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I am giving just hints or brief outlines of the solutions below; unfortunately, this
is all I have the time for. I hope they are reasonably clear. Please let me know (
mailto:dgrinber@umn.edu ) if you are stuck in some of the details.

0.1. Strange integers

Exercise 1. For any m € N and n € IN, define a rational number T (m, n) by

T (m,n) = (‘211'1)! (2n)! .
min! (m+n)!

(@) Prove that 4T (m,n) = T(m+1,n)+ T (m,n+1) for every m € IN and
n € N.

(b) Prove that T (m,n) € IN for every m € IN and n € IN.

(c) Prove that T (m,n) is an even integer for every m € IN and n € IN unless
(m,n) = (0,0).

(d) If m € N and n € IN are such that m +n is odd and m + n > 1, then prove
that4 | T (m,n).

The numbers T (m, n) introduced in Exercise [1|are the so-called super-Catalan num-
bers; they are a subject of active research (see, e.g., [Gessel92] and [AleGhel4]).
Exercise [1| (b) suggests that these numbers count something, but no one has so far
discovered what; combinatorial proofs aren’t always the easiest to find. The thread
https://artofproblemsolving.com/community/c6h15653916s1_supercatalan_numbers
on Art of Problem Solving also discusses the super-Catalan numbers and Exercise
il

A detailed solution of Exercise [1| can be found in [Grinbel6, solution to Exercise
3.25]. We will be rather brief here.

To solve Exercise (1}, we need the following lemma (which is [Grinbel6, Exercise
3.24]):
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Lemma 0.1. Let m be a positive integer.

(a) The binomial coefficient 27;;1 is even.

(b) Assume that m is odd and satisfies m > 1. Then, the binomial coefficient
(an;i_— 11) is even.

(c) Assume that m is odd and satisfies m > 1. Then, (27;”) =0 mod 4.

m—1
2(m—1)

m—1

2 2m—1
Proof of Lemma|0.1] (sketched). (a) This follows from (;) - 2( " )

(b) Lemma|0.1|(a) (applied to m — 1 instead of m) shows that ( > is even.

In other words, (2 EZZ__ 11)) = 0mod 2. But m is odd; thus, m = 1 mod 2. Now,
2m —1 2(m—1
m( " —m—1) (2" "D = gmodz2,
m—1 m—1
—_——
=0mod 2
sothat 0 = m 2m =1 = 2m =1 mod 2. In other words, 2m =1 is
~~ m—1 m—1 m—1
=1mod?2

even. This proves Lemma (b).

(c) We have (ZnT) =2 ZTT__ 11) = Omod4 (since Lemma (b) shows that

2m—1
( ﬂT -1 > is even). This proves Lemma (0.1 (c). ]

Solution to Exercise[l] (sketched). (a) This is a straightforward computation: For m €
IN and 7 € IN, we have

O @m+1)@n)! (2m+2) @m+1)- (2m)! (2n)!
Tm+1,m) = (m+Dn! (m+1+n)!  (m+1)-mn!- (m+1+n)- (m+n)!
( since (2(m+1))!=2m+2)(2m+1)-(2m)! and
(m+1)!'=(m+1)-mand (m+1+n)l=m+1+n)-(m+n)!
 @m+2)2m+1)  (2m)!(2n)!  4m+2
_\(m+1)(m+1+n)/'m!n!(m—i—n)!J_m+1+n'T(m’n)
4w 42 ~1(mn)
m+1+n
and similarly
T(m,n—i—l):%-T(m,n).

Add these two equalities and simplify.

)
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(b) Apply induction on n:
Induction base: For each m € IN, we have

2m)(2-0)  (2m)!l (2
T'(m,0) = r(n!gi!)(ng—l—o))! - (m'n;)' - <nT) €N

In other words, Exercise 1] (b) holds for n = 0.

Induction step: Let N € IN. Assume (as the induction hypothesis) that Exercise
(b) holds for n = N. We must prove that Exercise [1{ (b) holds for n = N + 1.

For each m € IN, we have

Tm,N+1)=4 T(mN) —T(m+1,N)

N——— N—————
€N eN
(by the induction  (by the induction
hypothesis) hypothesis)

(since Exercise[I| (a) yields 4T (m,N) =T (m+1,N)+ T (m,N+1))
cZ

and therefore T (m,N+1) € IN (since the definition of T (m, N + 1) shows that
T (m,N + 1) is positive). In other words, Exercise 1| (b) holds for n = N + 1. This
completes the induction step. Hence, Exercise (1] (b) is proven.

(c) Apply induction on n:

Induction base: For each positive integer m, we have

T 0) = 2MLE0)_ (@m)t <2m)

m!0! (m+0)!  m!m!  \m
and this is even (by Lemma (0.1 (a)). In other words, for each positive integer m, the
number T (m,0) is an even integer. In other words, Exercise (1| (c) holds for n = 0
(because if m € IN and n € IN satisfy (m,n) # (0,0) but n = 0, then m must be a
positive integer).

Induction step: Let N € IN. Assume (as the induction hypothesis) that Exercise
(c) holds for n = N. We must prove that Exercise [1| (c) holds for n = N + 1.

Let m € IN. Exercise |1/ (b) shows that T (m, N) is an integer. Thus, 4T (m,N) =
0mod 2. Also, (m+1,N) # (0,0) (since m + 1 is positive). Thus, the induction hy-
pothesis yields that T (m + 1, N) is an even integer. Hence, T (m + 1, N) = 0mod 2.

Now, Exercise [1| (a) yields 4T (m,N) =T (m+1,N)+ T (m,N +1). Thus,

T(mN+1)=4T (m,N)—T (m+1,N) = 0mod 2.

=0mod?2 =0mod 2

In other words, T (m, N 4+ 1) is even. In other words, Exercise |1| (c) holds for n =
N + 1. This completes the induction step. Hence, Exercise [1| (c) is proven.

