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0.1. Reminders on binomial coefficients

Let us first recall some facts about binomial coefficients:

Proposition 0.1. For every x ∈ Q and y ∈ Q and n ∈N, we have(
x + y

n

)
=

n

∑
k=0

(
x
k

)(
y

n− k

)
.

Proposition 0.2. Let a and b be two integers such that a ≥ b ≥ 0. Then,(
a
b

)
=

a!
b! (a− b)!

.

Proposition 0.3. We have (
n
k

)
= (−1)k

(
k− n− 1

k

)
for any n ∈ Q and k ∈N.

Proposition 0.4. We have k
(

n
k

)
= n

(
n− 1
k− 1

)
for any n ∈ Q and any positive

integer k.

Proposition 0.5. We have (
m
n

)
= 0

for every m ∈N and n ∈N satisfying m < n.
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Proposition 0.6. If n ∈ Q and if a and b are two integers such that a ≥ b ≥ 0,
then (

n
a

)(
a
b

)
=

(
n
b

)(
n− b
a− b

)
.

Proposition 0.7. We have
(

m
m

)
= 1 for every m ∈N.

Proposition 0.8. We have (
m
n

)
=

(
m

m− n

)
(1)

for any m ∈N and n ∈N satisfying m ≥ n.

Proposition 0.1 is the Vandermonde convolution identity, and is proven in multiple
places1. Proposition 0.2 was proven in the solutions to homework set 1. Proposition
0.3 is Exercise 2 (a) in homework set 1. Proposition 0.4 is Exercise 2 (b) in homework
set 1. Proposition 0.5 is fundamental and easy to prove. Proposition 0.6 is Exercise
2 (c) in homework set 1. Proposition 0.7 and Proposition 0.8 are easy to check.

0.2. Idempotent maps

If S is a set, then a map f : S → S is said to be idempotent if and only if f ◦ f = f .
For instance, the map [3]→ [3] sending 1, 2, 3 to 1, 3, 3 (respectively) is idempotent.

Exercise 1. Let n ∈N.
(a) Prove that a map f : [n]→ [n] is idempotent if and only if every y ∈ f ([n])

satisfies f (y) = y.

(b) Prove that the number of idempotent maps [n]→ [n] is
n
∑

k=0

(
n
k

)
kn−k.

(c) Prove that the number of idempotent maps [n] → [n] has the form an + 1
for some a ∈N. (Of course, a will depend on n.)

[Hint: When is
(

n
k

)
kn−k divisible by n ?]

Solution to Exercise 1 (sketched). (a) Let f : [n] → [n] be a map. We must prove that
f is idempotent if and only if every y ∈ f ([n]) satisfies f (y) = y.
=⇒: Assume that f is idempotent. We must prove that every y ∈ f ([n]) satisfies

f (y) = y.
We have assumed that f is idempotent. In other words, f ◦ f = f . Now, let

y ∈ f ([n]). Thus, there exists some x ∈ [n] satisfying y = f (x). Consider this

1For an elementary proof, see, e.g., [Grinbe16, first proof of Theorem 3.29].

http://www.cip.ifi.lmu.de/~grinberg/t/17f/hw1s.pdf
http://www.cip.ifi.lmu.de/~grinberg/t/17f/hw1s.pdf
http://www.cip.ifi.lmu.de/~grinberg/t/17f/hw1s.pdf
http://www.cip.ifi.lmu.de/~grinberg/t/17f/hw1s.pdf
http://www.cip.ifi.lmu.de/~grinberg/t/17f/hw1s.pdf
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x. We have f

 y︸︷︷︸
= f (x)

 = f ( f (x)) = ( f ◦ f )︸ ︷︷ ︸
= f

(x) = f (x) = y. Now, forget that we

fixed y. We thus have shown that every y ∈ f ([n]) satisfies f (y) = y. This proves
the “=⇒” direction of Exercise 1 (a).
⇐=: Assume that every y ∈ f ([n]) satisfies f (y) = y. We must prove that f is

idempotent.
Let x ∈ [n]. Thus, f (x) ∈ f ([n]). But we assumed that every y ∈ f ([n])

satisfies f (y) = y. Applying this to y = f (x), we obtain f ( f (x)) = f (x) (since
f (x) ∈ f ([n])). Hence, ( f ◦ f ) (x) = f ( f (x)) = f (x). Now, forget that we fixed
x. We thus have proven that ( f ◦ f ) (x) = f (x) for each x ∈ [n]. In other words,
f ◦ f = f . In other words, f is idempotent (by the definition of “idempotent”). This
proves the “⇐=” direction of Exercise 1 (a).

Hence, Exercise 1 (a) is solved (since we have proven both of its directions).
(b) The following algorithm constructs every idempotent map f : [n]→ [n]:

• First, we choose an integer k ∈ {0, 1, . . . , n}. This integer k shall be the size
| f ([n])| of the image of f . (Of course, this size has to be in {0, 1, . . . , n},
because f ([n]) must be a subset of [n].)

• Next, we choose a k-element subset S of [n]. This subset S shall be the image

f ([n]) of f . There are
(

n
k

)
choices for S (since the number of k-element

subsets of [n] is
(

n
k

)
).

• At this point, the values of f on all elements of S are already uniquely de-
termined: Indeed, Exercise 1 (a) shows that every y ∈ f ([n]) has to satisfy
f (y) = y for f to be idempotent; in other words, every y ∈ S has to satisfy
f (y) = y (since we want f ([n]) to be S).

• Finally, we choose the values of f on all remaining elements of [n] (that is,
on all elements of [n] \ S). These values must belong to S (because we want
f ([n]) to be S), but are otherwise unconstrained2. Thus, there are |S||[n]\S|
choices at this step. In other words, there are kn−k choices at this step (since
|S| = k and |[n] \ S| = n− |S|︸︷︷︸

=k

= n− k).

It is easy to check that this algorithm really constructs idempotent maps f : [n]→
[n], and constructs each of them exactly once. Thus, the number of idempotent

2At this step, we do not need to ensure that every element of S is taken as a value of f , because
this has already been ensured (indeed, every y ∈ S satisfies f (y) = y, so that y is already a value
of f ).
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maps f : [n]→ [n] is

∑
k∈{0,1,...,n}

(
n
k

)
kn−k

(since we get to choose k ∈ {0, 1, . . . , n} in the first step of the algorithm, then we

have
(

n
k

)
choices in the second step, then a unique choice in the third step, and

finally kn−k choices in the fourth step). Hence, the number of idempotent maps
f : [n]→ [n] is

∑
k∈{0,1,...,n}

(
n
k

)
kn−k =

n

∑
k=0

(
n
k

)
kn−k.

This solves Exercise 1 (b).
(c) If n = 0, then the number of idempotent maps [n] → [n] is 1, which clearly

has the form an + 1 for some a ∈ N (namely, for a = 0). Hence, for the rest of this
solution, we WLOG assume that we don’t have n = 0. Thus, n > 0, so that n ≥ 1.

For each k ∈ {1, 2, . . . , n− 1}, the number
(

n− 1
k− 1

)
kn−k−1 is a nonnegative in-

teger3. Hence,
n−1
∑

k=1

(
n− 1
k− 1

)
kn−k−1 is a sum of nonnegative integers, thus itself a

nonnegative integer. In other words,

n−1

∑
k=1

(
n− 1
k− 1

)
kn−k−1 ∈N.

3Proof. Let k ∈ {1, 2, . . . , n− 1}. Thus, 1 ≤ k ≤ n − 1. From 1 ≤ k, we obtain k − 1 ∈ N.

