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I am giving just hints or brief outlines of the solutions below; unfortunately, this
is all I have the time for. I hope they are reasonably clear. Please let me know (
mailto:dgrinber@umn.edu ) if you are stuck in some of the details.

0.1. Strange integers

Exercise 1. For any m ∈N and n ∈N, define a rational number T (m, n) by

T (m, n) =
(2m)! (2n)!

m!n! (m + n)!
.

(a) Prove that 4T (m, n) = T (m + 1, n) + T (m, n + 1) for every m ∈ N and
n ∈N.

(b) Prove that T (m, n) ∈N for every m ∈N and n ∈N.
(c) Prove that T (m, n) is an even integer for every m ∈ N and n ∈ N unless

(m, n) = (0, 0).
(d) If m ∈N and n ∈N are such that m + n is odd and m + n > 1, then prove

that 4 | T (m, n).

The numbers T (m, n) introduced in Exercise 1 are the so-called super-Catalan num-
bers; they are a subject of active research (see, e.g., [Gessel92] and [AleGhe14]).
Exercise 1 (b) suggests that these numbers count something, but no one has so far
discovered what; combinatorial proofs aren’t always the easiest to find. The thread
https://artofproblemsolving.com/community/c6h1553916s1_supercatalan_numbers
on Art of Problem Solving also discusses the super-Catalan numbers and Exercise
1.

A detailed solution of Exercise 1 can be found in [Grinbe16, solution to Exercise
3.25]. We will be rather brief here.

To solve Exercise 1, we need the following lemma (which is [Grinbe16, Exercise
3.24]):

mailto:dgrinber@umn.edu
https://artofproblemsolving.com/community/c6h1553916s1_supercatalan_numbers
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Lemma 0.1. Let m be a positive integer.

(a) The binomial coefficient
(

2m
m

)
is even.

(b) Assume that m is odd and satisfies m > 1. Then, the binomial coefficient(
2m− 1
m− 1

)
is even.

(c) Assume that m is odd and satisfies m > 1. Then,
(

2m
m

)
≡ 0 mod 4.

Proof of Lemma 0.1 (sketched). (a) This follows from
(

2m
m

)
= 2

(
2m− 1
m− 1

)
.

(b) Lemma 0.1 (a) (applied to m− 1 instead of m) shows that
(

2 (m− 1)
m− 1

)
is even.

In other words,
(

2 (m− 1)
m− 1

)
≡ 0 mod 2. But m is odd; thus, m ≡ 1 mod 2. Now,

m
(

2m− 1
m− 1

)
= (2m− 1)

(
2 (m− 1)

m− 1

)
︸ ︷︷ ︸
≡0 mod 2

≡ 0 mod 2,

so that 0 ≡ m︸︷︷︸
≡1 mod 2

(
2m− 1
m− 1

)
≡
(

2m− 1
m− 1

)
mod 2. In other words,

(
2m− 1
m− 1

)
is

even. This proves Lemma 0.1 (b).

(c) We have
(

2m
m

)
= 2

(
2m− 1
m− 1

)
≡ 0 mod 4 (since Lemma 0.1 (b) shows that(

2m− 1
m− 1

)
is even). This proves Lemma 0.1 (c).

Solution to Exercise 1 (sketched). (a) This is a straightforward computation: For m ∈
N and n ∈N, we have

T (m + 1, n) =
(2 (m + 1))! (2n)!

(m + 1)!n! (m + 1 + n)!
=

(2m + 2) (2m + 1) · (2m)! (2n)!
(m + 1) ·m!n! · (m + 1 + n) · (m + n)!(

since (2 (m + 1))! = (2m + 2) (2m + 1) · (2m)! and
(m + 1)! = (m + 1) ·m! and (m + 1 + n)! = (m + 1 + n) · (m + n)!

)
=

(2m + 2) (2m + 1)
(m + 1) (m + 1 + n)︸ ︷︷ ︸

=
4m + 2

m + 1 + n

· (2m)! (2n)!
m!n! (m + n)!︸ ︷︷ ︸

=T(m,n)

=
4m + 2

m + 1 + n
· T (m, n)

and similarly

T (m, n + 1) =
4n + 2

m + 1 + n
· T (m, n) .

Add these two equalities and simplify.
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(b) Apply induction on n:
Induction base: For each m ∈N, we have

T (m, 0) =
(2m)! (2 · 0)!
m!0! (m + 0)!

=
(2m)!
m!m!

=

(
2m
m

)
∈N.

In other words, Exercise 1 (b) holds for n = 0.
Induction step: Let N ∈ N. Assume (as the induction hypothesis) that Exercise 1

(b) holds for n = N. We must prove that Exercise 1 (b) holds for n = N + 1.
For each m ∈N, we have

T (m, N + 1) = 4 T (m, N)︸ ︷︷ ︸
∈N

(by the induction
hypothesis)

− T (m + 1, N)︸ ︷︷ ︸
∈N

(by the induction
hypothesis)

(since Exercise 1 (a) yields 4T (m, N) = T (m + 1, N) + T (m, N + 1))
∈ Z

and therefore T (m, N + 1) ∈ N (since the definition of T (m, N + 1) shows that
T (m, N + 1) is positive). In other words, Exercise 1 (b) holds for n = N + 1. This
completes the induction step. Hence, Exercise 1 (b) is proven.

(c) Apply induction on n:
Induction base: For each positive integer m, we have

T (m, 0) =
(2m)! (2 · 0)!
m!0! (m + 0)!

=
(2m)!
m!m!

=

(
2m
m

)
,

and this is even (by Lemma 0.1 (a)). In other words, for each positive integer m, the
number T (m, 0) is an even integer. In other words, Exercise 1 (c) holds for n = 0
(because if m ∈ N and n ∈ N satisfy (m, n) 6= (0, 0) but n = 0, then m must be a
positive integer).

Induction step: Let N ∈ N. Assume (as the induction hypothesis) that Exercise 1
(c) holds for n = N. We must prove that Exercise 1 (c) holds for n = N + 1.

Let m ∈ N. Exercise 1 (b) shows that T (m, N) is an integer. Thus, 4T (m, N) ≡
0 mod 2. Also, (m + 1, N) 6= (0, 0) (since m + 1 is positive). Thus, the induction hy-
pothesis yields that T (m + 1, N) is an even integer. Hence, T (m + 1, N) ≡ 0 mod 2.

Now, Exercise 1 (a) yields 4T (m, N) = T (m + 1, N) + T (m, N + 1). Thus,

T (m, N + 1) = 4T (m, N)︸ ︷︷ ︸
≡0 mod 2

− T (m + 1, N)︸ ︷︷ ︸
≡0 mod 2

≡ 0 mod 2.

In other words, T (m, N + 1) is even. In other words, Exercise 1 (c) holds for n =
N + 1. This completes the induction step. Hence, Exercise 1 (c) is proven.

(d) Apply induction on n:
Induction base: We must prove Exercise 1 (d) for n = 0. In other words, we must

show that if m ∈N is such that m + 0 is odd and m + 0 > 1, then 4 | T (m, 0).
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Let m ∈ N be such that m + 0 is odd and m + 0 > 1. From m = m + 0 > 1, we
conclude that m is a positive integer. Also, m = m + 0 is odd. Now,

T (m, 0) =
(2m)! (2 · 0)!
m!0! (m + 0)!

=
(2m)!
m!m!