(d) Apply induction on n:

Induction base: We must prove Exercise [1| (d) for n = 0. In other words, we must
show that if m € IN is such that m + 0 is odd and m +0 > 1, then 4 | T (m,0).
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Let m € N be such that m +0isoddand m +0 > 1. Fromm = m +0 > 1, we
conclude that m is a positive integer. Also, m = m 4 0 is odd. Now,
(2m)!(2-0)!  (2m)! (Zm

T 0) = o G0y~ mimt — \m

) = 0mod 4

(by Lemma [0.1| (b)). In other words, 4 | T (m,0). This completes our proof that
Exercise 1] (d) holds for n = 0.

Induction step: Let N € IN. Assume (as the induction hypothesis) that Exercise
(d) holds for n = N. We must prove that Exercise [1{(d) holds for n = N + 1.

Let m € IN be such that m + (N +1) is odd and m + (N+1) > 1. Then,
(m+1)+ N=m+ (N+1)isoddand (m+1)+N =m+ (N +1) > 1. Thus, the
induction hypothesis yields that 4 | T (m +1,N). Hence, T (m +1,N) = Omod 4.
Also, Exercise 1| (b) shows that T (m, N) is an integer. Thus, 4T (m, N) = O0mod 4.

Now, Exercise (1| (a) yields 4T (m,N) =T (m+1,N)+ T (m,N +1). Thus,

T(m,N+1)=4T (m,N)—T (m+1,N) = 0mod 4.

—0mod 4 —0mod 4
In other words, 4 | T (m, N + 1). In other words, Exercise|l|(d) holds forn = N + 1.
This completes the induction step. Hence, Exercise [1| (d) is proven. O

Exercise 2. Let m € IN and n € IN. Let p = min {m, n}.
(a) Prove that
4 v (m+n\ (m+n m+n
Y (-1 = :
P m+k)\n+k m
(b) Prove that
4 2m 2n
T - —1)*
(m, ) k;p( ) <m—|—k) (n —k)'

where T (m, n) is defined as in Exercise
[Hint: Part (a) should follow from something done in class. Then, compare
part (b) with part (a).]

Exercise [2| (b) is a result of von Szily (1894); see [Gessel92, (29)]. Needless to say,
Exercise [2| (b) provides an alternative solution to Exercise 1] (b).

A full solution of Exercise [2| can be found in Angela Chen’s homework and in
[Grinbel6, solution to Exercise 3.25] (this is one and the same solution, written up
in slightly different ways).

0.2. The length of a permutation
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Definition 0.2. Let n € IN.

(a) We let S,, denote the set of all permutations of [n].

Let o € S, be a permutation of [n].

(b) An inversion of ¢ means a pair (i, j) of elements of [n] satisfying i < j and
o (i) > o (j).

(c) The length of o is defined to be the number of inversions of ¢. This length
is denoted by ¢ (o).

(d) The sign of ¢ is defined to be the integer (—1)"(?). It is denoted by (—1)”.

Exercise 3. Let p € N and g € IN. Let n = pgq. Consider the permutation ¢ € S,
that maps (i —1)g+jto (j—1)p+iforeveryi € [p] and j € [q].

(This permutation ¢ can be visualized as follows: Fill in a p X g-matrix A with
the entries 1,2,...,n by going row by row from top to bottom:

1 2 3 q

g+1 qg+2 qg+3 oo 2q

A — 29+1 2q+2 2q+3 o 3q
(p—1gq+1 (p—1)q+2 (p—1)q+3 -+ pq

Fill in a p X g-matrix B with the entries 1,2,...,n by going column by column
from left to right:

1 p+1 2p+1 -+ @—1)p+1
2 p+2 2p+2 -+ (g—1)p+2

B=| 3 p+3 2p+3 --- (g—1)p+3
p 2p  3p qp

The permutation ¢ then sends each entry of A to the corresponding entry of B.)
Find the length ¢ (o) of the permutation c.

A full solution of Exercise |3| can be found in |Angela Chen’s homework. (This is
also the solution I had in mind.) We shall later sketch the solution after Definition
(which somewhat simplifies it).

0.3. Two equal counts

Exercise 4. Let n € IN and ¢ € S,,. Prove that

(the number of all (7,j) € [n] x [n] such thati > j > o (i))
= (the number of all (i,j) € [n] x [n] such that o (i) >j > 1i).
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Exercise 4|is a consequence of the following fact:

Lemma 0.3. Let n € N. Let 0 € S,, and j € [n]. Then,

(the number of all i € [n] such thati > j > o (7))
= (the number of all i € [n]| such that o (i) >j >1i). (1)

Indeed, if we sum up the equality (1) over all j € [n], then we obtain precisely
the claim of Exercise
Lemma [0.3|is [Han92, Lemme 2.1]. Anyway, it is also easy to prove:

First proof of Lemma [0.3| (sketched). The map o is a permutation of [n] (since o € S),
thus a bijection [n] — [n]
Use the Iverson bracket notation. Then, any three integers p, g and r satisfy

p>q>rl=[p>qandg>r|=[p>q] g>7r] =[p>q/(1—[r>4])
g
=p=ql—[p=4qllr=4q]. ()

But
(the number of all i € [n] such thati > j > o (i))

=) [izj>c@)] =), (izj-[=jlc@G)>]])

M -z
(by @)
=L lizj- L izl =] ©

ie(n] ien]
and similarly

(the number of all i € [n] such that o (i) > j > i)
=)l Z o (@)= ]li= ]
i€[n]
Hence,

(the number of all i € [n] such that o (i) 2 ] > i)
J

= L@ =] —Z (D) > i > ]
& :{izfﬁ?(ozﬂ
=L [iz]]
ien]
(here, we have substituted i
for (i) in the sum, since
the map o is a bijection [n]—[n])

= L lizj= Y izjle@) =]
ien] i€n]
= (the number of all i € [n] such thati > j > o (i))
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(by (3)). This proves Lemma O
Second proof of Lemma (0.3 (sketched). The map ¢ is a permutation of [n] (since o €

Su), thus a bijection [n] — [n].
We have

the number of all 7 € [n] such that i>j>0(i)
—_——
<= (i>j but not o (i)>j)
= (the number of all i € [n] such thati > j but not ¢ (i) > )
= (the number of all i € [n] such thati > j)
— (the number of all i € [n] such thati > jand o (i) > j)

and

the number of all i € [n] such that o(i)>j>1i
—_——

<= (c(i)>j but not i>j)
= (the number of all i € [n] such that ¢ (i) > jbut noti > j)
(the number of all i € [n] such that o (i) > j)

. J
-~

=(the number of all i€[n] such that i>j)
(here, we have substituted i for o (i), since the map ¢ is a bijection [n]—[n])

— | the number of all i € [n] such that o (i) > jandi > j

-~

<= (i>j and o(i)>j)
= (the number of all i € [n] such thati > j)
— (the number of all i € [n] such thati > jand o (i) > j).