Also, n − 1 ∈ N (since n ≥ 1). Hence,
(

n− 1
k− 1

)
is the number of (k− 1)-element subsets of

the set [n− 1] (by the combinatorial interpretation of binomial coefficients). Therefore,
(

n− 1
k− 1

)
is a nonnegative integer. Also, n − k︸︷︷︸

≤n−1

−1 ≥ n − (n− 1) − 1 = 0, so that n − k − 1 ∈ N.

Thus, kn−k−1 ∈ N (since k ∈ {1, 2, . . . , n− 1} ⊆ N). In other words, kn−k−1 is a nonnegative

integer. Hence, the number
(

n− 1
k− 1

)
kn−k−1 is a product of two nonnegative integers, hence itself

a nonnegative integer. Qed.
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Exercise 1 (b) shows that the number of idempotent maps [n]→ [n] is

n

∑
k=0

(
n
k

)
kn−k =

n−1

∑
k=0

(
n
k

)
kn−k︸︷︷︸

=kkn−k−1

(since n−k>0
(since k≤n−1<n))

+

(
n
n

)
︸︷︷︸
=1

(by Proposition 0.7,
applied to m=n)

nn−n︸ ︷︷ ︸
=n0=1

=
n−1

∑
k=0

(
n
k

)
kkn−k−1

︸ ︷︷ ︸
=

(
n
0

)
0·0n−0−1+

n−1
∑

k=1

(
n
k

)
kkn−k−1

(since n≥1)

+1

=

(
n
0

)
0 · 0n−0−1︸ ︷︷ ︸
=0

+
n−1

∑
k=1

(
n
k

)
k︸ ︷︷ ︸

=k

(
n
k

)
=n

(
n− 1
k− 1

)
(by Proposition 0.4)

kn−k−1 + 1

=
n−1

∑
k=1

n
(

n− 1
k− 1

)
kn−k−1

︸ ︷︷ ︸
=

n−1
∑

k=1

(
n− 1
k− 1

)
kn−k−1

n

+1 =

(
n−1

∑
k=1

(
n− 1
k− 1

)
kn−k−1

)
n + 1.

Hence, this number has the form an+ 1 for some a ∈N (namely, for a =
n−1
∑

k=1

(
n− 1
k− 1

)
kn−k−1).

This solves Exercise 1 (c).

0.3. Fixed points

Exercise 2. Let S be a finite set. For any map f : S → S, we let Fix f denote the
set of all fixed points of f . (That is, Fix f = {s ∈ S | f (s) = s}.)

(a) Prove that |Fix ( f ◦ g)| = |Fix (g ◦ f )| for any two maps f : S → S and
g : S→ S.

(b) Is it true that every three maps f , g, h from S to S satisfy |Fix ( f ◦ g ◦ h)| =
|Fix (g ◦ f ◦ h)| ?

[Hint: For (a), find a bijection.]

Solution to Exercise 2. (a) Let f : S → S and g : S → S be two maps. Then, g (x) ∈
Fix (g ◦ f ) for each x ∈ Fix ( f ◦ g) 4. The same argument (applied to g and f
instead of f and g) shows that f (x) ∈ Fix ( f ◦ g) for each x ∈ Fix (g ◦ f ).

4Proof. Let x ∈ Fix ( f ◦ g). We must show that g (x) ∈ Fix (g ◦ f ).
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Let γ be the map

Fix ( f ◦ g)→ Fix (g ◦ f ) , x 7→ g (x) .

(This is well-defined, because g (x) ∈ Fix (g ◦ f ) for each x ∈ Fix ( f ◦ g).)
Let ϕ be the map

Fix (g ◦ f )→ Fix ( f ◦ g) , x 7→ f (x) .

(This is well-defined, because f (x) ∈ Fix ( f ◦ g) for each x ∈ Fix (g ◦ f ).)
We have ϕ ◦ γ = id 5. The same argument (applied to g, f , γ and ϕ instead of

f , g, ϕ and γ) shows that γ ◦ ϕ = id.
The maps ϕ and γ are mutually inverse (since ϕ ◦ γ = id and γ ◦ ϕ = id), and

thus bijections. Hence, we have found a bijection Fix ( f ◦ g) → Fix (g ◦ f ) (namely,
γ). Hence, |Fix ( f ◦ g)| = |Fix (g ◦ f )|. This solves Exercise 2 (a).

(b) It is false. Here is one of many possible counterexamples:
Let S be the 3-element set [3] = {1, 2, 3}. Let s1 be the permutation of [3] that

switches 1 and 2 while leaving 3 unchanged. Let s2 be the permutation of [3] that
switches 2 and 3 while leaving 1 unchanged. Then, s1 ◦ s1 = id and s2 ◦ s2 = id.

Now, set f = s1, g = s2 and h = s1 ◦ s2. Then, the map f ◦ g ◦ h = s1 ◦ s2 ◦ s1 ◦ s2
has no fixed points at all (check this!), so that |Fix ( f ◦ g ◦ h)| = 0. But

g ◦ f ◦ h = s2 ◦ s1 ◦ s1︸ ︷︷ ︸
=id

◦s2 = s2 ◦ s2 = id,

and thus |Fix (g ◦ f ◦ h)| = |Fix (id)| = |S| = 3. Hence, |Fix ( f ◦ g ◦ h)| 6= |Fix (g ◦ f ◦ h)|.
This solves Exercise 2 (b).

We know that x ∈ Fix ( f ◦ g). In other words, x is a fixed point of f ◦ g (since Fix ( f ◦ g) is
defined as the set of all fixed points of f ◦ g). In other words, ( f ◦ g) (x) = x. Thus, f (g (x)) =
( f ◦ g) (x) = x. Hence,

(g ◦ f ) (g (x)) = g

 f (g (x))︸ ︷︷ ︸
=x

 = g (x) .

In other words, g (x) is a fixed point of g ◦ f . In other words, g (x) ∈ Fix (g ◦ f ) (since Fix (g ◦ f )
is defined as the set of all fixed points of g ◦ f ). This completes our proof.

5Proof. Let x ∈ Fix ( f ◦ g). Thus, γ (x) = g (x) (by the definition of γ). But γ (x) ∈ Fix (g ◦ f ), so
that ϕ (γ (x)) = f (γ (x)) (by the definition of ϕ).

We have x ∈ Fix ( f ◦ g). In other words, x is a fixed point of f ◦ g (since Fix ( f ◦ g) is defined
as the set of all fixed points of f ◦ g). In other words, ( f ◦ g) (x) = x. Now,

(ϕ ◦ γ) (x) = ϕ (γ (x)) = f

γ (x)︸ ︷︷ ︸
=g(x)

 = f (g (x)) = ( f ◦ g) (x) = x = id (x) .

Now, forget that we fixed x. We thus have proven that (ϕ ◦ γ) (x) = id (x) for each x ∈
Fix ( f ◦ g). In other words, ϕ ◦ γ = id.
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Remark 0.9. Exercise 2 (a) can be slightly generalized:

Proposition 0.10. Let S and T be two finite sets. Then, |Fix ( f ◦ g)| =
|Fix (g ◦ f )| for any two maps f : S→ T and g : T → S.

Setting T = S in Proposition 0.10, we recover Exercise 2 (a). The proof of
Proposition 0.10 is analogous to the above solution of Exercise 2 (a).