=

(
2m
m

)
≡ 0 mod 4

(by Lemma 0.1 (b)). In other words, 4 | T (m, 0). This completes our proof that
Exercise 1 (d) holds for n = 0.

Induction step: Let N ∈ N. Assume (as the induction hypothesis) that Exercise 1
(d) holds for n = N. We must prove that Exercise 1 (d) holds for n = N + 1.

Let m ∈ N be such that m + (N + 1) is odd and m + (N + 1) > 1. Then,
(m + 1) + N = m + (N + 1) is odd and (m + 1) + N = m + (N + 1) > 1. Thus, the
induction hypothesis yields that 4 | T (m + 1, N). Hence, T (m + 1, N) ≡ 0 mod 4.
Also, Exercise 1 (b) shows that T (m, N) is an integer. Thus, 4T (m, N) ≡ 0 mod 4.

Now, Exercise 1 (a) yields 4T (m, N) = T (m + 1, N) + T (m, N + 1). Thus,

T (m, N + 1) = 4T (m, N)︸ ︷︷ ︸
≡0 mod 4

− T (m + 1, N)︸ ︷︷ ︸
≡0 mod 4

≡ 0 mod 4.

In other words, 4 | T (m, N + 1). In other words, Exercise 1 (d) holds for n = N + 1.
This completes the induction step. Hence, Exercise 1 (d) is proven.

Exercise 2. Let m ∈N and n ∈N. Let p = min {m, n}.
(a) Prove that

p

∑
k=−p

(−1)k
(

m + n
m + k

)(
m + n
n + k

)
=

(
m + n

m

)
.

(b) Prove that

T (m, n) =
p

∑
k=−p

(−1)k
(

2m
m + k

)(
2n

n− k

)
,

where T (m, n) is defined as in Exercise 1.
[Hint: Part (a) should follow from something done in class. Then, compare

part (b) with part (a).]

Exercise 2 (b) is a result of von Szily (1894); see [Gessel92, (29)]. Needless to say,
Exercise 2 (b) provides an alternative solution to Exercise 1 (b).

A full solution of Exercise 2 can be found in Angela Chen’s homework and in
[Grinbe16, solution to Exercise 3.25] (this is one and the same solution, written up
in slightly different ways).

0.2. The length of a permutation

http://www.cip.ifi.lmu.de/~grinberg/t/17f/hw8os-chen.pdf
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Definition 0.2. Let n ∈N.
(a) We let Sn denote the set of all permutations of [n].
Let σ ∈ Sn be a permutation of [n].
(b) An inversion of σ means a pair (i, j) of elements of [n] satisfying i < j and

σ (i) > σ (j).
(c) The length of σ is defined to be the number of inversions of σ. This length

is denoted by ` (σ).
(d) The sign of σ is defined to be the integer (−1)`(σ). It is denoted by (−1)σ.

Exercise 3. Let p ∈ N and q ∈ N. Let n = pq. Consider the permutation σ ∈ Sn
that maps (i− 1) q + j to (j− 1) p + i for every i ∈ [p] and j ∈ [q].

(This permutation σ can be visualized as follows: Fill in a p× q-matrix A with
the entries 1, 2, . . . , n by going row by row from top to bottom:

A =


1 2 3 · · · q

q + 1 q + 2 q + 3 · · · 2q
2q + 1 2q + 2 2q + 3 · · · 3q

...
...

... . . . ...
(p− 1) q + 1 (p− 1) q + 2 (p− 1) q + 3 · · · pq

 .

Fill in a p× q-matrix B with the entries 1, 2, . . . , n by going column by column
from left to right:

B =


1 p + 1 2p + 1 · · · (q− 1) p + 1
2 p + 2 2p + 2 · · · (q− 1) p + 2
3 p + 3 2p + 3 · · · (q− 1) p + 3
...

...
... . . . ...

p 2p 3p · · · qp

 .

The permutation σ then sends each entry of A to the corresponding entry of B.)
Find the length ` (σ) of the permutation σ.

A full solution of Exercise 3 can be found in Angela Chen’s homework. (This is
also the solution I had in mind.) We shall later sketch the solution after Definition
0.4 (which somewhat simplifies it).

0.3. Two equal counts

Exercise 4. Let n ∈N and σ ∈ Sn. Prove that

(the number of all (i, j) ∈ [n]× [n] such that i ≥ j > σ (i))
= (the number of all (i, j) ∈ [n]× [n] such that σ (i) ≥ j > i) .

http://www.cip.ifi.lmu.de/~grinberg/t/17f/hw8os-chen.pdf
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Exercise 4 is a consequence of the following fact:

Lemma 0.3. Let n ∈N. Let σ ∈ Sn and j ∈ [n]. Then,

(the number of all i ∈ [n] such that i ≥ j > σ (i))
= (the number of all i ∈ [n] such that σ (i) ≥ j > i) . (1)

Indeed, if we sum up the equality (1) over all j ∈ [n], then we obtain precisely
the claim of Exercise 4.

Lemma 0.3 is [Han92, Lemme 2.1]. Anyway, it is also easy to prove:

First proof of Lemma 0.3 (sketched). The map σ is a permutation of [n] (since σ ∈ Sn),
thus a bijection [n]→ [n].

Use the Iverson bracket notation. Then, any three integers p, q and r satisfy

[p ≥ q > r] = [p ≥ q and q > r] = [p ≥ q] [q > r]︸ ︷︷ ︸
=[not r≥q]
=1−[r≥q]

= [p ≥ q] (1− [r ≥ q])

= [p ≥ q]− [p ≥ q] [r ≥ q] . (2)

But

(the number of all i ∈ [n] such that i ≥ j > σ (i))

= ∑
i∈[n]

[i ≥ j > σ (i)]︸ ︷︷ ︸
=[i≥j]−[i≥j][σ(i)≥j]

(by (2))

= ∑
i∈[n]

([i ≥ j]− [i ≥ j] [σ (i) ≥ j])

= ∑
i∈[n]

[i ≥ j]− ∑
i∈[n]

[i ≥ j] [σ (i) ≥ j] (3)

and similarly

(the number of all i ∈ [n] such that σ (i) ≥ j > i)

= ∑
i∈[n]

[σ (i) ≥ j]− ∑
i∈[n]

[σ (i) ≥ j] [i ≥ j] .

Hence,

(the number of all i ∈ [n] such that σ (i) ≥ j > i)

= ∑
i∈[n]

[σ (i) ≥ j]︸ ︷︷ ︸
= ∑

i∈[n]
[i≥j]

(here, we have substituted i
for σ(i) in the sum, since

the map σ is a bijection [n]→[n])

− ∑
i∈[n]

[σ (i) ≥ j] [i ≥ j]︸ ︷︷ ︸
=[i≥j][σ(i)≥j]

= ∑
i∈[n]

[i ≥ j]− ∑
i∈[n]

[i ≥ j] [σ (i) ≥ j]

= (the number of all i ∈ [n] such that i ≥ j > σ (i))
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(by (3)). This proves Lemma 0.3.

Second proof of Lemma 0.3 (sketched). The map σ is a permutation of [n] (since σ ∈
Sn), thus a bijection [n]→ [n].