Comparing these two equalities, we obtain

(the number of all i € [n] such thati > j > o (7))
= (the number of all i € [n] such thato (i) >j > i).

This proves Lemma [0.3| again. O

Note that none of the above proofs of Lemma[0.3|is bijective. Maja Schryer found
a bijective proof:

Third proof of Lemma |0.3| (sketched). The map
el [izj>c(}>{ich | ol)=]>i,
i <0'k_1 (i), where k is the smallest positive

integer satisfying o* (i) > ]>
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is well-defined (indeed, it is easy to see that a positive integer k satisfying ok (i) >j
exists for every i € [n] satisfying i > j). Similarly, the map

{icih | oc@)zj>i} ={ich] | izj>c()},

k
i ((0‘1> (1), where k is the smallest nonnegative
k
integer satisfying ((T_1> (i) > ]>

is well-defined (notice that we are using (U‘l)k here, not ((7_1)k_1). It is easy to
check that these two maps are mutually inverse, and thus bijective. This bijection
yields Lemma O

0.4. Lehmer codes

Recall the following definition from the preceding homework set:

Definition 0.4. Let n € IN. Let 0 € S, be a permutation. For any i € [n], we let
¢; () denote the number of j € {i+1,i+2,...,n} such that ¢ (i) > o (j).

Exercise 5. Let n € IN. Let G be the set of all n-tuples (jy, jo, ..., jn) of integers
satisfying 0 < jy < n —k for each k € [n]. (In other words, G = {0,1,...,n — 1} X
{0,1,...,n =2} x---x{0,1,...,n—n}.)

(@) For any ¢ € S, and i € [n], prove that ¢ (i) is the (¢; () 4+ 1)-th smallest
element of the set [n] \ {¢ (1),0(2),...,0(i—1)}.

(b) For any ¢ € S, prove that

(l1(0), b (0),.... by (0)) € G.
(c) Prove that the map

S, — G,
o (U1 (0),b(0),..., 0y (0))
is bijective.
(d) Show that ¢ (0) =41 (o) + 4p (o) + -+ + £, (0) for each o € S,.
(e) Show that

D ) = (14 2) <1+x+x2>---<1+x+x2—|—...+xn—1>

oEeS,

(an equality between polynomials in x). (If n < 1, then the right hand side of
this equality is an empty product, and thus equals 1.)

Note that the n-tuple (¢1 (0),¢2(0),..., ¢, (0)) is known as the Lehmer code of
the permutation o.
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Parts (b), (c), (d) and (e) of Exercise |5 are proven in [Grinbel6, §5.8 and the so-
lution to Exercise 5.18]. (Specifically, Exercise 5| (b) is [Grinbel6, Proposition 5.47];
Exercise P (¢) is [Grinbel6, Theorem 5.52]; Exercise |5| (d) is [Grinbel6, Proposition
5.46]; Exercise 5| (e) is [Grinbel6, Corollary 5.53]). But let us sketch the simple
proofs here as well (they are simple because we have laid all the groundwork on
the previous homework set):

Solution to Exercise 5] (sketched). (a) Let o € S, and i € [n]. Then, ¢ is a permutation.
Thus, the numbers o (1),0(2),...,0 (n) are distinct. Now,

n \{c(1),0(2),...,0(i—1)}

~——

={12...n}
=lo(1)e(2 ) ()}
(since o is a permutatlon)

={c(1),0(2),...,c(m)}\{c(1),0(2),...,0(i—1)}
={c(i),c(i+1),...,0(n)} 4)

(since o (1),0(2),...,0(n) are distinct).

Recall that ¢; () denotes the number of j € {i+1,i+2,...,n} such that o (i) >
o (j). In other words, ¢; (c) is the number of j € {i+1,i+2,...,n} such that
o (j) < o(i). In other words, ¢;(c) is the number of entries of the sequence
(c(i+1),0(i+2),...,0(n)) that are smaller than ¢ (i). Thus, there are precisely
¢; (o) entries in the sequence (0 (i+1),0(i+2),...,0(n)) that are smaller than
o (i). If we add an entry o (i) to this sequence, then this fact does not change
(because this new entry o (i) is not smaller than ¢ (i)). Thus, there are precisely
¢; (o) entries in the sequence (0 (i),0(i+1),...,0(n)) that are smaller than o (7).
Since the entries of this sequence are d1st1nct (because c(1),0(2),...,0(n) are
distinct), we can rewrite this as follows: There are precisely ¢; (c) elements of the
set {c(i),0c(i+1),...,0(n)} that are smaller than o (i). In other words, o (i) is
the (¢; (o) + 1)-th smallest element of the set {c (i),c(i+1),...,0(n)}. In view
of (4), this rewrites as follows: o (i) is the (¢; (c') + 1)-th smallest element of the set
(1] \ {(7( ),0(2),...,0(i—1)}. This solves Exercise | (a).

(b) Let o € S,. For eachi € {1,2,...,n}, we have ¢; (c) < n —i (since ¢; (o)
is the number of j € {i+1,i+2,...,n} such that o (i) > o (j), and clearly this
number cannot be larger than |{i+1,i+2,...,n}| = n —1i) and thus ¢;(0) €
{0,1,...,n —i}. Hence,

(b1 (o), b (0),...,0n(0))€{0,1,...,.n—1} x{0,1,...,n =2} x --- x {0,1,...,n —n}
=G.