Remark 0.11. Exercise 2 (and Proposition 0.10) might remind you of something
you have seen in linear algebra. Namely, if A is an n × m-matrix and B is an
m× n-matrix (so that both products AB and BA are well-defined), then

Tr (AB) = Tr (BA) , (2)

but it is not true that any three n × n-matrices A, B, C satisfy Tr (ABC) =
Tr (BAC).

This is more than just a similarity. You can actually prove Proposition 0.10
using (2). Here is an outline of this proof: To any map w : [p] → [q] (where p
and q are two nonnegative integers), we assign a q× p-matrix Mw whose (i, j)-th
entry is [i = w (j)] (where we are using the Iverson bracket notation). In other
words, Mw is the matrix whose j-th column has a 1 in its w (j)-th row and 0’s
everywhere else. If p = q (so that w is a map from the set [p] to itself), then this
matrix Mw is a square matrix with trace

Tr (Mw) = |Fix w| (3)

(check this!). Now, let f : S → T and g : T → S be two maps. WLOG assume
that S = [n] and T = [m] for two nonnegative integers n and m (otherwise,
“relabel” the elements of S and T). Then, it is easy to see that M f ◦g = M f Mg and
Mg◦ f = MgM f . Meanwhile, (3) yields Tr

(
M f ◦g

)
= |Fix ( f ◦ g)| and Tr

(
Mg◦ f

)
=

|Fix (g ◦ f )|. Hence,

|Fix ( f ◦ g)| = Tr

 M f ◦g︸ ︷︷ ︸
=M f Mg

 = Tr
(

M f Mg
)
= Tr

MgM f︸ ︷︷ ︸
=Mg◦ f

 (by (2))

= Tr
(

Mg◦ f
)
= |Fix (g ◦ f )| .

So we have again proved Proposition 0.10.

0.4. A binomial coefficient in a denominator
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Exercise 3. Let n and a be two integers with n ≥ a ≥ 1. Prove that

n

∑
k=a

(−1)k

k

(
n− a
k− a

)
=

(−1)a

a
(

n
a

) .

Exercise 3 is an identity that tends to creep up in various seemingly(?) unrelated
situations in mathematics. I have first encountered it in [Schmit04, proof of Theo-
rem 9.5] (where it appears with an incorrect power of −1 on the right hand side).
It also has recently appeared on math.stackexchange ([dilemi17], with a, n− a and
k− a renamed as p, n and k), where it has been proven in three different ways: once
using the beta function, once using residues, and once (by myself in the comments)
using finite differences. Let me here give a different, elementary proof.6

We begin with the following identities:

Proposition 0.12. Let i ∈ Z, n ∈ Z and j ∈N. Then:
(a) We have

j

∑
k=0

(−1)k
(

n
j− k

)(
k + i− 1

k

)
=

(
n− i

j

)
.

(b) If i is positive, then

j

∑
k=0

(−1)k

k + i

(
n

j− k

)(
k + i

i

)
=

1
i

(
n− i

j

)
.

Proof of Proposition 0.12. (a) Proposition 0.1 (applied to −i, n and j instead of x, y

6This proof also appears in [Grinbe16, solution to Exercise 3.16].
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and n) yields(
(−i) + n

j

)
=

j

∑
k=0

(
−i
k

)
︸ ︷︷ ︸

=(−1)k

(
k− (−i)− 1

k

)
(by Proposition 0.3,

applied to −i instead of n)

(
n

j− k

)

=
j

∑
k=0

(−1)k
(

k− (−i)− 1
k

)
︸ ︷︷ ︸
=

(
k + i− 1

k

)
(since k−(−i)−1=k+i−1)

(
n

j− k

)

=
j

∑
k=0

(−1)k
(

k + i− 1
k

)(
n

j− k

)
=

j

∑
k=0

(−1)k
(

n
j− k

)(
k + i− 1

k

)
.

Thus,
j

∑
k=0

(−1)k
(

n
j− k

)(
k + i− 1

k

)
=

(
(−i) + n

j

)
=

(
n− i

j

)
.

This proves Proposition 0.12 (a).
(b) Assume that i is positive. Let k ∈ N. Then, i − 1 ∈ N (since i is a positive

integer). Thus, i− 1 ≥ 0. Also, k︸︷︷︸
≥0

+i− 1 ≥ i− 1. Hence, Proposition 0.8 (applied

to k + i− 1 and i− 1 instead of m and n) yields(
k + i− 1

i− 1

)
=

(
k + i− 1

(k + i− 1)− (i− 1)

)
=

(
k + i− 1

k

)
(since (k + i− 1)− (i− 1) = k).

Furthermore, Proposition 0.4 (applied to k + i and i instead of n and k) yields

i
(

k + i
i

)
= (k + i)

(
k + i− 1

i− 1

)
︸ ︷︷ ︸
=

(
k + i− 1

k

) = (k + i)
(

k + i− 1
k

)
.

Hence, (
k + i

i

)
=

1
i
(k + i)

(
k + i− 1

k

)
.
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Thus,

(−1)k

k + i

(
n

j− k

) (
k + i

i

)
︸ ︷︷ ︸

=
1
i
(k+i)

(
k + i− 1

k

)
=

(−1)k

k + i

(
n

j− k

)
· 1

i
(k + i)

(
k + i− 1

k

)
=

1
i
(−1)k

(
n

j− k

)(
k + i− 1

k

)
. (4)

Now, forget that we fixed k. We thus have proven (4) for each k ∈N. Now,

j

∑
k=0

(−1)k

k + i

(
n

j− k

)(
k + i

i

)
︸ ︷︷ ︸

=
1
i
(−1)k

(
n

j− k

)(
k + i− 1

k

)
(by (4))

=
j

∑
k=0

1
i
(−1)k

(
n

j− k

)(
k + i− 1

k

)

=
1
i

j

∑
k=0

(−1)k
(

n
j− k

)(
k + i− 1

k

)
︸ ︷︷ ︸

=

(
n− i

j

)
(by Proposition 0.12 (a))

=
1
i

(
n− i

j

)
.

This proves Proposition 0.12 (b).

Let us now solve the actual exercise:

Solution to Exercise 3. From n ≥ a, we obtain n − a ∈ N. Also, n ≥ a ≥ 1 ≥ 0,

and therefore Proposition 0.2 (applied to n and a instead of a and b) yields
(

n
a

)
=

n!
a! (n− a)!

6= 0 (since n! 6= 0).

Any k ∈ {a, a + 1, . . . , n} satisfies(
n
a

)(
n− a
k− a

)
=

(
n

n− k

)(
k
a

)
(5)



Math 4990 Fall 2017 (Darij Grinberg): homework set 6 page 11

7. We have(
n
a

) n

∑
k=a

(−1)k

k

(
n− a
k− a

)
=

n

∑
k=a

(−1)k

k

(
n
a

)(
n− a
k− a

)
︸ ︷︷ ︸
=

(
n

n− k

)(
k
a

)
(by (5))

=
n

∑
k=a

(−1)k

k

(
n

n− k

)(
k
a

)
=

n−a

∑
k=0

(−1)k+a

k + a︸ ︷︷ ︸
=
(−1)k (−1)a

k + a
(since (−1)k+a=(−1)k(−1)a)

(
n

n− (k + a)

)
︸ ︷︷ ︸
=

(
n

(n− a)− k

)
(since n−(k+a)=(n−a)−k)

(
k + a

a

)

(here, we have substituted k + a for k in the sum)

=
n−a

∑
k=0

(−1)k (−1)a

k + a

(
n

(n− a)− k

)(
k + a

a

)
= (−1)a

n−a

∑
k=0

(−1)k

k + a

(
n

(n− a)− k

)(
k + a

a

)
︸ ︷︷ ︸

=
1
a

(
n− a
n− a

)
(by Proposition 0.12 (b),

applied to j=n−a and i=a)

= (−1)a 1
a

(
n− a
n− a

)
︸ ︷︷ ︸

=1
(by Proposition 0.7,
applied to m=n−a)

= (−1)a 1
a

.