We havethe number of all i ∈ [n] such that i ≥ j > σ (i)︸ ︷︷ ︸
⇐⇒ (i≥j but not σ(i)≥j)


= (the number of all i ∈ [n] such that i ≥ j but not σ (i) ≥ j)
= (the number of all i ∈ [n] such that i ≥ j)

− (the number of all i ∈ [n] such that i ≥ j and σ (i) ≥ j)

and the number of all i ∈ [n] such that σ (i) ≥ j > i︸ ︷︷ ︸
⇐⇒ (σ(i)≥j but not i≥j)


= (the number of all i ∈ [n] such that σ (i) ≥ j but not i ≥ j)
= (the number of all i ∈ [n] such that σ (i) ≥ j)︸ ︷︷ ︸

=(the number of all i∈[n] such that i≥j)
(here, we have substituted i for σ(i), since the map σ is a bijection [n]→[n])

−

the number of all i ∈ [n] such that σ (i) ≥ j and i ≥ j︸ ︷︷ ︸
⇐⇒ (i≥j and σ(i)≥j)


= (the number of all i ∈ [n] such that i ≥ j)

− (the number of all i ∈ [n] such that i ≥ j and σ (i) ≥ j) .

Comparing these two equalities, we obtain

(the number of all i ∈ [n] such that i ≥ j > σ (i))
= (the number of all i ∈ [n] such that σ (i) ≥ j > i) .

This proves Lemma 0.3 again.

Note that none of the above proofs of Lemma 0.3 is bijective. Maja Schryer found
a bijective proof:

Third proof of Lemma 0.3 (sketched). The map

{i ∈ [n] | i ≥ j > σ (i)} → {i ∈ [n] | σ (i) ≥ j > i} ,

i 7→
(

σk−1 (i) , where k is the smallest positive

integer satisfying σk (i) ≥ j
)
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is well-defined (indeed, it is easy to see that a positive integer k satisfying σk (i) ≥ j
exists for every i ∈ [n] satisfying i ≥ j). Similarly, the map

{i ∈ [n] | σ (i) ≥ j > i} → {i ∈ [n] | i ≥ j > σ (i)} ,

i 7→
((

σ−1
)k

(i) , where k is the smallest nonnegative

integer satisfying
(

σ−1
)k

(i) ≥ j
)

is well-defined (notice that we are using
(
σ−1)k here, not

(
σ−1)k−1). It is easy to

check that these two maps are mutually inverse, and thus bijective. This bijection
yields Lemma 0.3.

0.4. Lehmer codes

Recall the following definition from the preceding homework set:

Definition 0.4. Let n ∈ N. Let σ ∈ Sn be a permutation. For any i ∈ [n], we let
`i (σ) denote the number of j ∈ {i + 1, i + 2, . . . , n} such that σ (i) > σ (j).

Exercise 5. Let n ∈ N. Let G be the set of all n-tuples (j1, j2, . . . , jn) of integers
satisfying 0 ≤ jk ≤ n− k for each k ∈ [n]. (In other words, G = {0, 1, . . . , n− 1}×
{0, 1, . . . , n− 2} × · · · × {0, 1, . . . , n− n}.)

(a) For any σ ∈ Sn and i ∈ [n], prove that σ (i) is the (`i (σ) + 1)-th smallest
element of the set [n] \ {σ (1) , σ (2) , . . . , σ (i− 1)}.

(b) For any σ ∈ Sn, prove that

(`1 (σ) , `2 (σ) , . . . , `n (σ)) ∈ G.

(c) Prove that the map

Sn → G,
σ 7→ (`1 (σ) , `2 (σ) , . . . , `n (σ))

is bijective.
(d) Show that ` (σ) = `1 (σ) + `2 (σ) + · · ·+ `n (σ) for each σ ∈ Sn.
(e) Show that

∑
σ∈Sn

x`(σ) = (1 + x)
(

1 + x + x2
)
· · ·
(

1 + x + x2 + · · ·+ xn−1
)

(an equality between polynomials in x). (If n ≤ 1, then the right hand side of
this equality is an empty product, and thus equals 1.)

Note that the n-tuple (`1 (σ) , `2 (σ) , . . . , `n (σ)) is known as the Lehmer code of
the permutation σ.
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Parts (b), (c), (d) and (e) of Exercise 5 are proven in [Grinbe16, §5.8 and the so-
lution to Exercise 5.18]. (Specifically, Exercise 5 (b) is [Grinbe16, Proposition 5.47];
Exercise 5 (c) is [Grinbe16, Theorem 5.52]; Exercise 5 (d) is [Grinbe16, Proposition
5.46]; Exercise 5 (e) is [Grinbe16, Corollary 5.53]). But let us sketch the simple
proofs here as well (they are simple because we have laid all the groundwork on
the previous homework set):

Solution to Exercise 5 (sketched). (a) Let σ ∈ Sn and i ∈ [n]. Then, σ is a permutation.
Thus, the numbers σ (1) , σ (2) , . . . , σ (n) are distinct. Now,

[n]︸︷︷︸
={1,2,...,n}

={σ(1),σ(2),...,σ(n)}
(since σ is a permutation)

\ {σ (1) , σ (2) , . . . , σ (i− 1)}

= {σ (1) , σ (2) , . . . , σ (n)} \ {σ (1) , σ (2) , . . . , σ (i− 1)}
= {σ (i) , σ (i + 1) , . . . , σ (n)} (4)

(since σ (1) , σ (2) , . . . , σ (n) are distinct).
Recall that `i (σ) denotes the number of j ∈ {i + 1, i + 2, . . . , n} such that σ (i) >

σ (j). In other words, `i (σ) is the number of j ∈ {i + 1, i + 2, . . . , n} such that
σ (j) < σ (i). In other words, `i (σ) is the number of entries of the sequence
(σ (i + 1) , σ (i + 2) , . . . , σ (n)) that are smaller than σ (i). Thus, there are precisely
`i (σ) entries in the sequence (σ (i + 1) , σ (i + 2) , . . . , σ (n)) that are smaller than
σ (i). If we add an entry σ (i) to this sequence, then this fact does not change
(because this new entry σ (i) is not smaller than σ (i)). Thus, there are precisely
`i (σ) entries in the sequence (σ (i) , σ (i + 1) , . . . , σ (n)) that are smaller than σ (i).
Since the entries of this sequence are distinct (because σ (1) , σ (2) , . . . , σ (n) are
distinct), we can rewrite this as follows: There are precisely `i (σ) elements of the
set {σ (i) , σ (i + 1) , . . . , σ (n)} that are smaller than σ (i). In other words, σ (i) is
the (`i (σ) + 1)-th smallest element of the set {σ (i) , σ (i + 1) , . . . , σ (n)}. In view
of (4), this rewrites as follows: σ (i) is the (`i (σ) + 1)-th smallest element of the set
[n] \ {σ (1) , σ (2) , . . . , σ (i− 1)}. This solves Exercise 5 (a).

(b) Let σ ∈ Sn. For each i ∈ {1, 2, . . . , n}, we have `i (σ) ≤ n − i (since `i (σ)
is the number of j ∈ {i + 1, i + 2, . . . , n} such that σ (i) > σ (j), and clearly this
number cannot be larger than |{i + 1, i + 2, . . . , n}| = n − i) and thus `i (σ) ∈
{0, 1, . . . , n− i}. Hence,

(`1 (σ) , `2 (σ) , . . . , `n (σ)) ∈ {0, 1, . . . , n− 1} × {0, 1, . . . , n− 2} × · · · × {0, 1, . . . , n− n}
= G.

This solves Exercise 5 (b).
(c) The sets Sn and G are finite and have the same size (namely, n!). But the map

Sn → G,
σ 7→ (`1 (σ) , `2 (σ) , . . . , `n (σ))
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is injective (by Exercise 5 (b) on homework set #7), and therefore bijective (because
any injective map between two finite sets having the same size must be bijective).
This solves Exercise 5 (c).