This solves Exercise [5] (b).
(c) The sets S;, and G are finite and have the same size (namely, n!). But the map

S, — G,
o (l1(0), b (0),..., 0y (0))
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is injective (by Exercise 5 (b) on homework set #7), and therefore bijective (because
any injective map between two finite sets having the same size must be bijective).
This solves Exercise [5] (c).

(d) Let 0 € S,,. The definition of ¢ (¢) yields that

¢ (o) = (the number of inversions of o)
= (the number of pairs (i,j) of elements of [n] satisfying i < jand o (i) > o (j))
(by the definition of an inversion)

Y (the number of j € [n] satisfying i < jand o (i) > o (j))

ie[n]

=(the number of je{i—l—l,i—r—a,...,n} such that o(i)>0c(f))
(since the je[n] satisfying i<j are precisely the je{i+1,i+2,...,n})
= ) (thenumberof j € {i+1,i+2,...,n} such that o (i) > 0 (j))
i€[n] :ZXU)
(by the definition of ¢;(c))

B 'Z[}Ei(cf)251(0)*-52((7)4‘"'4‘6”(0)'

This solves Exercise [5 (d).
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(e) We have
Z xf(a)
S~
TESH =01 (0)+Lo(0)++-+Lu(0)
(by Exercise ] (d))
— Z x€1(0)+€2(a)+...+£n(g) _ Z sl i2 i
gESy, (i1,i2,..in) EG — i1 2. xin
—_———
= L

(i1/9-wsin ) €{01,...,n=1} x{0,1,...,n—2} X+ x{0,1,...,n—n}
(since G={0,1,...n—1}x{0,1,...n—2} x---x{0,1,...n—n})
here, we have substituted (iy,ip, ..., i) for ({1 (0), bz (0),..., ¢y (0))
in the sum, since themap S, = G, 0 — ({1 (0),l2(0),..., 4y (0)
is a bijection (by Exercise 5 I (c))
— Z iyl .. yln
(iizein) {0 Lt =113 {0 L n=2} X {01 =1}

-~

i1€ {0,1,..n=1} ip{0,1,...n=2}  ine{0,1,...,.n—n}

= Z Z Z xilxiZ...xin

i1€{01,..n—1} e{0,1,..n-2}  i,€{0,1,...n—n}

— Z xil Z xiz . Z xin
i1€{0,1,...n—1} ire{0,1,...n—2} ine{0,1,...n—n}

*1+x+x;; =l :1+x+x;—ri—--~+x”*2 :1+x+x;fk--~+x”*”
Tt xt+x2 4+ (x40 (T x4 2

E1+x+x Foea™ 1) (1+x+x2—l—---—|—x”_2)---(1—|—x)1
<1—|—x+x e 1) <1+x—|—x2+---~|—x”_2)---(1+x)
:(1+x)<1+x—l—x2> <1+x+x2+~~~+x”*1>.

This solves Exercise [§ (e). O

Exercise |5 (d) also lets us solve Exercise |3 with less trouble than otherwise:

Hints to Exercise[3l The map [p] x [q] — [n], (i,j) — (i—1)g+j is a bijection
(since n = pq). In other words, the map [p]| x [q] — [n], (u,v) — (u—1)g+visa
bijection.

If (i,j) and (u,v) are two elements of [p] x [g], then we have the following equiv-
alences:

(i-1)g+j<(u—-1)g+v) <= (i<wuor (i=wuandj<v)) (5)

and
(j—Dp+i>@w—-1)p+u) < (j>vor (j=vandi>u)). (6)




Math 4990 Fall 2017 (Darij Grinberg): homework set 8 page 12

(Indeed, both of these equivalences can easily be checked, by recalling that j and v
belong to [g] and that i and u belong to [p].)
Let k € [n]. Then, the definition of ¢ (¢) yields

b (0)
= (the number of all j € {k+1,k+2,...,n} such thato (k) > o (j))
= (the number of all j € [n] such that k < jand o (k) > o (j))
( since the j € {k+1,k+2,...,n} are precisely )
the j € [n] such thatk < j
= (the number of all & € [n] such thatk < hand o (k) > o (h))
(here, we have renamed the index j as 1) . (7)

Now, forget that we fixed k. We thus have proven (7) for each k € [n].
Fix (i,j) € [p] x [q]. Setk = (i —1) g+ j. Then, k € [n], and thus (7) yields

b (0)
= (the number of all i € [n] such that k < h and o (k) > o (h))

= (the number of all (u,v) € [p] X [g] such that k <u—-1)g+v

=(i—1)g+j
and o ( \k/ ) > a((ul)q+v))
=(i=1)q+j

here, we have substituted (1 —1) g+ v for h, since the
map [p] x [q] — [n], (u,v) — (u—1) g+ v is a bijection
= (the number of all (u,v) € [p] x [q] suchthat (i—1)g+j< (u—1)g+v

and o((i—1)g+j) >o((u—-1)q+0)
—(j-1)p+i —(0-1)p+u
(by the definition of o) (by the definition of o)

= | the number of all (u,v) € [p] x [q] suchthat (i—1)g+j<(u—1)g+v

(.