7Proof of (5): Let k ∈ {a, a + 1, . . . , n}. Thus, a ≤ k ≤ n, so that k ≥ a ≥ 1 ≥ 0, so that k ∈ N.

Hence, Proposition 0.8 (applied to n and k instead of m and n) yields
(

n
k

)
=

(
n

n− k

)
.

But Proposition 0.6 (applied to k and a instead of a and b) shows that(
n
k

)(
k
a

)
=

(
n
a

)(
n− a
k− a

)
.

Hence, (
n
a

)(
n− a
k− a

)
=

(
n
k

)
︸︷︷︸

=

(
n

n− k

)
(

k
a

)
=

(
n

n− k

)(
k
a

)
.

This proves (5).
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We can divide both sides of this equality by
(

n
a

)
(since

(
n
a

)
6= 0). Thus, we find

n

∑
k=a

(−1)k

k

(
n− a
k− a

)
= (−1)a 1

a
/
(

n
a

)
=

(−1)a

a
(

n
a

) .

This solves Exercise 3.

0.5. Derangements with at most 1 descent

Exercise 4. Let n ∈N. How many derangements σ of [n] have at most 1 descent?

(See homework set #5 for the definitions of descents and of derangements.)
Recall that for any n ∈N, we let Sn denote the set of all permutations of [n].
The main work of the solution to Exercise 4 is done by the following fact:

Proposition 0.13. Let n ∈N. Let i ∈ [n− 1]. Then,

(the number of derangements of [n] whose only descent is i)

=

(
n− 2
i− 1

)
.

Proposition 0.13 is a result by Gessel and Reutenauer [GesReu93, Theorem 9.5],
which they obtained using the theory of quasisymmetric functions. We shall in-
stead prove it by elementary combinatorics.

To simplify its proof, let us first verify a lemma:

Lemma 0.14. Let n ∈ N. Let i ∈ [n− 1]. Let σ ∈ Sn be a permutation satisfying
σ (1) < σ (2) < · · · < σ (i) and σ (i + 1) < σ (i + 2) < · · · < σ (n) and σ (1) 6= 1
and σ (n) 6= n. Then, σ is a derangement of [n] whose only descent is i.

Proof of Lemma 0.14. Let k be a fixed point of σ. We shall derive a contradiction
(from which we will, of course, conclude that σ has no fixed points).

We have σ (k) = k (since k is a fixed point of σ).
Assume first that k ≤ i. We have σ (1) < σ (2) < · · · < σ (i), thus σ (1) < σ (2) <
· · · < σ (k) (since k ≤ i). Thus, the k integers σ (1) , σ (2) , . . . , σ (k) are distinct.

Also, σ (1) 6= 1, so that σ (1) > 1, so that σ (1) ≥ 2. Hence,

2 ≤ σ (1) < σ (2) < · · · < σ (k) = k.

Hence, the k integers σ (1) , σ (2) , . . . , σ (k) all lie between 2 and k; that is, they lie
in the set {2, 3, . . . , k}. Since this set {2, 3, . . . , k} has only k− 1 elements, this shows
(by the pigeonhole principle) that at least two of the k integers σ (1) , σ (2) , . . . , σ (k)

http://www.cip.ifi.lmu.de/~grinberg/t/17f/hw5os.pdf
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must be equal. But this contradicts the fact that the k integers σ (1) , σ (2) , . . . , σ (k)
are distinct.

This contradiction shows that our assumption (that k ≤ i) was false. Hence, we
don’t have k ≤ i. In other words, we have k > i. Hence, k ≥ i + 1.

We have σ (i + 1) < σ (i + 2) < · · · < σ (n), thus σ (k) < σ (k + 1) < · · · < σ (n)
(since k ≥ i + 1). Thus, the n− k + 1 integers σ (k) , σ (k + 1) , . . . , σ (n) are distinct.

But σ (n) 6= n, so that σ (n) < n, so that σ (n) ≤ n− 1. From σ (k) = k, we obtain

k = σ (k) < σ (k + 1) < · · · < σ (n) ≤ n− 1.

Hence, the n− k + 1 integers σ (k) , σ (k + 1) , . . . , σ (n) all lie between k and n− 1;
that is, they lie in the set {k, k + 1, . . . , n− 1}. Since this set {k, k + 1, . . . , n− 1} has
only n− k elements, this shows (by the pigeonhole principle) that at least two of
the n− k + 1 integers σ (k) , σ (k + 1) , . . . , σ (n) must be equal. But this contradicts
the fact that the n− k + 1 integers σ (k) , σ (k + 1) , . . . , σ (n) are distinct.

Now, forget that we fixed k. We thus have derived a contradiction for any fixed
point k of σ. Hence, there exists no fixed point k of σ. In other words, the permu-
tation σ has no fixed points. In other words, σ is a derangement.

Next, we shall show that the only descent of σ is i.
The map σ is a permutation, thus injective. Hence, σ (i) 6= σ (i + 1).
Assume (for the sake of contradiction) that σ (i) ≤ σ (i + 1). Hence, σ (i) <

σ (i + 1) (since σ (i) 6= σ (i + 1)). Now,

σ (1) < σ (2) < · · · < σ (i) < σ (i + 1) < σ (i + 2) < · · · < σ (n) .

In other words, σ (1) < σ (2) < · · · < σ (n). Hence, the numbers σ (1) , σ (2) , . . . , σ (n)
are precisely the elements of [n] written down in increasing order (since σ is a per-
mutation). In other words, σ (k) = k for each k ∈ [n]. Applying this to k = 1, we
find σ (1) = 1. This contradicts σ (1) 6= 1.

This contradiction shows that our assumption (that σ (i) ≤ σ (i + 1)) was false.
Thus, we have σ (i) > σ (i + 1). In other words, i is a descent of σ. Moreover,
σ cannot have any other descents than i (since σ (1) < σ (2) < · · · < σ (i) and
σ (i + 1) < σ (i + 2) < · · · < σ (n)); thus, i is the only descent of σ. Hence, σ is a
derangement of [n] whose only descent is i. This proves Lemma 0.14.

Proof of Proposition 0.13. From i ∈ [n− 1], we obtain 1 ≤ i ≤ n− 1, so that n− 1 ≥ 1.
Hence, n ≥ 2.

Let us first analyze how a derangement of [n] whose only descent is i looks like.
Let σ be a derangement of [n] whose only descent is i. Thus,

σ (1) < σ (2) < · · · < σ (i) (6)

and
σ (i + 1) < σ (i + 2) < · · · < σ (n) (7)

but σ (i) > σ (i + 1).
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Since σ is a derangement, we know that σ has no fixed points. Hence, in par-
ticular, 1 cannot be a fixed point of σ. Thus, σ (1) 6= 1. Also, (6) shows that the
numbers σ (2) , σ (3) , . . . , σ (i) are greater than σ (1), and therefore greater than
1 (since σ (1) ≥ 1); thus, they are distinct from 1. Hence, all the i numbers
σ (1) , σ (2) , . . . , σ (i) are distinct from 1.

