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Angela Chen (with minor edits by Darij Grinberg)

Fall 2017, Math 4990, Homework Set 9

Exercise 1

1.1 Exercise 1

Let n ∈N. Prove that
n∑

k=0

(
−2

k

)
= (−1)n

⌊
n +2

2

⌋
.

1.2 Solution

We will do this with induction over n.
Base case: When n = 0, we have

0∑
k=0

(
−2

k

)
=

(
−2

0

)
= 1 = 1 ·1 = (−1)0

⌊
0+2

2

⌋
.

Inductive step: We assume (as the induction hypothesis) that

n∑
k=0

(
−2

k

)
= (−1)n

⌊
n +2

2

⌋
,

and wish to show that
n+1∑
k=0

(
−2

k

)
= (−1)n+1

⌊
(n +1)+2

2

⌋
.

The upper negation identity for binomial coefficients yields(
−2

n +1

)
= (−1)n+1

(
n +1− (−2)−1

n +1

)
= (−1)n+1

(
n +2

n +1

)
= (−1)n+1

(
n +2

1

)
= (−1)n+1(n +2) (1)

(where we used the symmetry of Pascal’s triangle to get
(n+2

n+1

)= (n+2
1

)
).

Now,

n+1∑
k=0

(
−2

k

)
=

n∑
k=0

(
−2

k

)
+

(
−2

n +1

)

= (−1)n
⌊

n +2

2

⌋
+

(
−2

n +1

)
(by the induction hypothesis)

= (−1)n
⌊

n +2

2

⌋
+ (−1)n+1(n +2) (2)

(by (1)).
We have two cases to consider: when n is odd, and when n is even. Consider the case when n is even.

Thus, the equality (2) becomes

n+1∑
k=0

(
−2

k

)
= (−1)n

⌊
n +2

2

⌋
+ (−1)n+1(n +2) = 1 · (

n

2
+1)+ (−1)(n +2) (since n is even)

=−n +2

2
. (3)
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Since n +1 is odd,
⌊

(n+1)+2
2

⌋
= n+2

2 and (−1)n+1 =−1. Thus, (−1)n+1
⌊

(n+1)+2
2

⌋
=−n+2

2 . Comparing this with

(3), we find

n+1∑
k=0

(
−2

k

)
= (−1)n+1

⌊
(n +1)+2

2

⌋
,

as desired.
On the other hand, consider the case when n is odd. Thus, the equality (2) becomes

n+1∑
k=0

(
−2

k

)
= (−1)n

⌊
n +2

2

⌋
+ (−1)n+1(n +2) = (−1)

n +1

2
+1(n +2) (since n is odd)

= n +3

2
. (4)

Since n +1 is even, (n +1)+2 is also even and, hence, divisible by 2. So,
⌊

(n+1)+2
2

⌋
= (n+1)+2

2 = n+3
2 , and thus

also (−1)n+1
⌊

(n+1)+2
2

⌋
= n+3

2 (since (−1)n+1 = 1). Comparing this with (4), we find

n+1∑
k=0

(
−2

k

)
= (−1)n+1

⌊
(n +1)+2

2

⌋
,

as desired.
Hence, regardless of the parity of n, we have

n+1∑
k=0

(
−2

k

)
= (−1)n+1

⌊
(n +1)+2

2

⌋
.

This completes the induction step, and so solves the exercise.

Exercise 3

2.1 Exercise 3

Let G = (
V ,E ,ϕ

)
be a connected multigraph. Let v ∈V be any vertex.

(a) Pick any w ∈V such that d (v, w) is maximum (among all w ∈V ). Prove that w is a non-cut vertex of
G .

(b) Let n = |V |. Prove that
∑

u∈V
d (v,u) ≤

(
n

2

)
.

2.2 Solution

(a) Note: we’ll call a vertex v “cut” if v is not non-cut (that is, if G \ v is not connected and has at least one
vertex).

We have w ∈V and thus V 6=∅. Hence, |V | > 0.
In the case where V contains only one vertex v , the vertex w is indeed non-cut because the multigraph

G \ w has no vertices. So WLOG, we’ll also assume that V has more than one vertex.
Now we will prove the following proposition:

Proposition 1
Let a be a cut vertex in G. Then there exists a vertex b in G \ a such that there is no walk v → b in G \ a.

Proof of Proposition 1. Assume the contrary. Then, for each vertex p ∈V \ a, there is a walk1 v → p. This also
tells us that for all p, there is a walk p → v (such a walk can be created by listing the entries in the walk v → p

1In this proof of Proposition 1, “walk” means “walk in G \ a”.
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in reverse order). Now fix two vertices u, w ∈V \ a. We can find a walk from u to w by taking the walk u → v
and appending to it all entries but the first of the walk v → w (we omit the first entry, v , because the walk
u → v already ends with v). Now forget we fixed u and w . We’ve shown that there is a walk u → w for all
u, w ∈V \ a. Additionally, since we have assumed that |V | > 1, the multigraph G \ a has at least one vertex.
But this tells us that G \ a is connected, so a is non-cut. Since we assumed that a was a cut vertex, we have a
contradiction.

