Angela Chen (with minor edits by Darij Grinberg)

Fall 2017, Math 4990, Homework Set 9

Exercise 1

1.1 Exercise 1

Let n € N. Prove that

1.2 Solution

We will do this with induction over n.
Base case: When n =0, we have

é(_’f) i (_02) Al

Inductive step: We assume (as the induction hypothesis) that

> (_,f) — 7|22,

k=0
and wish to show that
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The upper negation identity for binomial coefficients yields
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(where we used the symmetry of Pascal’s triangle to get (12) = ("12)).
Now,
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We have two cases to consider: when 7z is odd, and when 7 is even. Consider the case when 7 is even.
Thus, the equality (2) becomes

n+l(_
> 2 =(—1)”Vl+2J+(—1)”+1(n+2):1-(ﬁ+1)+(—1)(n+2) (since 7 is even)
oo\ k 2 2
n+2

(3)

2




Since n+ 1 is odd, L—(”?”J = 22 and (-1)"*! = -1. Thus, (-1)"*! {—("+21)+2J = -2 Comparing this with
@), we find

ril(_z) gy {(m 1) +2J
as desired.

On the other hand, consider the case when 7 is odd. Thus, the equality (2) becomes

n+l(_
> 2 =(—1)"{n+2J+(—1)"+1(n+2)=(—l)n—+1+1(n+2) (since n is odd)
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Since n+1is even, (n+ 1) + 2 is also even and, hence, divisible by 2. So, [WJ = % = ”TH, and thus
also (-1)"*1 {WJ =213 (since (-1)"*! = 1). Comparing this with @), we find
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as desired.
Hence, regardless of the parity of n, we have
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This completes the induction step, and so solves the exercise.

Exercise 3

2.1 Exercise 3

Let G = (V, E, ) be a connected multigraph. Let v € V be any vertex.
(a) Pick any w € V such that d (v, w) is maximum (among all w € V). Prove that w is a non-cut vertex of

(b) Let n=|V|. Prove that Y} d(v,u) < (n)
ueV 2

2.2 Solution

(a) Note: we'll call a vertex v “cut” if v is not non-cut (that is, if G\ v is not connected and has at least one
vertex).

We have w € V and thus V # &. Hence, |V| > 0.

In the case where V contains only one vertex v, the vertex w is indeed non-cut because the multigraph
G\ w has no vertices. So WLOG, we'll also assume that V has more than one vertex.

Now we will prove the following proposition:

Proposition 1

| Let a be a cut vertex in G. Then there exists a vertex b in G\ a such that there is no walk v — b in G\ a.

Proof of Proposition[l} Assume the contrary. Then, for each vertex p € V \ g, there is a walkﬂ v — p. This also
tells us that for all p, there is a walk p — v (such a walk can be created by listing the entries in the walk v — p

1n this proof of Proposition “walk” means “walkin G\ a”.



in reverse order). Now fix two vertices u, w € V' \ a. We can find a walk from u to w by taking the walk u — v
and appending to it all entries but the first of the walk v — w (we omit the first entry, v, because the walk
u — v already ends with v). Now forget we fixed u and w. We've shown that there is a walk u — w for all
u, w € V\ a. Additionally, since we have assumed that |V| > 1, the multigraph G\ a has at least one vertex.
But this tells us that G\ a is connected, so a is non-cut. Since we assumed that a was a cut vertex, we have a
contradiction. O

We will now assume that (a) is false — that is, that there exists a cut vertex w € V such that d(v, w) is
maximum - and show that we end up with a contradiction. By Proposition|[l} there is a vertex b of G\ w for
which there is no walk v — b in G\ w. Consider this b. Notice that b # w (since b is a vertexin G\ w).

But since G is connected, there is a path v — b in G having length d (v, b). Let p be such a path. Then, p
cannot be a path in G\ w (since there is no walk v — b in G\ w); thus, it must contain the vertex w (since
the only vertices and edges removed from G to form G\ w were w and edges containing w). Therefore, p
contains a path g from v to w. The length of g must of course be = d(v, w) (since d(v, w) is the smallest
length of a path from v to w). But the path p cannot end at w (since p ends at b, but b # w). Thus, g is not
the whole path p. Hence, (the length of p) > (the length of g).

Thus,

d(v,b) = (the length of p) > (the length of ) = d(v, w).

This contradicts our assumption that d (v, w) was maximum. Hence, part (a) is solved.
0
(b) When n =0, we have ) d(v,u) = (empty sum) =0= (2) So without loss of generality, we will
ueV

assume 71 > 0.
We will now use induction over n.

Base case: When 7 = 1, there is only one vertex in V, namely v. The shortest path from v to itself has no

edges (the path is (v)), so d (v,v) =0. Thus, Y. d(v,u) =d(v, v)=0=(;).
ueV

n
Inductive step: Assume that Y. d(v,u) < (2) for each n-vertex connected multigraph G and each vertex
ueV

+1
v of G. We wish to show that Y. d(a,u) < " for each n+ 1-vertex connected multigraph G' = (V', E/, ¢)
2

ueV’

and each vertex a of G'.

Fix some such G’ and a. Find a vertex b in V' for which d(a, b) is maximum. By part (a) of this exercise,
the vertex b will be non-cut. Since |V’ | =n+1>n=1, the graph G’ \ b has at least one vertex and hence is
connected (since b is non-cut). If d (a, b) would be 0, then we would have d (a, w) = 0 for each vertex w € V'
(due to our choice of b); but this would yield that V' = {a}, which would contradict |V’ | > 1. Hence, d (a, b)
cannot be 0. Thus, d (a, b) #0, so that a # b. Hence, a€ V' \ {b}.

If p and g are two vertices of G, then we will use the notation d’'(p, ) to denote the length of the shortest
path p — g in G'. If p and g are two vertices of G\ b, then we will use the notation d(p, g) to denote the
length of the shortest path p — ¢ in G’ \ b. (This is well-defined since G’ \ b is connected.) Note that d(p, )
may be distinct from d’(p, g). But since all edges of G’ \ b are also edges of G, for all vertices p, q of G'\ b,
any path p — g of length d(p, g) in G'\ b is also a path in G'. Thus, for all vertices p and g of G’ \ b, we have
dp,q)<dp,q.

The multigraph G’ \ b is connected and has n vertices. Hence, by our induction hypothesis,

Z dw,u) < (Z) (5)

ueV'\{b}

for all vertices v in V' \ {b}.
Recall that for all vertices p and g of G’ \ b, we have d’(p, q) < d(p, q). Hence, for all vertices u of G'\ b,
we have d'(a, u) < d(a, u). This tells us

Y daws Y d(a,u)s(ﬁ) ©)

ueV'\{b} ueV’'\{b}



(by (B)). Now, we can write

Y daw= Y d’(a,u)+d’(a,b)s(”)+d’(a,b)
ueVv’ ueV'\{b} 2

(by (@).

What upper bound can we put on d’(a, b)? Since all vertices in a path need to be distinct, each of the
n+ 1 vertices of V' appears at most once in the path a — b in G'. A maximum-possible-length path in any
n+ 1-vertex graph, where each vertex appears once, would have (n + 1) — 1 = n edges, since exactly one edge
appears in between each pair of consecutive vertices in the path. So d’(a, b) < n. This now gives us

Y d'(a,us Z +d'(a,b)

ueV’
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= n2 ) by Pascal’s identity.
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Now forget we fixed G’ and a. We've shown that ¥ d'(a,u) < (";') for each n + 1-vertex connected
ueV’
multigraph G’ = (V/, E’,¢’) and each vertex a of G'. This completes the induction step. Thus, part (b) is
solved.
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