<= (i<u or (i=u and j<v))

(by @)

and (j—1)p+i>(v—-1)p+u

-

<= (j>vor (j=v and i>u))

(by (©))
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= (the number of all (u,v) € [p] x [g] such that (i <uor (i=wuandj<v))
and (j>vor (j=vandi> u)))
= (the number of all (u,v) € [p] x [q] such that (i <uor (i=wuandj<v))
and j > v)
( here, we have dismissed the possibility that (j =vand i > u), )
because this possibility is incompatible with
the condition (i <wuor (i=wuandj<v))
= (the number of all (u,v) € [p] x [q] such thati < u and j > v)
( here, we have dismissed the possibility that (i = u and j < v), )
because this possibility is incompatible with the condition j > v

= (the number of all u € [p] such thati < u)

- 7

:pfl
- (the number of all v € [g] such thatj > v)
—i1
=p-0)0-1.
In view of k = (i — 1) g + j, this rewrites as
bicyg+j (@) = (P =) (= 1), ®)

Now, forget that we fixed (i, j). We thus have proven (8) for each (i,j) € [p] x [g].
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Exercise 5| (d) yields
(@) = b1 () + 6o (@) + -+l (0)
=Y b(o)= Y i1y (0)
ke(n]

O
) oy @)

1

L1

q
i=1
here, we have substituted (i — 1) g + j for k in the sum,
since the map [p] x [q] — [n], (i,j) = (i—1)g+]

is a bijection

Zii(zﬂ—i)(j—l)z (i(P—i)) (i(1—1)>

i=1 j=1

~— ——
p—1 q—-1
=y k —Y k
k=0 k=0
(here, we have substituted k (here, we have substituted k
for p—i in the sum) for j—1 in the sum)
-1 -1
_ <ka> (&k) _(p=Dp a-Vg_pip-1) (-1
k=0 k=0 2 2 4
A/—/ E\H
(p=Dp (4-1)q
2 2
This solves Exercise Bl N

0.5. Permutations as composed transpositions

Recall a basic notation regarding permutations, which we shall now extend:

Definition 0.5. Let n € IN. Let i and j be two distinct elements of [n]. We let t; ;
be the permutation in S, which switches i with j while leaving all other elements
of [n] unchanged. Such a permutation is called a transposition.

Let us furthermore set t;; = id for each i € [n]. Thus, t;j is defined even when
i and j are not distinct.

Thus, we have defined a permutation ¢;; € S, whenever n € IN and whenever i
and j are two elements of [n]. This permutation has the following properties:

e It satisfies tij (i) =jand ti; (j) =1i.

e It leaves any element of [n] other than i and j unchanged. (In other words, it
satisfies t; ; (k) = k for each k € [n] \ {i,j}.)

e It is an involution, i.e., it satisfies t; ; o t; ; = id.
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Exercise 6. Let n € IN. Let 0 € §,,.
(@) Prove that there is a unique n-tuple (iy, iy, ..., i) € [1] X [2] X - - - X [n] such
that

0 =ty Otpi 0 Oty

(b) Consider this n-tuple (iy,ip,...,i,). Define the relation ~ and the ~-
equivalence classes Ej,Ej,...,E; as in Exercise 7 on homework set #7 (for
X = [n]). (Thus, m is the number of cycles in the cycle decomposition of ¢.)

Prove that m is the number of all k € [n] satisfying i, = k.

A detailed solution to Exercise[6] (a) can be found in [Grinbel6), solution to Exer-
cise 5.9]. Let us here give a brief sketch:

Solution to Exercise [6] (sketched). (a) The trick is to prove the following:
Observation 1: Let n € N. Let k € {0,1,...,n}. Let 0 € S, be such that
(0 (i) =iforeachie {k+1,k+2,...,n}). )

Then, there is a unique k-tuple (i1, iz, ...,i) € [1] x [2] x --- x [k] such
that o = tl,il ¢} t2,i2 o---0 tk,ik'

[Proof of Observation 1: This is proven by induction on k.

The induction base (the case k = 0) is a trivial exercise in understanding empty
listd} (In fact, for k = 0, the equality (9) shows that o (i) = i for each i € [n], and
thus 0 = id = (empty composition of permutations) = t;,, o ty; o---otg; for the
O-tuple (i1,1p,...,i0) = ().)

Induction step: Letk € {0,1,...,n} be positive. Assume (as the induction hypoth-
esis) that Observation 1 holds for k — 1 instead of k. We then must prove Obser-
vation 1 for k. So let o € S, be such that (9) holds. We must prove that there is a
unique k-tuple (i1, i2,...,i) € [1] X [2] x - -+ x [k] such that ¢ = t;; oty ;, 0+ oty .

Set ¢ = 01 (k). Thus, ¢ (g) =k and g € [K] Thus, k and g belong to the set
k].
The permutation f; ¢ is either a transposition (if k # g) or the identity map (if k =
¢)- In either case, it satisfies #; , o t; , = id and leaves all elements of [n] other than
k and g unchanged. Hence, the permutation tkg leaves eachi € {k+1,k+2,...,n}
unchanged (since i does not belong to the set [k|, and thus i equals neither k nor g).

Define T € S, by T = coty, (Notice that (tg) -1 = ttg) Then, from (9),
we can easily derive that 7 (i) = i for each i € {k+1,k+2,...,n} (because the
permutation # , leaves i unchanged). Combining this with the fact that T (k) = k

ISpecifically, you need to know that there is only one O-tuple (i, iy, ...,iy), namely the empty
0-tuple ().

2Proof. Assume the contrary. Thus, g ¢ [k], so that g € {k+1,k+2,...,n}. Therefore, (9) (applied
toi = g)yields o (g) = g. Buto (g) = k € [k]. This contradicts o (g) = g ¢ [k]. This contradiction
shows that our assumption was false, qed.
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(because T _ (k) =0 | tyy (k) | =0 (g) = k), we conclude that 7 (i) = i for each
—oof ——
=00 kg =

i€ {kk+1,...,n}. Hence, by the induction hypothesis, we can apply Observation
1to k—1 and 7 instead of k and 0. We conclude that there is a unique (k — 1)-tuple
(il, ip,.. 'rik—l) S [1] X [2] X+ X [k - 1] such that T = t1,i1 o tZ,iz 0--:0 tk—l,ik,l' We
can easily extend this (k — 1)-tuple to a k-tuple (i1, ip,...,1) € [1] X [2] x -+ X []
such that ¢ = ty; oty;, 0+ 0oty Pl Thus, there exists at least one k-tuple
(i1,i2,...,0k) € [1] x [2] X -+ x [k] such that o =t ; otp;, 0 Oty .

