-defined.
For each n ≥ 1, we have(

the constant term of log
n
)
= 0 (11)

1.
Substituting log for x on both sides of the equality (9), we obtain

exp
[
log
]
= ∑

n≥1

1
n!

log
n
.

Hence, (
the constant term of exp

[
log
])

=

(
the constant term of ∑

n≥1

1
n!

log
n
)

= ∑
n≥1

1
n!

(
the constant term of log

n
)

︸ ︷︷ ︸
=0

(by (11))

= ∑
n≥1

1
n!

0 = 0.

In other words, the FPS exp
[
log
]

has constant term 0. A similar argument (with

the roles of exp and log switched) shows that the FPS log [exp] has constant term
0.

Next, we prove some simple lemmas:

1Proof of (11): Let n ≥ 1. The FPS log is divisible by x (since it has constant term 0). Hence,
the FPS log

n
is divisible by xn. Thus, the FPS log

n
is also divisible by x (since xn is di-

visible by x (since n ≥ 1)), and therefore has constant term 0. In other words, we have(
the constant term of log

n
)
= 0. This proves (11).
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Lemma 0.3. Let u ∈ k [[x]] and v ∈ k [[x]] be two FPSs having the same constant

term. Assume that
d

dx
u =

d
dx

v. Then, u = v.

Proof of Lemma 0.3. Let u0, u1, u2, . . . be the coefficients of the FPS u (so that u =

∑
n≥0

unxn). Thus,
d

dx
u = ∑

n≥1
nunxn−1 (by the definition of the derivative).

Let v0, v1, v2, . . . be the coefficients of the FPS v (so that v = ∑
n≥0

vnxn). Thus,

d
dx

v = ∑
n≥1

nvnxn−1 (by the definition of the derivative).

Now,

∑
n≥1

nunxn−1 =
d

dx
u =

d
dx

v = ∑
n≥1

nvnxn−1.

Comparing coefficients in front of xn−1 on both sides of this equality, we obtain

nun = nvn for each integer n ≥ 1. (12)

On the other hand, the FPS u has constant term u0 (since u = ∑
n≥0

unxn), and the

FPS v has constant term v0 (similarly). Thus, the constant terms of u and v are
u0 and v0, respectively. Therefore, u0 = v0 (since the FPSs u and v have the same
constant term).

Now, each n ∈ N satisfies un = vn
2. Hence, ∑

n≥0
un︸︷︷︸
=vn

xn = ∑
n≥0

vnxn. Thus,

u = ∑
n≥0

unxn = ∑
n≥0

vnxn = v. This proves Lemma 0.3.

Lemma 0.4. Let w ∈ k [[x]] be an FPS having constant term 0. Then,

d
dx

(exp [w]) =

(
d

dx
w
)
· exp [w] (13)

and
d

dx

(
log [w]

)
=

(
d

dx
w
)
· 1

1 + w
. (14)

Proof of Lemma 0.4. Substituting w for x on both sides of the equality (9), we obtain

exp [w] = ∑
n≥1

1
n!

wn.

2Proof. Let n ∈N. We must prove that un = vn.
If n = 0, then this follows immediately from u0 = v0. Hence, we WLOG assume that we don’t

have n = 0. Thus, n ≥ 1 (since n ∈ N). Therefore, (12) yields nun = nvn. We can multiply both

sides of this equality by
1
n

(since k is a Q-algebra), and thus obtain un = vn, qed.
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Applying the operator
d

dx
to this equality, we find

d
dx

exp [w] =
d

dx ∑
n≥1

1
n!

wn = ∑
n≥1

1
n!
· d

dx
(wn)︸ ︷︷ ︸

=n

( d
dx

w

)
wn−1

(by Proposition 0.2 (d))

= ∑
n≥1

1
n!
· n︸ ︷︷ ︸

=
1

(n− 1)!

(
d

dx
w
)

wn−1

= ∑
n≥1

1
(n− 1)!

(
d

dx
w
)

wn−1 = ∑
n≥0

1
n!

(
d

dx
w
)

wn

(here, we have substituted n for n− 1 in the sum) .

Comparing this with(
d

dx
w
)
· exp [w]︸ ︷︷ ︸

= ∑
n≥0

1
n!

wn

(since exp= ∑
n≥0

1
n!

xn)

=

(
d

dx
w
)
· ∑

n≥0

1
n!

wn = ∑
n≥0

1
n!

(
d

dx
w
)

wn,

we obtain
d

dx
(exp [w]) =

(
d

dx
w
)
· exp [w]. This proves (13).

Substituting w for x on both sides of the equality (10), we obtain

log [w] = ∑
n≥1

(−1)n−1

n
wn.

Applying the operator
d

dx
to this equality, we find

d
dx

log [w] =
d

dx ∑
n≥1

(−1)n−1

n
wn = ∑

n≥1

(−1)n−1

n
· d

dx
(wn)︸ ︷︷ ︸

=n

( d
dx

w

)
wn−1

(by Proposition 0.2 (d))

= ∑
n≥1

(−1)n−1

n
· n
(

d
dx

w
)

wn−1

= ∑
n≥1

(−1)n−1
(

d
dx

w
)

wn−1 = ∑
n≥0

(−1)n
(

d
dx

w
)

wn

(here, we have substituted n for n− 1 in the sum) .
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Comparing this with(
d

dx
w
)
· 1

1 + w︸ ︷︷ ︸
= ∑

n≥0
(−1)nwn

=

(
d

dx
w
)
· ∑

n≥0
(−1)n wn = ∑

n≥0
(−1)n

(
d

dx
w
)

wn,

we obtain
d

dx

(
log [w]

)
=

(
d

dx
w
)
· 1

1 + w
. This proves (14). Thus, Lemma 0.4 is

proven.