(d) Let σ ∈ Sn. The definition of ` (σ) yields that

` (σ) = (the number of inversions of σ)

= (the number of pairs (i, j) of elements of [n] satisfying i < j and σ (i) > σ (j))
(by the definition of an inversion)

= ∑
i∈[n]

(the number of j ∈ [n] satisfying i < j and σ (i) > σ (j))︸ ︷︷ ︸
=(the number of j∈{i+1,i+2,...,n} such that σ(i)>σ(j))

(since the j∈[n] satisfying i<j are precisely the j∈{i+1,i+2,...,n})

= ∑
i∈[n]

(the number of j ∈ {i + 1, i + 2, . . . , n} such that σ (i) > σ (j))︸ ︷︷ ︸
=`i(σ)

(by the definition of `i(σ))

= ∑
i∈[n]

`i (σ) = `1 (σ) + `2 (σ) + · · ·+ `n (σ) .

This solves Exercise 5 (d).

http://www.cip.ifi.lmu.de/~grinberg/t/17f/hw7os.pdf
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(e) We have

∑
σ∈Sn

x`(σ)︸︷︷︸
=`1(σ)+`2(σ)+···+`n(σ)

(by Exercise 5 (d))

= ∑
σ∈Sn

x`1(σ)+`2(σ)+···+`n(σ) = ∑
(i1,i2,...,in)∈G︸ ︷︷ ︸

= ∑
(i1,i2,...,in)∈{0,1,...,n−1}×{0,1,...,n−2}×···×{0,1,...,n−n}

(since G={0,1,...,n−1}×{0,1,...,n−2}×···×{0,1,...,n−n})

xi1+i2+···+in︸ ︷︷ ︸
=xi1 xi2 ···xin

 here, we have substituted (i1, i2, . . . , in) for (`1 (σ) , `2 (σ) , . . . , `n (σ))
in the sum, since the map Sn → G, σ 7→ (`1 (σ) , `2 (σ) , . . . , `n (σ))

is a bijection (by Exercise 5 (c))


= ∑

(i1,i2,...,in)∈{0,1,...,n−1}×{0,1,...,n−2}×···×{0,1,...,n−n}︸ ︷︷ ︸
= ∑

i1∈{0,1,...,n−1}
∑

i2∈{0,1,...,n−2}
··· ∑

in∈{0,1,...,n−n}

xi1 xi2 · · · xin

= ∑
i1∈{0,1,...,n−1}

∑
i2∈{0,1,...,n−2}

· · · ∑
in∈{0,1,...,n−n}

xi1 xi2 · · · xin

=

 ∑
i1∈{0,1,...,n−1}

xi1


︸ ︷︷ ︸
=1+x+x2+···+xn−1

 ∑
i2∈{0,1,...,n−2}

xi2


︸ ︷︷ ︸
=1+x+x2+···+xn−2

· · ·

 ∑
in∈{0,1,...,n−n}

xin


︸ ︷︷ ︸
=1+x+x2+···+xn−n

=
(

1 + x + x2 + · · ·+ xn−1
) (

1 + x + x2 + · · ·+ xn−2
)
· · ·
(

1 + x + x2 + · · ·+ xn−n
)

=
(

1 + x + x2 + · · ·+ xn−1
) (

1 + x + x2 + · · ·+ xn−2
)
· · · (1 + x) 1

=
(

1 + x + x2 + · · ·+ xn−1
) (

1 + x + x2 + · · ·+ xn−2
)
· · · (1 + x)

= (1 + x)
(

1 + x + x2
)
· · ·
(

1 + x + x2 + · · ·+ xn−1
)

.

This solves Exercise 5 (e).

Exercise 5 (d) also lets us solve Exercise 3 with less trouble than otherwise:

Hints to Exercise 3. The map [p] × [q] → [n] , (i, j) 7→ (i− 1) q + j is a bijection
(since n = pq). In other words, the map [p]× [q] → [n] , (u, v) 7→ (u− 1) q + v is a
bijection.

If (i, j) and (u, v) are two elements of [p]× [q], then we have the following equiv-
alences:

((i− 1) q + j < (u− 1) q + v) ⇐⇒ (i < u or (i = u and j < v)) (5)

and
((j− 1) p + i > (v− 1) p + u) ⇐⇒ (j > v or (j = v and i > u)) . (6)
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(Indeed, both of these equivalences can easily be checked, by recalling that j and v
belong to [q] and that i and u belong to [p].)

Let k ∈ [n]. Then, the definition of `k (σ) yields

`k (σ)

= (the number of all j ∈ {k + 1, k + 2, . . . , n} such that σ (k) > σ (j))
= (the number of all j ∈ [n] such that k < j and σ (k) > σ (j))(

since the j ∈ {k + 1, k + 2, . . . , n} are precisely
the j ∈ [n] such that k < j

)
= (the number of all h ∈ [n] such that k < h and σ (k) > σ (h))

(here, we have renamed the index j as h) . (7)

Now, forget that we fixed k. We thus have proven (7) for each k ∈ [n].
Fix (i, j) ∈ [p]× [q]. Set k = (i− 1) q + j. Then, k ∈ [n], and thus (7) yields

`k (σ)

= (the number of all h ∈ [n] such that k < h and σ (k) > σ (h))

=

the number of all (u, v) ∈ [p]× [q] such that k︸︷︷︸
=(i−1)q+j

< (u− 1) q + v

and σ

 k︸︷︷︸
=(i−1)q+j

 > σ ((u− 1) q + v)


(

here, we have substituted (u− 1) q + v for h, since the
map [p]× [q]→ [n] , (u, v) 7→ (u− 1) q + v is a bijection

)
= (the number of all (u, v) ∈ [p]× [q] such that (i− 1) q + j < (u− 1) q + v

and σ ((i− 1) q + j)︸ ︷︷ ︸
=(j−1)p+i

(by the definition of σ)

> σ ((u− 1) q + v)︸ ︷︷ ︸
=(v−1)p+u

(by the definition of σ)



=

the number of all (u, v) ∈ [p]× [q] such that (i− 1) q + j < (u− 1) q + v︸ ︷︷ ︸
⇐⇒ (i<u or (i=u and j<v))

(by (5))

and (j− 1) p + i > (v− 1) p + u︸ ︷︷ ︸
⇐⇒ (j>v or (j=v and i>u))

(by (6))


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= (the number of all (u, v) ∈ [p]× [q] such that (i < u or (i = u and j < v))
and (j > v or (j = v and i > u)))

= (the number of all (u, v) ∈ [p]× [q] such that (i < u or (i = u and j < v))
and j > v) here, we have dismissed the possibility that (j = v and i > u) ,

because this possibility is incompatible with
the condition (i < u or (i = u and j < v))


= (the number of all (u, v) ∈ [p]× [q] such that i < u and j > v)(

here, we have dismissed the possibility that (i = u and j < v) ,
because this possibility is incompatible with the condition j > v

)
= (the number of all u ∈ [p] such that i < u)︸ ︷︷ ︸

=p−i

· (the number of all v ∈ [q] such that j > v)︸ ︷︷ ︸
=j−1

= (p− i) (j− 1) .