Recall that we must prove that there is a unique k-tuple (i1, ip,..., i) € [1] X
2] x --- x [k] such that o = t;; oty;, 0---0ty;. We have just proven that there
exists at least one such k-tuple. Hence, it only remains to show that there exists at
most one such k-tuple.

Let (Ltl, Us,..., l/lk) and (’01, Uy, .. .,’Uk) be two k-tuples (il, i, ... ,ik) S [1] X [2] X
--+ X [k] such that o = t;; oty;, 0---oty;. We shall prove that (uy,uz,...,ux) =
(v1,v2,...,vx). This will, of course, entail that there exists at most one such k-tuple;
thus, the induction step will be complete.

We know that (uy,up, ..., ux) is a k-tuple (i, ip, ..., i) € [1] % [2] x [k] such
that o = t;; oty;, 0---oty;. In other words, (u1,uy, ..., ux) € [1] x [2] x -+ x [k]
and o = ty,, otyy, 0---oty, . Notice that (uy,uz, ..., ux) € [1] x [2] x --- x [k]
shows that u; € [j] for each j € [k]. In other words, u; < j for each j € [k].
Thus, each j € [k — 1] satisfies t;,, (k) = k (because k equals neither j nor u; (since
up<j< k —1 < k)). In other words, the permutations t1,,,, {2y, - -, tk—1,u,_, l€ave
k unchanged. Now,

X
X

Q';'/ (uk) = (tl,l/ll © t2/u2 ©-+-0 tk/uk) (uk)

:tl,ul OtZ,uzO"'otk,uk

(tl,u1 Otpy,0---0 tkfl,uk_1> b, (k)
k
= (tl,u1 Otpy,0---0 tk—l,uk_1> (k) =k

3Proof. To extend the (k—1)-tuple (i1,ip,...,ix_1) € [1] x [2] x -+ x [k—1] to a k-tuple
(i,ip,...,0) € [1] x [2] x --- x [k], we need only to define 7. Let us define iy by iy = g.
This yields a well-defined k-tuple (i1,i,...,i) € [1] x [2] x --- X [k], because iy = g € [k]. It
remains to prove that this k-tuple satisfies o = t1; oty;, 0 -0ty .
We have T = g oty so that Toty o = 0oty g0y, = 0, so that
N——

=id

o= T o kg = <f1,i1 Otpj0---0 tkfl,ik,l) Otk = t1,i Otppy O Oty
=t1,i; otg,i, 0 Otk_q;
417020y Ag—1 =ty
(since g=iy)

This completes our proof.
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(since the permutations ty,,,t2u,,.--,tk—14, , leave k unchanged). Thus, u; =
o1 (k) = g. Similarly, v, = g.

Now,
O =11y, Otoy, 00ty = <t1,u1 otyy,0---0 tk—l,um) O ey
= <t1,u1 o t2,u2 ©--+0 tkfl,uk_1> o tk,g (since U = g) ’
so that
T= v Otf o = (tl,u1 ofyy,0---0 tk—l,uk71> OtggOtkg
g ———
:<t1,u1Ot2,u20"'otk71,uk_1>Otk,g =id

= t1,u1 o tZ,uz 0---0 tkfl,uk_l'

In other words, (u1,uy, ..., ux_1)isa (k — 1)-tuple (iy,12,...,0k—1) € [1] X [2] X -+ X
[k —1] such that T = t;; oty;, 0---oty_q; ,. Similarly, (v1,v2,...,0k_1) is such a
(k — 1)-tuple as well.

But recall that there is a unique (k — 1)-tuple (i1,ip,...,ik_1) € [1] X [2] X -+ X
[k —1] such that T = t;; oty;, 0---oty_q; ,. Thus, any two such (k — 1)-tuples
are identical. Hence, (u1,up,...,ux_1) and (v1,vs,...,0x_1) are identical (since
(uy,up,. .., ux_q)and (v1,0y,...,0¢_ 1) are two such (k — 1)-tuples). Combining this
with uy = v (which follows from uy = ¢ and v, = g), we obtain (u1,up, ..., ux) =
(v1,02,...,0;). As we have said, this completes the induction step. Thus, Observa-
tion 1 is proven.]

Now, let n € N and ¢ € S,. Then, {n+1,n+2,...,n} is the empty set.
In other words, there exists noi € {n+1,n+2,...,n}. Hence, the statement
(0 (i) =iforeachie {n+1,n+2,...,n})is vacuously true. Thus, Observation 1
(applied to k = n) shows that there is a unique n-tuple (i1,i,...,i,) € [1] X [2] X

- % [n] such that ¢ = t; 4, 0 tp;, 0 - - - o £, ;.. This solves Exercise [f] (a).

(b) If T € S, is any permutation, then z (7) shall denote the number of cycles in
the cycle decomposition of . Thus, m = z (¢) (since m is the number of cycles in
the cycle decomposition of ¢). Hence, it remains to prove that z (¢) is the number
of all k € [n] satisfying i} = k.

Let us first prove a basic fact:

Observation 2: Let T € S, and p € [n] be such that T (p) = p. Let g be an
element of [n] distinct from p. Then, z (Tot,4) =z (1) — 1.

[Example: For this example, let n = 9, and let T € Sg be the permutation whose
one-line notation is (4,6,1,3,5,2,9,8,7) (that is, which satisfies (7 (1),7(2),...,7(9)) =
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(4,6,1,3,5,2,9,8,7)). Then, the cycle decomposition of T looks as follows:

(®)

04-0-

This contains 5 cycles. Thus, z (T) = 5.
Now, let p = 5 and g = 3. (This clearly satisfies T (p) = p.) Then, Observation
2yields z (tTotp,) =z (1) —1 =5—1 = 4. And we can indeed confirm this: The
~——

=5
cycle decomposition of T oty ,; = T o t53 looks as follows:

0%

This contains 4 cycles. Thus, z (T o tp,q) = 4, exactly as Observation 2 foretold.