Furthermore, n cannot be a fixed point of σ (since σ has no fixed points). Hence,
σ (n) 6= n. Also, (7) shows that the numbers σ (i + 1) , σ (i + 2) , . . . , σ (n− 1) are
smaller than σ (n), and thus smaller than n (since σ (n) ≤ n); thus, they are distinct
from n. Hence, all the n− i numbers σ (i + 1) , σ (i + 2) , . . . , σ (n) are distinct from
n. Therefore, σ−1 (n) /∈ {i + 1, i + 2, . . . , n}. Thus,

σ−1 (n) ∈ [n] \ {i + 1, i + 2, . . . , n} = {1, 2, . . . , i} .

In other words, n = σ (j) for some j ∈ {1, 2, . . . , i}. In other words, one of the
numbers σ (1) , σ (2) , . . . , σ (i) is n.

So we know that all the i numbers σ (1) , σ (2) , . . . , σ (i) are distinct from 1, but
one of these numbers is n. Thus, {σ (1) , σ (2) , . . . , σ (i)} is a subset of {2, 3, . . . , n}
that contains n. This subset is clearly an i-element subset (since σ (1) , σ (2) , . . . , σ (i)
are distinct).

Now, forget that we fixed σ. We thus have proven that if σ is a derangement
of [n] whose only descent is i, then {σ (1) , σ (2) , . . . , σ (i)} is an i-element sub-
set of {2, 3, . . . , n} that contains n. Furthermore, if we know this subset, then
we can uniquely reconstruct the whole permutation σ: Indeed, its first i values
σ (1) , σ (2) , . . . , σ (i) are simply the elements of this subset written in increasing or-
der (because of (6)), whereas the remaining n− i values σ (i + 1) , σ (i + 2) , . . . , σ (n)
are the remaining n− i elements of [n] written in increasing order (because of (7)).

Thus, the following algorithm constructs every possible derangement σ of [n]
whose only descent is i:

• First, choose an i-element subset S of {2, 3, . . . , n} that contains n to become

the set {σ (1) , σ (2) , . . . , σ (i)}. There are
(

n− 2
i− 1

)
choices here8.

• Then, the values of σ (1) , σ (2) , . . . , σ (i) are uniquely determined (indeed,
they have to be the i elements of S in increasing order).

• Furthermore, the values of σ (i + 1) , σ (i + 2) , . . . , σ (n) are also uniquely de-
termined (indeed, they have to be the n− i elements of [n] \ S in increasing
order).

8Here, we are using the fact that the number of i-element subsets S of {2, 3, . . . , n} that contain n is(
n− 2
i− 1

)
. This is easy to prove (in fact, choosing such a subset means choosing its i− 1 elements

other than n; and these i− 1 elements are chosen from the (n− 2)-element set {2, 3, . . . , n− 1}).
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Furthermore, every permutation σ constructed by this algorithm is actually a
derangement σ of [n] whose only descent is i 9. Hence, the number of derange-
ments σ of [n] whose only descent is i equals the number of ways to perform the

above algorithm. But the latter number is clearly
(

n− 2
i− 1

)
(since there are

(
n− 2
i− 1

)
choices in the first step, and the next two steps are uniquely determined). Thus,

the number of derangements σ of [n] whose only descent is i equals
(

n− 2
i− 1

)
. This

proves Proposition 0.13.

Let us next recall a fundamental fact (which has already been proven in the
solutions to homework set 1):

Proposition 0.15. Let m ∈N. Then,

m

∑
k=0

(
m
k

)
= 2m.

Solution to Exercise 4 (sketched). The answer is
1, if n = 0;
0, if n = 1;
2n−2, if n > 1

.

Proof. We WLOG assume that n > 1 (since the cases when n = 0 and when n = 1
can be easily dealt with). Thus, n ≥ 2, so that n− 2 ∈N.

The only permutation having no descents is id, and this is not a derangement
(since id has n > 0 fixed points). Thus, there exists no derangement having no
descents. In other words,

(the number of all derangements having no descents) = 0.

9Proof. Let σ be a permutation constructed by this algorithm. From the definition of the algorithm,
it follows immediately that σ (1) < σ (2) < · · · < σ (i) and σ (i + 1) < σ (i + 2) < · · · < σ (n)
and {σ (1) , σ (2) , . . . , σ (i)} = S (where S is the i-element subset of {2, 3, . . . , n} that was chosen
during the algorithm).

We have i ≥ 1, so that σ (1) ∈ {σ (1) , σ (2) , . . . , σ (i)} = S ⊆ {2, 3, . . . , n}. Thus, σ (1) ≥ 2 > 1,
so that σ (1) 6= 1.

The definition of S yields n ∈ S = {σ (1) , σ (2) , . . . , σ (i)}, so that σ−1 (n) ∈ {1, 2, . . . , i} and
thus σ−1 (n) ≤ i ≤ n− 1 < n. Thus, σ−1 (n) 6= n, so that σ (n) 6= n.

Thus, Lemma 0.14 shows that σ is a derangement of [n] whose only descent is i. This is what
we wanted to prove.

http://www.cip.ifi.lmu.de/~grinberg/t/17f/hw1s.pdf
http://www.cip.ifi.lmu.de/~grinberg/t/17f/hw1s.pdf
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Now,

(the number of all derangements having at most 1 descent)
= (the number of all derangements having no descents)︸ ︷︷ ︸

=0

+ (the number of all derangements having exactly 1 descent)
= (the number of all derangements having exactly 1 descent)

= ∑
i∈[n−1]︸ ︷︷ ︸
=

n−1
∑

i=1

(the number of derangements of [n] whose only descent is i)︸ ︷︷ ︸
=

(
n− 2
i− 1

)
(by Proposition 0.13)

=
n−1

∑
i=1

(
n− 2
i− 1

)
=

n−2

∑
k=0

(
n− 2

k

) (
here, we have substituted k

for i− 1 in the sum

)
= 2n−2 (by Proposition 0.15, applied to m = n− 2)

=


1, if n = 0;
0, if n = 1;
2n−2, if n > 1

(since n > 1) .

This completes the proof.

0.6. Connected permutations

Definition 0.16. Let n be a positive integer. A permutation σ of [n] is said to be
connected if and only if there exists no k ∈ [n− 1] such that σ ([k]) = [k].

For example, the permutation σ of [5] sending 1, 2, 3, 4, 5 to 2, 4, 1, 5, 3 is connected,
since it satisfies

σ ([1]) = {2} 6= [1] , σ ([2]) = {2, 4} 6= [2] ,
σ ([3]) = {2, 4, 1} 6= [3] , σ ([4]) = {2, 4, 1, 5} 6= [4] .

But the permutation σ of [4] sending 1, 2, 3, 4 to 2, 1, 4, 3 is not connected, because
it satisfies σ ([2]) = [2]. Likewise, a permutation σ of [n] (for n > 1) satisfying
σ (1) = 1 is never connected (since σ ([1]) = [1]); the same holds for a permutation
σ satisfying σ (n) = n (since σ ([n− 1]) = [n− 1]).

Exercise 5. For each positive integer n, let cn denote the number of all connected
permutations of [n]. (Thus, c1 = 1, c2 = 1 and c3 = 3.)

Prove that

n! =
n

∑
k=1

ck (n− k)! for each positive integer n.
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Exercise 5 appears (with an outline of a solution) in [Camero16, §3.4, Example:
Connected permutations]. See also Sequence A003319 in the OEIS database for the
sequence (c1, c2, c3, . . .).