In view of k = (i− 1) q + j, this rewrites as

`(i−1)q+j (σ) = (p− i) (j− 1) . (8)

Now, forget that we fixed (i, j). We thus have proven (8) for each (i, j) ∈ [p]× [q].
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Exercise 5 (d) yields

` (σ) = `1 (σ) + `2 (σ) + · · ·+ `n (σ)

= ∑
k∈[n]

`k (σ) = ∑
(i,j)∈[p]×[q]︸ ︷︷ ︸
=

p
∑

i=1

q
∑

j=1

`(i−1)q+j (σ)︸ ︷︷ ︸
=(p−i)(j−1)

(by (8))

 here, we have substituted (i− 1) q + j for k in the sum,
since the map [p]× [q]→ [n] , (i, j) 7→ (i− 1) q + j

is a bijection


=

p

∑
i=1

q

∑
j=1

(p− i) (j− 1) =

(
p

∑
i=1

(p− i)

)
︸ ︷︷ ︸

=
p−1
∑

k=0
k

(here, we have substituted k
for p−i in the sum)

(
q

∑
j=1

(j− 1)

)
︸ ︷︷ ︸

=
q−1
∑

k=0
k

(here, we have substituted k
for j−1 in the sum)

=

(
p−1

∑
k=0

k

)
︸ ︷︷ ︸

=
(p− 1) p

2

(
q−1

∑
k=0

k

)
︸ ︷︷ ︸

=
(q− 1) q

2

=
(p− 1) p

2
· (q− 1) q

2
=

pq (p− 1) (q− 1)
4

.

This solves Exercise 3.

0.5. Permutations as composed transpositions

Recall a basic notation regarding permutations, which we shall now extend:

Definition 0.5. Let n ∈ N. Let i and j be two distinct elements of [n]. We let ti,j
be the permutation in Sn which switches i with j while leaving all other elements
of [n] unchanged. Such a permutation is called a transposition.

Let us furthermore set ti,i = id for each i ∈ [n]. Thus, ti,j is defined even when
i and j are not distinct.

Thus, we have defined a permutation ti,j ∈ Sn whenever n ∈ N and whenever i
and j are two elements of [n]. This permutation has the following properties:

• It satisfies ti,j (i) = j and ti,j (j) = i.

• It leaves any element of [n] other than i and j unchanged. (In other words, it
satisfies ti,j (k) = k for each k ∈ [n] \ {i, j}.)

• It is an involution, i.e., it satisfies ti,j ◦ ti,j = id.
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Exercise 6. Let n ∈N. Let σ ∈ Sn.
(a) Prove that there is a unique n-tuple (i1, i2, . . . , in) ∈ [1]× [2]× · · · × [n] such

that
σ = t1,i1 ◦ t2,i2 ◦ · · · ◦ tn,in .

(b) Consider this n-tuple (i1, i2, . . . , in). Define the relation ∼ and the ∼-
equivalence classes E1, E2, . . . , Em as in Exercise 7 on homework set #7 (for
X = [n]). (Thus, m is the number of cycles in the cycle decomposition of σ.)

Prove that m is the number of all k ∈ [n] satisfying ik = k.

A detailed solution to Exercise 6 (a) can be found in [Grinbe16, solution to Exer-
cise 5.9]. Let us here give a brief sketch:

Solution to Exercise 6 (sketched). (a) The trick is to prove the following:

Observation 1: Let n ∈N. Let k ∈ {0, 1, . . . , n}. Let σ ∈ Sn be such that

(σ (i) = i for each i ∈ {k + 1, k + 2, . . . , n}) . (9)

Then, there is a unique k-tuple (i1, i2, . . . , ik) ∈ [1]× [2]× · · · × [k] such
that σ = t1,i1 ◦ t2,i2 ◦ · · · ◦ tk,ik .

[Proof of Observation 1: This is proven by induction on k.
The induction base (the case k = 0) is a trivial exercise in understanding empty

lists1. (In fact, for k = 0, the equality (9) shows that σ (i) = i for each i ∈ [n], and
thus σ = id = (empty composition of permutations) = t1,i1 ◦ t2,i2 ◦ · · · ◦ t0,i0 for the
0-tuple (i1, i2, . . . , i0) = ().)

Induction step: Let k ∈ {0, 1, . . . , n} be positive. Assume (as the induction hypoth-
esis) that Observation 1 holds for k − 1 instead of k. We then must prove Obser-
vation 1 for k. So let σ ∈ Sn be such that (9) holds. We must prove that there is a
unique k-tuple (i1, i2, . . . , ik) ∈ [1]× [2]× · · · × [k] such that σ = t1,i1 ◦ t2,i2 ◦ · · · ◦ tk,ik .

Set g = σ−1 (k). Thus, σ (g) = k and g ∈ [k] 2. Thus, k and g belong to the set
[k].

The permutation tk,g is either a transposition (if k 6= g) or the identity map (if k =
g). In either case, it satisfies tk,g ◦ tk,g = id and leaves all elements of [n] other than
k and g unchanged. Hence, the permutation tk,g leaves each i ∈ {k + 1, k + 2, . . . , n}
unchanged (since i does not belong to the set [k], and thus i equals neither k nor g).

Define τ ∈ Sn by τ = σ ◦ tk,g. (Notice that
(
tk,g
)−1

= tk,g.) Then, from (9),
we can easily derive that τ (i) = i for each i ∈ {k + 1, k + 2, . . . , n} (because the
permutation tk,g leaves i unchanged). Combining this with the fact that τ (k) = k

1Specifically, you need to know that there is only one 0-tuple (i1, i2, . . . , i0), namely the empty
0-tuple ().

2Proof. Assume the contrary. Thus, g /∈ [k], so that g ∈ {k + 1, k + 2, . . . , n}. Therefore, (9) (applied
to i = g) yields σ (g) = g. But σ (g) = k ∈ [k]. This contradicts σ (g) = g /∈ [k]. This contradiction
shows that our assumption was false, qed.

http://www.cip.ifi.lmu.de/~grinberg/t/17f/hw7os.pdf
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(because τ︸︷︷︸
=σ◦tk,g

(k) = σ

tk,g (k)︸ ︷︷ ︸
=g

 = σ (g) = k), we conclude that τ (i) = i for each

i ∈ {k, k + 1, . . . , n}. Hence, by the induction hypothesis, we can apply Observation
1 to k− 1 and τ instead of k and σ. We conclude that there is a unique (k− 1)-tuple
(i1, i2, . . . , ik−1) ∈ [1]× [2]× · · · × [k− 1] such that τ = t1,i1 ◦ t2,i2 ◦ · · · ◦ tk−1,ik−1

. We
can easily extend this (k− 1)-tuple to a k-tuple (i1, i2, . . . , ik) ∈ [1]× [2]× · · · × [k]
such that σ = t1,i1 ◦ t2,i2 ◦ · · · ◦ tk,ik

3. Thus, there exists at least one k-tuple
(i1, i2, . . . , ik) ∈ [1]× [2]× · · · × [k] such that σ = t1,i1 ◦ t2,i2 ◦ · · · ◦ tk,ik .

Recall that we must prove that there is a unique k-tuple (i1, i2, . . . , ik) ∈ [1] ×
[2] × · · · × [k] such that σ = t1,i1 ◦ t2,i2 ◦ · · · ◦ tk,ik . We have just proven that there
exists at least one such k-tuple. Hence, it only remains to show that there exists at
most one such k-tuple.