As this example shows, the cycle decomposition of T ot ; is actually “almost the
same as” that of 7; more precisely, all cycles of T appear in the cycle decomposition
of T oty 4, with the exception of two cycles (the cycles {5} and {3,1,4}), which get
merged into a single cycle in the cycle decomposition of T o t, ;. Visually speaking,
when we compose T with t,,, we “re-route” the arc from 0! (q) = 4togq = 3
through the vertex p = 5; therefore, the vertex p (which formed a 1-vertex cycle
in T, since T (p) = p) gets “caught up” in the cycle {3,1,4}, which causes the two
cycles to get merged. This behavior clearly generalizes; the proof below just makes
this more formal.]

[Proof of Observation 2: The cycle decomposition of T has a cycle containing the
element p alone (since 7 (p) = p). Let 3; be this cycle. Thus, 33 = {p}. Hence, 3
does not contain g (since g # p).

Furthermore, let 3, be the cycle in the cycle decomposition of T that contains the
element g. This cycle 3, is distinct from 3; (because 3; does not contain g). Thus, 3>
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does not contain p (since p is contained in the cycle 3;, which is distinct from 37).
In other words, p ¢ 3.

Let us analyze what happens to the cycle decomposition of T when we compose
T with t, 4 (thus obtaining T o t, ;). The only values of T that change when we com-
pose T with t, ; are the values at the numbers p and g (because t, 4 leaves all other
numbers unchanged). Hence, all cycles other than 3; and 3, in the cycle decompo-
sition of T remain unchanged in the cycle decomposition of T o t,, (because these
cycles contain neither p nor g). The only two cycles that can possibly change are 3;
and 3. We claim that these two cycles are merged into a single cycle in T ot .

Indeed, let us write the cycle 3, in the form 3 = {t%(q),t!(q),...,7™* 1 (9)},
where k is the smallest positive integer satisfying 7 () = g. (Indeed, 3 can be
written in this form, since 3, is the cycle of T that contains g.) Thus,

2={"@. 7@, @)= {00, ... F)]

(since T° (q) = g = T (9)).

Let 7y be the permutation Tot,, € S,,. Thus, each i € [k — 1] satisfies y (7' (7)) =
i+ (q) In other words, the permutation <y sends each of the elements
' (q9),72(q),...,7°(q) (apart from the last one) to the next one. Hence, the el-
ements ' (q),72(q),...,7°(g) lie on one and the same cycle in the cycle decom-
position of . Let us denote this cycle by 3. Thus, T (q) € 3 for each i € [K].
Applying thls to i = k, we conclude that T (9) € 3. Thus, g = T () € 5.

The cycle 3’ contains ! (), 2 (q),..., 7" (g). In other words, the cycle 3 contains
all elements of 3, (since 3, = {t!(q) ,Tz (q Lo, T ]).

Also, v (q) = (totyq) (q) =7 |tpe(q) | =7T(p) = p. Hence, p lies on the
—~— ——
=Tolpg =p
same cycle in the cycle decomposition of y as 4. In other words, p lies on the cycle
in the cycle decomposition of <y that contains gq. Since the latter cycle is 3’ (because
g € 3'), we thus conclude that p lies on 3. In other words, p € 3. In other words,
the cycle 3’ contains all elements of 37 (since 31 = {p}).

The cycle 3’ in the cycle decomposition of -y thus contains all elements of 3; and
all elements of 3. In view of v = T o t,,, this rewrites as follows: The cycle 3 in
the cycle decomposition of T o t, ; contains all elements of 31 and all elements of 3,.
Furthermore, this cycle 3’ cannot contain any other elements (because if it did, then

“Proof. Leti € [k—1]. Hence, T/ (q) # q (since k is the smallest positive integer satisfying
™ (q) = q). Also, T (q) # p (since T/ (9) € {TO (9), 7' (q),..., 71 (q)} = 3p but p ¢ 3,). Thus,

7! (g) equals neither p nor q. Hence, the transposition tp4 leaves 7' (q) unchanged. In other
words, tyq (7' (9)) =T (q)-

Now, \L (T (9)) = (totpq) (T'(g)) =T iﬂri (q)) =1 (7 (q)) =t (q), qed.

=Tot ;
" =7(g)
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it would contain elements from cycles in the cycle decomposition of T other than 3;
and 3,; but this would contradict the fact that all cycles other than 3; and 3, in the
cycle decomposition of T remain unchanged in the cycle decomposition of T ot} ;).
Hence, this cycle 3 contains all elements of 3; and all elements of 3, and no more
elements. Thus, the cycles 3; and 3, are merged into a single cycle in T ot} ;.

So we have seen that when we compose T with t, 4, the cycle decomposition does
not change except for the fact that the two cycles 3; and 3, get merged into a single
cycle. Thus, the total number of cycles in the cycle decomposition decreases by 1.
In other words, the total number of cycles in the cycle decomposition of T ot is 1
less than the total number of cycles in the cycle decomposition of 7. In other words,
z(Totyy) =z (1) — 1. This proves Observation 2.]

Next, we make the following claim: For each p € {0,1,...,n}, we have

2 (tiyotano- oty ) =n—p+|{ke [p] | ik =k}. (10

[Proof of (10): We shall prove by induction on p:
Induction base: We have

z |ty otz 0oty | =2 (id) =n

=id

(since the permutation id has 7 cycles in its cycle decomposition). Comparing this
with

n—0+|{kel0] | i

'

k}l=n—-0+ || =n,

- -0
(since [0]=2)

we obtain z (t1;, oty;, 0---otg;) = n—0+ [{k € [0] | i =k}|. In other words,
holds for p = 0. This completes the induction base.

Induction step: Let p € {0,1,...,n} be positive. Assume that holds for p — 1
instead of p. In other words, assume that

z(hiyobyor oty ) =n—(p—1)+[{kelp—1] | k=K. 1)

We must prove that holds for p.
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We have p € [n] (since p € {0,1,...,n} is positive). Also,

ke [p] | ik =k
—~—
={p}u[p-1]

={kef{ptulp-1] | ik=ki={kc{p} | ik=kjui{kelp—1] | ik =k}

-~

_Jiry, it =p;
a, ifi, #p

:{{p}' ifip:p;u{ke[p—l] | iy =k}. (12)

@, ifi, #p

We are in one of the following two cases:

Case 1: We have i), = p.