Solution to Exercise 5 (sketched). Let n be a positive integer.
If σ ∈ Sn, then a return of σ shall denote a positive integer k ∈ [n] satisfying

σ ([k]) = [k]. Every σ ∈ Sn has at least one return, namely the number n (since
σ ([n]) = [n]); thus, the smallest return of σ is well-defined.

It is easy to see that a permutation σ ∈ Sn is connected if and only if its smallest
return is n. We shall not use this, but we shall use the following closely connected
fact:

Observation 1: Let j ∈ [n]. The number of permutations σ ∈ Sn whose
smallest return is j equals cj (n− j)!.

[Proof of Observation 1: Let σ ∈ Sn be a permutation whose smallest return is j.
Then, j is a return of σ; in other words, σ ([j]) = [j] (by the definition of a return).
Hence, σ (h) ∈ σ ([j]) = [j] for each h ∈ [j]. Thus, we can define a map

τ : [j]→ [j] , h 7→ σ (h) .

(This map τ is essentially the restriction of σ to [j], but the codomain is also being
restricted to [j].) The map τ is injective (since σ is injective), and thus is a per-
mutation of [j] (since it is an injective map between two finite sets of equal size).
Moreover, the permutation τ of [j] is connected10.

Now, forget that we fixed σ. Thus, for each permutation σ ∈ Sn whose smallest
return is j, we have constructed a connected permutation τ of [j]. Let us denote
this τ by τσ (to stress its dependence on σ). We now have the following algorithm
to construct every permutation σ ∈ Sn whose smallest return is j:

• First, pick any connected permutation τ of [j]; this permutation shall be the
τσ corresponding to our σ. There are cj choices at this step, since the number
of connected permutations of [j] is cj (by the definition of cj).

• The values σ (1) , σ (2) , . . . , σ (j) are now uniquely determined (because they
are the values of the already chosen permutation τσ = τ), and are simply
the numbers 1, 2, . . . , j in some order. Next, choose the remaining values
σ (j + 1) , σ (j + 2) , . . . , σ (n). These n − j values must be the numbers j +
1, j + 2, . . . , n in some order; the only choice at this step is which order they
are in. Thus, there are (n− j)! choices at this step.

10Proof. If there was some k ∈ [j− 1] such that τ ([k]) = [k], then this k would be a return of σ
(because the definition of τ shows that τ ([k]) = σ ([k]), so that σ ([k]) = τ ([k]) = [k]), which
would contradict the fact that j is the smallest return of σ (indeed, k is smaller than j). Hence,
there exists no k ∈ [j− 1] such that τ ([k]) = [k]. In other words, the permutation τ of [j] is
connected (by the definition of “connected”).

https://oeis.org/A003319
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Our argument above shows that each permutation σ ∈ Sn whose smallest return
is j can be constructed by this algorithm. Conversely, it is easy to see (more or
less by reversing the above argument) that every σ constructed by this algorithm
is a permutation σ ∈ Sn whose smallest return is j. Moreover, every set of choices
during the algorithm yields a different such permutation. Thus, the number of
permutations σ ∈ Sn whose smallest return is j equals the number of ways of
making choices during the algorithm. But the latter number is cj (n− j)! (since we
have cj choices at the first step, and (n− j)! choices at the second step). Thus, the
number of permutations σ ∈ Sn whose smallest return is j equals cj (n− j)!. This
proves Observation 1.]

Now,

n! = (the number of permutations σ ∈ Sn)

= ∑
j∈[n]︸︷︷︸
=

n
∑

j=1

(the number of permutations σ ∈ Sn whose smallest return is j)︸ ︷︷ ︸
=cj(n−j)!

(by Observation 1)

=
n

∑
j=1

cj (n− j)! =
n

∑
k=1

ck (n− k)!

(here, we have renamed the summation index j as k). This solves Exercise 5.

Remark 0.17. Notice the similarity between our above solution of Exercise 5 and
the proof of the recursion

mn =
n−1

∑
k=0

mkmn−k−1

(for n > 0) for the Catalan numbers m0, m1, m2, . . . (see, e.g., [Galvin17, §24,
problem (2)]).

0.7. Permutations and intervals

An integer interval means a set of the form {a, a + 1, . . . , b} for some integers a and
b. (If a > b, then this set is understood to be empty.)

Exercise 6. Let n ∈ N and r ∈ [n]. A permutation σ of [n] is said to be r-friendly
if for each k ∈ {r, r + 1, . . . , n}, the set σ ([k]) is an integer interval.

(For example, the permutation σ of [6] sending 1, 2, 3, 4, 5, 6 to 2, 4, 3, 5, 1, 6 is
3-friendly (since σ ([3]) = {2, 3, 4}, σ ([4]) = {2, 3, 4, 5}, σ ([5]) = {1, 2, 3, 4, 5}
and σ ([6]) = {1, 2, 3, 4, 5, 6} are integer intervals), and thus also r-friendly for
each r ≥ 3, but not 2-friendly (since σ ([2]) = {2, 4} is not an integer interval).)

Prove that the number of r-friendly permutations of [n] is 2n−rr!.
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See https://artofproblemsolving.com/community/c6h1542350_rfriendly_permutations_
sending_some_intervals_to_intervals for a discussion of this exercise.

Before we solve this exercise, let us state two simple lemmas:

Lemma 0.18. Let S and T be two integer intervals such that T ⊆ S and |S| =
|T|+ 1. Then, either T = S \ {max S} or T = S \ {min S} (or both).

Proof of Lemma 0.18 (sketched). Write the integer interval S in the form S = {a, a + 1, . . . , b}
for some integers a and b.

From T ⊆ S, we obtain |S \ T| = |S| − |T| = 1 (since |S| = |T| + 1). In other
words, S \ T is a 1-element set. In other words, S \ T = {k} for some object k.
Consider this k.

From T ⊆ S, we obtain T = S \ (S \ T)︸ ︷︷ ︸
={k}

= S \ {k}. Thus, S \ {k} is an integer

interval (since T is an integer interval).
Also, k ∈ {k} = S \ T ⊆ S = {a, a + 1, . . . , b}. Hence, k is an integer satisfying

a ≤ k ≤ b.
From S = {a, a + 1, . . . , b} (and a ≤ b), we obtain min S = a and max S = b.
Recall that k ∈ {a, a + 1, . . . , b}. Thus, we are in one of the following three cases:
Case 1: We have k = a.
Case 2: We have a < k < b.
Case 3: We have k = b.
Let us first consider Case 1. In this case, we have k = a. Thus, T = S \ k︸︷︷︸
=a=min S

 = S \ {min S}. Hence, either T = S \ {max S} or T = S \ {min S}

(or both). Therefore, Lemma 0.18 is proven in Case 1.
Let us now consider Case 2. In this case, we have a < k < b. Now,

T = S︸︷︷︸
={a,a+1,...,b}

\ {k} = {a, a + 1, . . . , b} \ {k}

= {a, a + 1, . . . , k− 1, k + 1, k + 2, . . . , b}

(since a < k < b). Hence, the set T contains the two elements a and b but not the
element k that lies between them (in the sense of being larger than a but smaller
than b). Therefore, the set T is not an integer interval. This contradicts the fact that
T is an integer interval. Hence, Case 2 is impossible.