Let (u1, u2, . . . , uk) and (v1, v2, . . . , vk) be two k-tuples (i1, i2, . . . , ik) ∈ [1]× [2]×
· · · × [k] such that σ = t1,i1 ◦ t2,i2 ◦ · · · ◦ tk,ik . We shall prove that (u1, u2, . . . , uk) =
(v1, v2, . . . , vk). This will, of course, entail that there exists at most one such k-tuple;
thus, the induction step will be complete.

We know that (u1, u2, . . . , uk) is a k-tuple (i1, i2, . . . , ik) ∈ [1]× [2]× · · · × [k] such
that σ = t1,i1 ◦ t2,i2 ◦ · · · ◦ tk,ik . In other words, (u1, u2, . . . , uk) ∈ [1]× [2]× · · · × [k]
and σ = t1,u1 ◦ t2,u2 ◦ · · · ◦ tk,uk

. Notice that (u1, u2, . . . , uk) ∈ [1] × [2] × · · · × [k]
shows that uj ∈ [j] for each j ∈ [k]. In other words, uj ≤ j for each j ∈ [k].
Thus, each j ∈ [k− 1] satisfies tj,uj (k) = k (because k equals neither j nor uj (since
uj ≤ j ≤ k− 1 < k)). In other words, the permutations t1,u1 , t2,u2 , . . . , tk−1,uk−1

leave
k unchanged. Now,

σ︸︷︷︸
=t1,u1◦t2,u2◦···◦tk,uk

(uk) =
(
t1,u1 ◦ t2,u2 ◦ · · · ◦ tk,uk

)
(uk)

=
(

t1,u1 ◦ t2,u2 ◦ · · · ◦ tk−1,uk−1

)tk,uk (uk)︸ ︷︷ ︸
=k


=
(

t1,u1 ◦ t2,u2 ◦ · · · ◦ tk−1,uk−1

)
(k) = k

3Proof. To extend the (k− 1)-tuple (i1, i2, . . . , ik−1) ∈ [1] × [2] × · · · × [k− 1] to a k-tuple
(i1, i2, . . . , ik) ∈ [1] × [2] × · · · × [k], we need only to define ik. Let us define ik by ik = g.
This yields a well-defined k-tuple (i1, i2, . . . , ik) ∈ [1]× [2]× · · · × [k], because ik = g ∈ [k]. It
remains to prove that this k-tuple satisfies σ = t1,i1 ◦ t2,i2 ◦ · · · ◦ tk,ik .

We have τ = σ ◦ tk,g, so that τ ◦ tk,g = σ ◦ tk,g ◦ tk,g︸ ︷︷ ︸
=id

= σ, so that

σ = τ︸︷︷︸
=t1,i1

◦t2,i2◦···◦tk−1,ik−1

◦ tk,g︸︷︷︸
=tk,ik

(since g=ik)

=
(

t1,i1 ◦ t2,i2 ◦ · · · ◦ tk−1,ik−1

)
◦ tk,ik = t1,i1 ◦ t2,i2 ◦ · · · ◦ tk,ik .

This completes our proof.
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(since the permutations t1,u1 , t2,u2 , . . . , tk−1,uk−1
leave k unchanged). Thus, uk =

σ−1 (k) = g. Similarly, vk = g.
Now,

σ = t1,u1 ◦ t2,u2 ◦ · · · ◦ tk,uk
=
(

t1,u1 ◦ t2,u2 ◦ · · · ◦ tk−1,uk−1

)
◦ tk,uk

=
(

t1,u1 ◦ t2,u2 ◦ · · · ◦ tk−1,uk−1

)
◦ tk,g (since uk = g) ,

so that

τ = σ︸︷︷︸
=
(

t1,u1◦t2,u2◦···◦tk−1,uk−1

)
◦tk,g

◦tk,g =
(

t1,u1 ◦ t2,u2 ◦ · · · ◦ tk−1,uk−1

)
◦ tk,g ◦ tk,g︸ ︷︷ ︸

=id

= t1,u1 ◦ t2,u2 ◦ · · · ◦ tk−1,uk−1
.

In other words, (u1, u2, . . . , uk−1) is a (k− 1)-tuple (i1, i2, . . . , ik−1) ∈ [1]× [2]× · · ·×
[k− 1] such that τ = t1,i1 ◦ t2,i2 ◦ · · · ◦ tk−1,ik−1

. Similarly, (v1, v2, . . . , vk−1) is such a
(k− 1)-tuple as well.

But recall that there is a unique (k− 1)-tuple (i1, i2, . . . , ik−1) ∈ [1]× [2]× · · · ×
[k− 1] such that τ = t1,i1 ◦ t2,i2 ◦ · · · ◦ tk−1,ik−1

. Thus, any two such (k− 1)-tuples
are identical. Hence, (u1, u2, . . . , uk−1) and (v1, v2, . . . , vk−1) are identical (since
(u1, u2, . . . , uk−1) and (v1, v2, . . . , vk−1) are two such (k− 1)-tuples). Combining this
with uk = vk (which follows from uk = g and vk = g), we obtain (u1, u2, . . . , uk) =
(v1, v2, . . . , vk). As we have said, this completes the induction step. Thus, Observa-
tion 1 is proven.]

Now, let n ∈ N and σ ∈ Sn. Then, {n + 1, n + 2, . . . , n} is the empty set.
In other words, there exists no i ∈ {n + 1, n + 2, . . . , n}. Hence, the statement
(σ (i) = i for each i ∈ {n + 1, n + 2, . . . , n}) is vacuously true. Thus, Observation 1
(applied to k = n) shows that there is a unique n-tuple (i1, i2, . . . , in) ∈ [1]× [2]×
· · · × [n] such that σ = t1,i1 ◦ t2,i2 ◦ · · · ◦ tn,in . This solves Exercise 6 (a).

(b) If τ ∈ Sn is any permutation, then z (τ) shall denote the number of cycles in
the cycle decomposition of τ. Thus, m = z (σ) (since m is the number of cycles in
the cycle decomposition of σ). Hence, it remains to prove that z (σ) is the number
of all k ∈ [n] satisfying ik = k.

Let us first prove a basic fact:

Observation 2: Let τ ∈ Sn and p ∈ [n] be such that τ (p) = p. Let q be an
element of [n] distinct from p. Then, z

(
τ ◦ tp,q

)
= z (τ)− 1.

[Example: For this example, let n = 9, and let τ ∈ S9 be the permutation whose
one-line notation is (4, 6, 1, 3, 5, 2, 9, 8, 7) (that is, which satisfies (τ (1) , τ (2) , . . . , τ (9)) =
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(4, 6, 1, 3, 5, 2, 9, 8, 7)). Then, the cycle decomposition of τ looks as follows:

1

3

42

6

5

7

9

8

.

This contains 5 cycles. Thus, z (τ) = 5.
Now, let p = 5 and q = 3. (This clearly satisfies τ (p) = p.) Then, Observation

2 yields z
(
τ ◦ tp,q

)
= z (τ)︸︷︷︸

=5

−1 = 5− 1 = 4. And we can indeed confirm this: The

cycle decomposition of τ ◦ tp,q = τ ◦ t5,3 looks as follows:

1

5

4

3

2

6

7

9

8

.

This contains 4 cycles. Thus, z
(
τ ◦ tp,q

)
= 4, exactly as Observation 2 foretold.