We will now assume that (a) is false – that is, that there exists a cut vertex w ∈ V such that d(v, w) is
maximum – and show that we end up with a contradiction. By Proposition 1, there is a vertex b of G \ w for
which there is no walk v → b in G \ w . Consider this b. Notice that b 6= w (since b is a vertex in G \ w).

But since G is connected, there is a path v → b in G having length d(v,b). Let p be such a path. Then, p
cannot be a path in G \ w (since there is no walk v → b in G \ w); thus, it must contain the vertex w (since
the only vertices and edges removed from G to form G \ w were w and edges containing w). Therefore, p
contains a path q from v to w . The length of q must of course be ≥ d(v, w) (since d(v, w) is the smallest
length of a path from v to w). But the path p cannot end at w (since p ends at b, but b 6= w). Thus, q is not
the whole path p. Hence,

(
the length of p

)> (
the length of q

)
.

Thus,
d(v,b) = (

the length of p
)> (

the length of q
)≥ d(v, w).

This contradicts our assumption that d(v, w) was maximum. Hence, part (a) is solved.

(b) When n = 0, we have
∑

u∈V
d (v,u) = (

empty sum
) = 0 =

(
0

2

)
. So without loss of generality, we will

assume n > 0.
We will now use induction over n.

Base case: When n = 1, there is only one vertex in V , namely v . The shortest path from v to itself has no

edges (the path is (v)), so d (v, v) = 0. Thus,
∑

u∈V
d (v,u) = d(v, v) = 0 =

(
1

2

)
.

Inductive step: Assume that
∑

u∈V
d (v,u) ≤

(
n

2

)
for each n-vertex connected multigraph G and each vertex

v of G . We wish to show that
∑

u∈V ′
d (a,u) ≤

(
n +1

2

)
for each n+1-vertex connected multigraph G ′ = (V ′,E ′,ϕ′)

and each vertex a of G ′.
Fix some such G ′ and a. Find a vertex b in V ′ for which d(a,b) is maximum. By part (a) of this exercise,

the vertex b will be non-cut. Since
∣∣V ′∣∣= n +1 > n ≥ 1, the graph G ′ \ b has at least one vertex and hence is

connected (since b is non-cut). If d (a,b) would be 0, then we would have d (a, w) = 0 for each vertex w ∈V ′
(due to our choice of b); but this would yield that V ′ = {a}, which would contradict

∣∣V ′∣∣> 1. Hence, d (a,b)
cannot be 0. Thus, d (a,b) 6= 0, so that a 6= b. Hence, a ∈V ′ \ {b}.

If p and q are two vertices of G ′, then we will use the notation d ′(p, q) to denote the length of the shortest
path p → q in G ′. If p and q are two vertices of G \ b, then we will use the notation d(p, q) to denote the
length of the shortest path p → q in G ′ \ b. (This is well-defined since G ′ \ b is connected.) Note that d(p, q)
may be distinct from d ′(p, q). But since all edges of G ′ \ b are also edges of G ′, for all vertices p, q of G ′ \ b,
any path p → q of length d(p, q) in G ′ \ b is also a path in G ′. Thus, for all vertices p and q of G ′ \ b, we have
d ′(p, q) ≤ d(p, q).

The multigraph G ′ \ b is connected and has n vertices. Hence, by our induction hypothesis,∑
u∈V ′\{b}

d (v,u) ≤
(

n

2

)
(5)

for all vertices v in V ′ \ {b}.
Recall that for all vertices p and q of G ′ \ b, we have d ′(p, q) ≤ d(p, q). Hence, for all vertices u of G ′ \ b,

we have d ′(a,u) ≤ d(a,u). This tells us∑
u∈V ′\{b}

d ′(a,u) ≤ ∑
u∈V ′\{b}

d(a,u) ≤
(

n

2

)
(6)
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(by (5)). Now, we can write

∑
u∈V ′

d ′(a,u) = ∑
u∈V ′\{b}

d ′(a,u)+d ′(a,b) ≤
(

n

2

)
+d ′(a,b)

(by (6)).
What upper bound can we put on d ′(a,b)? Since all vertices in a path need to be distinct, each of the

n +1 vertices of V ′ appears at most once in the path a → b in G ′. A maximum-possible-length path in any
n +1-vertex graph, where each vertex appears once, would have (n +1)−1 = n edges, since exactly one edge
appears in between each pair of consecutive vertices in the path. So d ′(a,b) ≤ n. This now gives us

∑
u∈V ′

d ′(a,u) ≤
(

n

2

)
+d ′(a,b)

≤
(

n

2

)
+n

=
(

n

2

)
+

(
n

1

)

=
(

n +1

2

)
by Pascal’s identity.

Now forget we fixed G ′ and a. We’ve shown that
∑

u∈V ′
d ′(a,u) ≤ (n+1

2

)
for each n +1-vertex connected

multigraph G ′ = (V ′,E ′,ϕ′) and each vertex a of G ′. This completes the induction step. Thus, part (b) is
solved.
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