Let us finally consider Case 3. In this case, we have k = b. Thus, T = S \ k︸︷︷︸
=b=max S

 = S \ {max S}. Hence, either T = S \ {max S} or T = S \ {min S} (or

both). Therefore, Lemma 0.18 is proven in Case 3.
We have thus proven Lemma 0.18 in the two Cases 1 and 3. Since these two cases

are the only possibilities (because we have shown that Case 2 is impossible), we
thus conclude that Lemma 0.18 always holds.

https://artofproblemsolving.com/community/c6h1542350_rfriendly_permutations_sending_some_intervals_to_intervals
https://artofproblemsolving.com/community/c6h1542350_rfriendly_permutations_sending_some_intervals_to_intervals
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Lemma 0.19. Let n ∈ N and r ∈ [n]. Let σ be an r-friendly permutation of [n].
Let k ∈ {r + 1, r + 2, . . . , n}. Then, the following holds:

(a) Both σ ([k− 1]) and σ ([k]) are integer intervals.
(b) The integer interval σ ([k− 1]) is obtained from the integer interval σ ([k])

by removing either its largest or its smallest element.
(c) This element removed from σ ([k]) is σ (k).

Proof of Lemma 0.19. (a) We have k ∈ {r + 1, r + 2, . . . , n}, so that k− 1 ∈ {r, r + 1, . . . , n− 1} ⊆
{r, r + 1, . . . , n}.

But σ is r-friendly. Thus, σ ([k− 1]) is an integer interval (since k− 1 ∈ {r, r + 1, . . . , n}).
For the same reason, σ ([k]) is an integer interval (since k ∈ {r + 1, r + 2, . . . , n} ⊆
{r, r + 1, . . . , n}). Thus, Lemma 0.19 (a) is proven.

(b) From Lemma 0.19 (a), we know that both σ ([k− 1]) and σ ([k]) are integer
intervals. Moreover, the map σ is injective; therefore, |σ ([k])| = |[k]| = k and
similarly |σ ([k− 1])| = k − 1. Hence, |σ ([k− 1])|+ 1 = k. Comparing this with
|σ ([k])| = k, we obtain |σ ([k])| = |σ ([k− 1])|+ 1.

But [k− 1] ⊆ [k], so that σ ([k− 1]) ⊆ σ ([k]). Hence, Lemma 0.18 (applied to S =
σ ([k]) and T = σ ([k− 1])) shows that either σ ([k− 1]) = σ ([k]) \ {max (σ ([k]))}
or σ ([k− 1]) = σ ([k]) \ {min (σ ([k]))} (or both). In other words, the integer in-
terval σ ([k− 1]) is obtained from the integer interval σ ([k]) by removing either its
largest or its smallest element. This proves Lemma 0.19 (b).

(c) The element removed from σ ([k]) is the unique element of σ ([k]) \ σ ([k− 1]).
Thus, we must prove that the unique element of σ ([k]) \ σ ([k− 1]) is σ (k).

The map σ is a bijection. Hence, σ (X \Y) = σ (X) \ σ (Y) for any two subsets
X and Y of [n]. Applying this to X = σ ([k]) and Y = σ ([k− 1]), we obtain
σ ([k] \ [k− 1]) = σ ([k]) \ σ ([k− 1]). Hence,

σ ([k]) \ σ ([k− 1]) = σ

[k] \ [k− 1]︸ ︷︷ ︸
={k}

 = σ ({k}) = {σ (k)} .

Hence, the unique element of σ ([k]) \ σ ([k− 1]) is σ (k). This proves Lemma 0.19
(c).

Solution to Exercise 6 (sketched). I claim that the following algorithm constructs ev-
ery r-friendly permutation σ of [n]:

• We construct a sequence (In, In−1, . . . , Ir) of subsets of [n] with the property
that In ⊇ In−1 ⊇ · · · ⊇ Ir and that each Ii is an integer interval of size i. This
construction proceeds recursively (i.e., we start with In, then construct In−1,
then In−2, and so on until Ir); it begins by setting In = [n] (which is clearly a
subset of [n] and an integer interval of size n). Then, whenever a subset Ip of
[n] is constructed (with p ∈ {r + 1, r + 2, . . . , n}), we define Ip−1 by removing
either the largest or the smallest element from Ip.
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This construction clearly guarantees that Ip−1 will be a subset of [n] and an
integer interval of size p− 1, provided that Ip is a subset of [n] and an integer
interval of size p. Also, it clearly guarantees that In ⊇ In−1 ⊇ · · · ⊇ Ir.

• Now, we define a map σ : [n]→ [n] as follows: For each p ∈ {r + 1, r + 2, . . . , n},
we let σ (p) be the element of Ip that was removed in the construction of
Ip−1 (that is, the unique element of Ip that is not in Ip−1). Then, we define
σ (1) , σ (2) , . . . , σ (r) to be the r elements of Ir in any order.

Thus, a map σ : [n]→ [n] is defined.

This algorithm has the following properties:

Observation 1: The algorithm constructs an r-friendly permutation σ of
[n] (whatever choices were made during the algorithm).

Observation 2: Every r-friendly permutation of [n] can be obtained through
the algorithm. (That is, if τ is any r-friendly permutation of [n], then we
can make the choices in the algorithm in such a way that the resulting
permutation σ will be τ.)

Observation 3: The algorithm can be performed in 2n−rr! ways (i.e., there
is a total of 2n−rr! options for the choices made during the algorithm).

Observation 4: Any two of these 2n−rr! ways give rise to different per-
mutations σ.

Clearly, once these four Observations are proven, we will immediately see that
the number of r-friendly permutations of [n] is 2n−rr!. Thus, Exercise 6 will be
solved. Hence, it remains to prove the four Observations.

[Proof of Observation 1: We must prove that the map σ : [n] → [n] constructed by
the algorithm is an r-friendly permutation of [n].

Indeed, this map σ has the property that {σ (1) , σ (2) , . . . , σ (r)} = Ir (because
σ (1) , σ (2) , . . . , σ (r) were defined to be the r elements of Ir in any order). Hence,

σ ([r]) = σ ({1, 2, . . . , r}) = {σ (1) , σ (2) , . . . , σ (r)} = Ir.

Now, it is easy to check that
σ ([p]) = Ip (8)

for each p ∈ {r, r + 1, . . . , n} 11. Applying this to p = n, we obtain σ ([n]) =
In = [n]. Hence, the map σ is surjective. Thus, σ is bijective (since any surjective

11Proof of (8): We shall prove (8) by induction over p:
The induction base (i.e., the case p = r) follows from σ ([r]) = Ir.
Now, let us handle the induction step. Thus, we must prove σ ([p]) = Ip under the assumption

that σ ([p− 1]) = Ip−1. Recall that σ (p) is the unique element of Ip that is not in Ip−1 (this is
how σ (p) was defined). Thus, Ip \ Ip−1 = {σ (p)}, so that Ip = Ip−1 ∪ {σ (p)} (since Ip ⊇ Ip−1).
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map between two finite sets of equal sizes is bijective). In other words, σ is a
permutation of [n]. It remains to prove that σ is r-friendly.

For each p ∈ {r, r + 1, . . . , n}, the set σ ([p]) is the set Ip (by (8)), and thus is an
integer interval (since Ip is an integer interval). Renaming p as k in this statement,
we obtain the following: For each k ∈ {r, r + 1, . . . , n}, the set σ ([k]) is an integer
interval. In other words, the permutation σ is r-friendly (by the definition of “r-
friendly”). Thus, Observation 1 is proven.]

[Proof of Observation 2: Let τ be an r-friendly permutation of [n]. We must show
that τ can be obtained through the algorithm. In other words, we have to explain
which options we need to choose in order for the resulting permutation σ to be τ.

This is actually easy. There are two kinds of choices in the algorithm: The first
kind of choice is the one made in the construction of Ip−1 from Ip, in which we
have to choose whether to remove the largest or the smallest element from Ip. The
second kind of choice is the choice of order in which the elements of Ir are set to
be σ (1) , σ (2) , . . . , σ (r).