As this example shows, the cycle decomposition of τ ◦ tp,q is actually “almost the
same as” that of τ; more precisely, all cycles of τ appear in the cycle decomposition
of τ ◦ tp,q, with the exception of two cycles (the cycles {5} and {3, 1, 4}), which get
merged into a single cycle in the cycle decomposition of τ ◦ tp,q. Visually speaking,
when we compose τ with tp,q, we “re-route” the arc from σ−1 (q) = 4 to q = 3
through the vertex p = 5; therefore, the vertex p (which formed a 1-vertex cycle
in τ, since τ (p) = p) gets “caught up” in the cycle {3, 1, 4}, which causes the two
cycles to get merged. This behavior clearly generalizes; the proof below just makes
this more formal.]

[Proof of Observation 2: The cycle decomposition of τ has a cycle containing the
element p alone (since τ (p) = p). Let z1 be this cycle. Thus, z1 = {p}. Hence, z1
does not contain q (since q 6= p).

Furthermore, let z2 be the cycle in the cycle decomposition of τ that contains the
element q. This cycle z2 is distinct from z1 (because z1 does not contain q). Thus, z2
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does not contain p (since p is contained in the cycle z1, which is distinct from z2).
In other words, p /∈ z2.

Let us analyze what happens to the cycle decomposition of τ when we compose
τ with tp,q (thus obtaining τ ◦ tp,q). The only values of τ that change when we com-
pose τ with tp,q are the values at the numbers p and q (because tp,q leaves all other
numbers unchanged). Hence, all cycles other than z1 and z2 in the cycle decompo-
sition of τ remain unchanged in the cycle decomposition of τ ◦ tp,q (because these
cycles contain neither p nor q). The only two cycles that can possibly change are z1
and z2. We claim that these two cycles are merged into a single cycle in τ ◦ tp,q.

Indeed, let us write the cycle z2 in the form z2 =
{

τ0 (q) , τ1 (q) , . . . , τk−1 (q)
}

,
where k is the smallest positive integer satisfying τk (q) = q. (Indeed, z2 can be
written in this form, since z2 is the cycle of τ that contains q.) Thus,

z2 =
{

τ0 (q) , τ1 (q) , . . . , τk−1 (q)
}
=
{

τ1 (q) , τ2 (q) , . . . , τk (q)
}

(since τ0 (q) = q = τk (q)).
Let γ be the permutation τ ◦ tp,q ∈ Sn. Thus, each i ∈ [k− 1] satisfies γ

(
τi (q)

)
=

τi+1 (q) 4. In other words, the permutation γ sends each of the elements
τ1 (q) , τ2 (q) , . . . , τk (q) (apart from the last one) to the next one. Hence, the el-
ements τ1 (q) , τ2 (q) , . . . , τk (q) lie on one and the same cycle in the cycle decom-
position of γ. Let us denote this cycle by z′. Thus, τi (q) ∈ z′ for each i ∈ [k].
Applying this to i = k, we conclude that τk (q) ∈ z′. Thus, q = τk (q) ∈ z′.

The cycle z′ contains τ1 (q) , τ2 (q) , . . . , τk (q). In other words, the cycle z′ contains
all elements of z2 (since z2 =

{
τ1 (q) , τ2 (q) , . . . , τk (q)

}
).

Also, γ︸︷︷︸
=τ◦tp,q

(q) =
(
τ ◦ tp,q

)
(q) = τ

tp,q (q)︸ ︷︷ ︸
=p

 = τ (p) = p. Hence, p lies on the

same cycle in the cycle decomposition of γ as q. In other words, p lies on the cycle
in the cycle decomposition of γ that contains q. Since the latter cycle is z′ (because
q ∈ z′), we thus conclude that p lies on z′. In other words, p ∈ z′. In other words,
the cycle z′ contains all elements of z1 (since z1 = {p}).

The cycle z′ in the cycle decomposition of γ thus contains all elements of z1 and
all elements of z2. In view of γ = τ ◦ tp,q, this rewrites as follows: The cycle z′ in
the cycle decomposition of τ ◦ tp,q contains all elements of z1 and all elements of z2.
Furthermore, this cycle z′ cannot contain any other elements (because if it did, then

4Proof. Let i ∈ [k− 1]. Hence, τi (q) 6= q (since k is the smallest positive integer satisfying
τk (q) = q). Also, τi (q) 6= p (since τi (q) ∈

{
τ0 (q) , τ1 (q) , . . . , τk−1 (q)

}
= z2 but p /∈ z2). Thus,

τi (q) equals neither p nor q. Hence, the transposition tp,q leaves τi (q) unchanged. In other
words, tp,q

(
τi (q)

)
= τi (q).

Now, γ︸︷︷︸
=τ◦tp,q

(
τi (q)

)
=
(
τ ◦ tp,q

) (
τi (q)

)
= τ

tp,q

(
τi (q)

)
︸ ︷︷ ︸

=τi(q)

 = τ
(
τi (q)

)
= τi+1 (q), qed.
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it would contain elements from cycles in the cycle decomposition of τ other than z1
and z2; but this would contradict the fact that all cycles other than z1 and z2 in the
cycle decomposition of τ remain unchanged in the cycle decomposition of τ ◦ tp,q).
Hence, this cycle z′ contains all elements of z1 and all elements of z2 and no more
elements. Thus, the cycles z1 and z2 are merged into a single cycle in τ ◦ tp,q.

So we have seen that when we compose τ with tp,q, the cycle decomposition does
not change except for the fact that the two cycles z1 and z2 get merged into a single
cycle. Thus, the total number of cycles in the cycle decomposition decreases by 1.
In other words, the total number of cycles in the cycle decomposition of τ ◦ tp,q is 1
less than the total number of cycles in the cycle decomposition of τ. In other words,
z
(
τ ◦ tp,q

)
= z (τ)− 1. This proves Observation 2.]

Next, we make the following claim: For each p ∈ {0, 1, . . . , n}, we have

z
(

t1,i1 ◦ t2,i2 ◦ · · · ◦ tp,ip

)
= n− p + |{k ∈ [p] | ik = k}| . (10)

[Proof of (10): We shall prove (10) by induction on p:
Induction base: We have

z

t1,i1 ◦ t2,i2 ◦ · · · ◦ t0,i0︸ ︷︷ ︸
=id

 = z (id) = n

(since the permutation id has n cycles in its cycle decomposition). Comparing this
with

n− 0 +

∣∣∣∣∣∣∣∣∣{k ∈ [0] | ik = k}︸ ︷︷ ︸
=∅

(since [0]=∅)

∣∣∣∣∣∣∣∣∣ = n− 0 + |∅|︸︷︷︸
=0

= n,

we obtain z
(
t1,i1 ◦ t2,i2 ◦ · · · ◦ t0,i0

)
= n − 0 + |{k ∈ [0] | ik = k}|. In other words,

(10) holds for p = 0. This completes the induction base.
Induction step: Let p ∈ {0, 1, . . . , n} be positive. Assume that (10) holds for p− 1

instead of p. In other words, assume that

z
(

t1,i1 ◦ t2,i2 ◦ · · · ◦ tp−1,ip−1

)
= n− (p− 1) + |{k ∈ [p− 1] | ik = k}| . (11)

We must prove that (10) holds for p.
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We have p ∈ [n] (since p ∈ {0, 1, . . . , n} is positive). Also,k ∈ [p]︸︷︷︸
={p}∪[p−1]

| ik = k


= {k ∈ {p} ∪ [p− 1] | ik = k} = {k ∈ {p} | ik = k}︸ ︷︷ ︸

=

{p} , if ip = p;
∅, if ip 6= p

∪ {k ∈ [p− 1] | ik = k}

=

{
{p} , if ip = p;
∅, if ip 6= p

∪ {k ∈ [p− 1] | ik = k} . (12)