Case 2: We have i, # p.

Let us first consider Case 1. In this case, we have i, = p. Thus, tpi, = id. Also,

becomes
{kelpl [ =4k}

:{f{;}' i:i;gi”ke[v—ﬂ ik =kt ={prufkelp—1] | ik =k},

—{p}

(since ip=p)

so that
{kelpl | in=kt=HpiU{kelp—1] | ik =k}
=Hkelp—1 | =k} +1 (13)
(sincep ¢ {ke[p—1] | ix =k}).
Now,
tij oty 0oty = <f1,i1 ofyj, 00 tp—1,i,,,1> O tpi, =t 0tz 0 0tp1,
id
=i

Hence,

Z<t1,ilot2,izo”'otplip> :Z<t1,i1otZ,izo"'Otpfl,ip_l)
=n—(p—1)+{ke[p—1] [ ik =k} (by (1))
=n—p+l{kelp-1] | =k} +1

=[{kep] | ix=k}|
(by (3))

=n—p+|{kelp] | ik=k}.
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Thus, we have proven that holds for p in Case 1.
Let us now consider Case 2. In this case, we have i, # p. But i, € [p] (since
(i1,1,...,1n) € [1] X [2] X --- x [n]), so that i, < p. Thus, i, < p (since i, # p).
Also, becomes

kel | =k
={{”}’ Er P ke lp-1) | i=k)

o, ifi, #p
-2
(since ip#p)
={kelp-1] | ix=k}. (14)

Lett = tl,il ¢} tZ,iz 0---0 tP—llip—l‘ ThUS,

z(1) =z (tl,i1 0tz 0 Ofp—1,i,,,1> =n—(p-1)+|{kelp-1] | ix=k}
=n—p+1 ={ke[p] | ix=k}
(by (14))
=n—p+1+[{kelp] | i =k} (15)
But
t1,i1 o tZ,iz 0---0 tp,ip = (tl,il o t2,i2 0---0 tP*Ll'p_1> Otp,ip =TO tP/ip' (16)

N

-~

=T

We have 7(p) = p Hence, Observation 2 (applied to g = iy) yields
z (T o tp,i,,) =z (1) — 1. But from li we obtain

Z (tl,il @) tZ,iz O---0 tP,ip> =2z (TO tp,ip> =z (T) -1
=n—p+{kelp] | ik=k} (by (1))

Thus, we have proven that holds for p in Case 2.
We thus know that holds for p (because we have proven this in each of the
two Cases 1 and 2). This completes the induction step. Thus, is proven.]

>Proof. From (i1, ip,...,in) € [1] x [2] X -+ X [n], we conclude that i; € [j] for each j € [n].
Thus, for each j € [p—1], we have i; € [j], so that i; < j < p—1 < p. Therefore, for each
j € [p — 1], the permutation tji; leaves the number p unchanged (since p equals neither j nor i;
(because i; < j < p)). In other words, the permutations t1,,t2,,..., tp—l,i,,fl leave the number p

unchanged. Hence, (1?1,,'1 oty;, 0---0 tpfl,i,;fl) (p) =p. Inviewof T =ty ; oty; 0---0 tp—1i, 4/
this rewrites as 7 (p) = p.
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Now, apply to p = n. The result is

z (ty,i, 0 tajy 0 Oby) :Q\—,_@‘H{kG [n] | ix =k} =[{k€[n] | ik =k}.
=0

Inview of 0 =ty ; oty;, 0---0ty,; , this rewrites as z (¢) = |{k € [n] | ix = k}|. In
other words, z (¢) is the number of all k € [n] satisfying i; = k. This solves Exercise

6 (b). ]

0.6. Another partition identity
Recall the following:

Definition 0.6. Let n € Z. A partition of n means a finite list (i1,7p,...,i;) of
positive integers satisfying

1 >ip> - > and i1 +ip+ - +ip =n.
Exercise 7. Let n € IN and p € IN. Let a be the number of all partitions
(i1,1p,...,ik) of n satisfying k > p and iy = iy = --- = ip. Let b be the num-

ber of all nonempty partitions (iy, i, ..., i) of n such that all of iy, iy,..., i are
> p. Prove that a = b.

Example 0.7. Let n = 9 and p = 3. Then, the partitions counted by a in Exercise
[/l are

(3,3,3), (2,2,2,2,1), (2,2,2,1,1,1), (1,1,1,1,1,1,1,1,1)..
Meanwhile, the partitions counted by b in Exercise [7] are

9), (6,3), (5,4), (3,3,3).

Thus, a = 4 and b = 4 in this case.

A full solution of Exercise [7| can be found in Angela Chen’s homework. (This is
also the solution I had in mind.)
Further reading on partitions includes:

e Herbert S. Wilf, Lectures on Integer Partitions, 2009.
https://www.math.upenn.edu/ "wilf/PIMS/PIMSLectures.pdf

o George E. Andrews, Kimmo Eriksson, Integer Partitions, Cambridge Univer-
sity Press 2004.

e Igor Pak, Partition bijections, a survey, Ramanujan Journal, vol. 12 (2006), pp.
5-75.
http://www.math.ucla.edu/ pak/papers/psurvey.pdf



http://www.cip.ifi.lmu.de/~grinberg/t/17f/hw8os-chen.pdf
https://www.math.upenn.edu/~wilf/PIMS/PIMSLectures.pdf
http://www.math.ucla.edu/~pak/papers/psurvey.pdf

Math 4990 Fall 2017 (Darij Grinberg): homework set 8 page 24

The Wikipedia articles on partitions, the pentagonal number theorem and Ra-
manujan’s congruences are also useful. That said, none of these is necessary for
the above exercise.
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