Lemma 0.5. Let u ∈ k [[x]] and v ∈ k [[x]] be two FPSs having constant term 1.

Assume that
(

d
dx

u
)
· v =

(
d

dx
v
)
· u. Then, u = v.

Proof of Lemma 0.5. The FPS v has constant term 1, and thus has a multiplicative
inverse v−1. The Leibniz rule (applied to u and v−1) yields

d
dx

(
uv−1

)
=

(
d

dx
u
)

v−1 + u
d

dx

(
v−1
)

︸ ︷︷ ︸
=−v−2

( d
dx

v

)
(by Proposition 0.2 (e))

=

(
d

dx
u
)

v−1 + u
(
−v−2

(
d

dx
v
))

= v−2
((

d
dx

u
)
· v−

(
d

dx
v
)
· u
)

︸ ︷︷ ︸
=0

(since

( d
dx

u

)
·v=

( d
dx

v

)
·u)

= v−20 = 0 =
d

dx
1.

Moreover, the FPSs uv−1 and 1 have the same constant term3. Hence, Lemma 0.3
(applied to uv−1 and 1 instead of u and v) shows that uv−1 = 1. Thus, u = v. This
proves Lemma 0.5.

Proof of Theorem 0.1. The equality (14) (applied to w = x) yields
d

dx

(
log [x]

)
=(

d
dx

x
)

︸ ︷︷ ︸
=1

· 1
1 + x

=
1

1 + x
. In other words,

d
dx

log =
1

1 + x
(since log = log [x]).

Now, (13) (applied to w = log) shows that

d
dx

(
exp

[
log
])

=

(
d

dx
log
)

︸ ︷︷ ︸
=

1
1 + x

· exp
[
log
]
=

1
1 + x

· exp
[
log
]

.

3Proof. The FPS v has constant term 1. Hence, its inverse v−1 has constant term 1−1 = 1. Now,
both FPSs u and v−1 have constant term 1. Hence, their product uv−1 has constant term 1 · 1 = 1.
Since the FPS 1 also has constant term 1, this shows that the FPSs uv−1 and 1 have the same
constant term (namely, 1).
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But exp = exp−1 and thus exp = exp + 1. Substituting log for x in this equality,
we find exp

[
log
]
= exp

[
log
]
+ 1. Hence,

d
dx

(
exp

[
log
])

=
d

dx

(
exp

[
log
]
+ 1
)
=

d
dx

exp
[
log
]
+

d
dx

1︸︷︷︸
=0

=
d

dx
exp

[
log
]
=

1
1 + x

· exp
[
log
]

.

Multiplying this equality by 1 + x, we find(
d

dx

(
exp

[
log
]))
· (1 + x) = exp

[
log
]

.

Comparing this with
(

d
dx

(1 + x)
)

︸ ︷︷ ︸
=1

· exp
[
log
]
= exp

[
log
]
, we find

(
d

dx

(
exp

[
log
]))
· (1 + x) =

(
d

dx
(1 + x)

)
· exp

[
log
]

.

Since both FPSs exp
[
log
]

and 1 + x have constant term 1 4, we can thus apply

Lemma 0.5 to u = exp
[
log
]

and v = 1 + x. We thus conclude that exp
[
log
]
= 1 +

x. Comparing this with exp
[
log
]
= exp

[
log
]
+ 1, we obtain exp

[
log
]
+ 1 = 1+ x.

Subtracting 1 from this equality, we find exp
[
log
]
= x.

The equality (13) (applied to w = x) yields
d

dx
(exp [x]) =

(
d

dx
x
)

︸ ︷︷ ︸
=1

· exp [x]︸ ︷︷ ︸
=exp

= exp.

In other words,
d

dx
exp = exp (since exp = exp [x]).

On the other hand, (14) (applied to w = exp) shows that

d
dx

(
log [exp]

)
=

(
d

dx
exp

)
︸ ︷︷ ︸

=exp=exp+1=1+exp

· 1
1 + exp

= (1 + exp) · 1
1 + exp

= 1 =
d

dx
x.

4Proof. It is clear that the FPS 1 + x has constant term 1. Thus, it remain to prove that the FPS
exp

[
log
]

has constant term 1.

Recall that the FPS exp
[
log
]

has constant term 0. Hence, the FPS exp
[
log
]
+ 1 has constant

term 0 + 1 = 1. In other words, the FPS exp
[
log
]

has constant term 1 (since exp
[
log
]
=

exp
[
log
]
+ 1). Qed.
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Since the two FPSs log [exp] and x have the same constant term5, we can thus apply
Lemma 0.3 to u = log [exp] and v = x. We thus conclude that log [exp] = x. The
proof of Theorem 0.1 is thus complete.
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