We are in one of the following two cases:
Case 1: We have ip = p.
Case 2: We have ip 6= p.
Let us first consider Case 1. In this case, we have ip = p. Thus, tp,ip = id. Also,

(12) becomes

{k ∈ [p] | ik = k}

=

{
{p} , if ip = p;
∅, if ip 6= p︸ ︷︷ ︸

={p}
(since ip=p)

∪ {k ∈ [p− 1] | ik = k} = {p} ∪ {k ∈ [p− 1] | ik = k} ,

so that

|{k ∈ [p] | ik = k}| = |{p} ∪ {k ∈ [p− 1] | ik = k}|
= |{k ∈ [p− 1] | ik = k}|+ 1 (13)

(since p /∈ {k ∈ [p− 1] | ik = k}).
Now,

t1,i1 ◦ t2,i2 ◦ · · · ◦ tp,ip =
(

t1,i1 ◦ t2,i2 ◦ · · · ◦ tp−1,ip−1

)
◦ tp,ip︸︷︷︸

=id

= t1,i1 ◦ t2,i2 ◦ · · · ◦ tp−1,ip−1 .

Hence,

z
(

t1,i1 ◦ t2,i2 ◦ · · · ◦ tp,ip

)
= z

(
t1,i1 ◦ t2,i2 ◦ · · · ◦ tp−1,ip−1

)
= n− (p− 1) + |{k ∈ [p− 1] | ik = k}| (by (11))
= n− p + |{k ∈ [p− 1] | ik = k}|+ 1︸ ︷︷ ︸

=|{k∈[p] | ik=k}|
(by (13))

= n− p + |{k ∈ [p] | ik = k}| .
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Thus, we have proven that (10) holds for p in Case 1.
Let us now consider Case 2. In this case, we have ip 6= p. But ip ∈ [p] (since

(i1, i2, . . . , in) ∈ [1]× [2]× · · · × [n]), so that ip ≤ p. Thus, ip < p (since ip 6= p).
Also, (12) becomes

{k ∈ [p] | ik = k}

=

{
{p} , if ip = p;
∅, if ip 6= p︸ ︷︷ ︸

=∅
(since ip 6=p)

∪ {k ∈ [p− 1] | ik = k}

= {k ∈ [p− 1] | ik = k} . (14)

Let τ = t1,i1 ◦ t2,i2 ◦ · · · ◦ tp−1,ip−1 . Thus,

z (τ) = z
(

t1,i1 ◦ t2,i2 ◦ · · · ◦ tp−1,ip−1

)
= n− (p− 1)︸ ︷︷ ︸

=n−p+1

+

∣∣∣∣∣∣∣∣∣∣
{k ∈ [p− 1] | ik = k}︸ ︷︷ ︸

={k∈[p] | ik=k}
(by (14))

∣∣∣∣∣∣∣∣∣∣
= n− p + 1 + |{k ∈ [p] | ik = k}| . (15)

But

t1,i1 ◦ t2,i2 ◦ · · · ◦ tp,ip =
(

t1,i1 ◦ t2,i2 ◦ · · · ◦ tp−1,ip−1

)
︸ ︷︷ ︸

=τ

◦tp,ip = τ ◦ tp,ip . (16)

We have τ (p) = p 5. Hence, Observation 2 (applied to q = ip) yields

z
(

τ ◦ tp,ip

)
= z (τ)− 1. But from (16), we obtain

z
(

t1,i1 ◦ t2,i2 ◦ · · · ◦ tp,ip

)
= z

(
τ ◦ tp,ip

)
= z (τ)− 1

= n− p + |{k ∈ [p] | ik = k}| (by (15)) .

Thus, we have proven that (10) holds for p in Case 2.
We thus know that (10) holds for p (because we have proven this in each of the

two Cases 1 and 2). This completes the induction step. Thus, (10) is proven.]

5Proof. From (i1, i2, . . . , in) ∈ [1] × [2] × · · · × [n], we conclude that ij ∈ [j] for each j ∈ [n].
Thus, for each j ∈ [p− 1], we have ij ∈ [j], so that ij ≤ j ≤ p − 1 < p. Therefore, for each
j ∈ [p− 1], the permutation tj,ij leaves the number p unchanged (since p equals neither j nor ij
(because ij ≤ j < p)). In other words, the permutations t1,i1 , t2,i2 , . . . , tp−1,ip−1 leave the number p

unchanged. Hence,
(

t1,i1 ◦ t2,i2 ◦ · · · ◦ tp−1,ip−1

)
(p) = p. In view of τ = t1,i1 ◦ t2,i2 ◦ · · · ◦ tp−1,ip−1 ,

this rewrites as τ (p) = p.
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Now, apply (10) to p = n. The result is

z
(
t1,i1 ◦ t2,i2 ◦ · · · ◦ tn,in

)
= n− n︸ ︷︷ ︸

=0

+ |{k ∈ [n] | ik = k}| = |{k ∈ [n] | ik = k}| .

In view of σ = t1,i1 ◦ t2,i2 ◦ · · · ◦ tn,in , this rewrites as z (σ) = |{k ∈ [n] | ik = k}|. In
other words, z (σ) is the number of all k ∈ [n] satisfying ik = k. This solves Exercise
6 (b).

0.6. Another partition identity

Recall the following:

Definition 0.6. Let n ∈ Z. A partition of n means a finite list (i1, i2, . . . , ik) of
positive integers satisfying

i1 ≥ i2 ≥ · · · ≥ ik and i1 + i2 + · · ·+ ik = n.

Exercise 7. Let n ∈ N and p ∈ N. Let a be the number of all partitions
(i1, i2, . . . , ik) of n satisfying k ≥ p and i1 = i2 = · · · = ip. Let b be the num-
ber of all nonempty partitions (i1, i2, . . . , ik) of n such that all of i1, i2, . . . , ik are
≥ p. Prove that a = b.

Example 0.7. Let n = 9 and p = 3. Then, the partitions counted by a in Exercise
7 are

(3, 3, 3) , (2, 2, 2, 2, 1) , (2, 2, 2, 1, 1, 1) , (1, 1, 1, 1, 1, 1, 1, 1, 1) .

Meanwhile, the partitions counted by b in Exercise 7 are

(9) , (6, 3) , (5, 4) , (3, 3, 3) .

Thus, a = 4 and b = 4 in this case.

A full solution of Exercise 7 can be found in Angela Chen’s homework. (This is
also the solution I had in mind.)

Further reading on partitions includes:

• Herbert S. Wilf, Lectures on Integer Partitions, 2009.
https://www.math.upenn.edu/~wilf/PIMS/PIMSLectures.pdf

• George E. Andrews, Kimmo Eriksson, Integer Partitions, Cambridge Univer-
sity Press 2004.

• Igor Pak, Partition bijections, a survey, Ramanujan Journal, vol. 12 (2006), pp.
5–75.
http://www.math.ucla.edu/~pak/papers/psurvey.pdf

http://www.cip.ifi.lmu.de/~grinberg/t/17f/hw8os-chen.pdf
https://www.math.upenn.edu/~wilf/PIMS/PIMSLectures.pdf
http://www.math.ucla.edu/~pak/papers/psurvey.pdf
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The Wikipedia articles on partitions, the pentagonal number theorem and Ra-
manujan’s congruences are also useful. That said, none of these is necessary for
the above exercise.
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