So which options do we choose? In the first kind of choice, we choose to remove
the element τ (r);

TODO
Let σ be an r-friendly permutation of [n]. Let k ∈ [n− r]. Thus, k ≤ n− r, so that

n− k ≥ r. Hence, the two numbers n− k and n− k + 1 are both ≥ r. Therefore, the
sets σ ([n− k]) and σ ([n− k + 1]) are two integer intervals (since σ is r-friendly).

TODO
]
[Proof of Observation 3: TODO]
[Proof of Observation 4: TODO]

0.8. Inverting a power series

Exercise 7. Find and prove an explicit formula for the coefficient of xn in the

formal power series
1

1− x− x2 + x3 .

[Hint: The standard strategy is to factor 1− x− x2 + x3, then do partial frac-
tion decomposition. But it is perfectly legitimate to guess the formula based on
solving (

1− x− x2 + x3
) (

b0 + b1x + b2x2 + b3x3 + b4x4 + · · ·
)
= 1

Now,

σ

 [p]︸︷︷︸
=[p−1]∪{p}

 = σ ([p− 1] ∪ {p}) = σ ([p− 1])︸ ︷︷ ︸
=Ip−1

∪ σ ({p})︸ ︷︷ ︸
={σ(p)}

= Ip−1 ∪ {σ (p)}

= Ip.

This completes the induction step. Thus, (8) is proven.



Math 4990 Fall 2017 (Darij Grinberg): homework set 6 page 23

for the first few of the unknown coefficients b0, b1, b2, . . ., and then prove it by
multiplying out. Either option works.]

Solution to Exercise 7 (sketched). The answer is

1
1− x− x2 + x3 =

∞

∑
n=0

⌊
n + 2

2

⌋
xn

= 1 + x + 2x2 + 2x3 + 3x4 + 3x5 + 4x6 + 4x7 + · · · .
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One simple way to prove this is to check that

(
1− x− x2 + x3

)( ∞

∑
n=0

⌊
n + 2

2

⌋
xn

)

=
∞

∑
n=0

⌊
n + 2

2

⌋
xn − x

∞

∑
n=0

⌊
n + 2

2

⌋
xn − x2

∞

∑
n=0

⌊
n + 2

2

⌋
xn + x3

∞

∑
n=0

⌊
n + 2

2

⌋
xn

=
∞

∑
n=0

⌊
n + 2

2

⌋
xn −

∞

∑
n=0

⌊
n + 2

2

⌋
xn+1 −

∞

∑
n=0

⌊
n + 2

2

⌋
xn+2 +

∞

∑
n=0

⌊
n + 2

2

⌋
xn+3

=
∞

∑
n=0

⌊
n + 2

2

⌋
xn −

∞

∑
n=1

⌊
n + 1

2

⌋
xn −

∞

∑
n=2

⌊n
2

⌋
xn +

∞

∑
n=3

⌊
n− 1

2

⌋
xn

(
here, we have substituted n− 1 for n in the second sum,

n− 2 for n in the third, and n− 3 for n in the fourth

)
=

∞

∑
n=0

⌊
n + 2

2

⌋
xn −

(
∞

∑
n=0

⌊
n + 1

2

⌋
xn −

⌊
0 + 1

2

⌋
x0

)

−
(

∞

∑
n=0

⌊n
2

⌋
xn −

⌊
0
2

⌋
x0 −

⌊
1
2

⌋
x1

)

+

(
∞

∑
n=0

⌊
n− 1

2

⌋
xn −

⌊
0− 1

2

⌋
x0 −

⌊
1− 1

2

⌋
x1 −

⌊
2− 1

2

⌋
x2

)
 here, we have extended the ranges of the last three

sums in order for all of them to start at n = 0; then, we
have subtracted back the extraneous addends


=

∞

∑
n=0

⌊
n + 2

2

⌋
xn −

∞

∑
n=0

⌊
n + 1

2

⌋
xn −

∞

∑
n=0

⌊n
2

⌋
xn +

∞

∑
n=0

⌊
n− 1

2

⌋
xn

︸ ︷︷ ︸
=

∞
∑

n=0

(⌊n + 2
2

⌋
−
⌊n + 1

2

⌋
−
⌊n

2

⌋
+

⌊n− 1
2

⌋)
xn

+

⌊
0 + 1

2

⌋
x0 +

⌊
0
2

⌋
x0 +

⌊
1
2

⌋
x1 −

⌊
0− 1

2

⌋
x0 −

⌊
1− 1

2

⌋
x1 −

⌊
2− 1

2

⌋
x2︸ ︷︷ ︸

=1

=
∞

∑
n=0

(⌊
n + 2

2

⌋
−
⌊

n + 1
2

⌋
−
⌊n

2

⌋
+

⌊
n− 1

2

⌋)
xn + 1. (9)

But each q ∈ Q satisfies
bq + 1c = bqc+ 1 (10)
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(this is easy to check). Hence, each n ∈N satisfies⌊
n + 2

2

⌋
︸ ︷︷ ︸

=

⌊n
2
+1
⌋
=

⌊n
2

⌋
+1

(by (10))

−
⌊

n + 1
2

⌋
︸ ︷︷ ︸

=

⌊n− 1
2

+1

⌋
=

⌊n− 1
2

⌋
+1

(by (10))

−
⌊n

2

⌋
+

⌊
n− 1

2

⌋

=
(⌊n

2

⌋
+ 1
)
−
(⌊

n− 1
2

⌋
+ 1
)
−
⌊n

2

⌋
+

⌊
n− 1

2

⌋
= 0. (11)

Thus, (9) becomes

(
1− x− x2 + x3

)( ∞

∑
n=0

⌊
n + 2

2

⌋
xn

)

=
∞

∑
n=0

(⌊
n + 2

2

⌋
−
⌊

n + 1
2

⌋
−
⌊n

2

⌋
+

⌊
n− 1

2

⌋)
︸ ︷︷ ︸

=0
(by (11))

xn + 1

=
∞

∑
n=0

0xn

︸ ︷︷ ︸
=0

+1 = 1.

Hence,
1

1− x− x2 + x3 =
∞
∑

n=0

⌊
n + 2

2

⌋
xn.

[Remark: The above solution is a neat a-posteriori proof, but it does not explain

how the answer
∞
∑

n=0

⌊
n + 2

2

⌋
xn could have been found. Here is a quick sketch of

this: The polynomial 1− x− x2 + x3 factors as 1− x− x2 + x3 = (1 + x) (1− x)2.
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Thus, partial fraction decomposition yields

1
1− x− x2 + x3 =

1
4 (1 + x)

+
1

4 (1− x)
+

1

2 (1− x)2

=
1
4

∞

∑
n=0

(−1)n xn +
1
4

∞

∑
n=0

xn +
1
2

∞

∑
n=0

(n + 1) xn


here, we used the formulas

1
1 + x

=
∞
∑

n=0
(−1)n xn,

1
1− x

=
∞
∑

n=0
xn and

1

(1− x)2 =
∞
∑

n=0
(n + 1) xn


=

∞

∑
n=0

(
1
4
(−1)n +

1
4
+

1
2
(n + 1)

)
︸ ︷︷ ︸

=

⌊n + 2
2

⌋
(this can be proven by a simple case distinction,

depending on n being even or odd)

xn

=
∞

∑
n=0

⌊
n + 2

2

⌋
xn.

This is also a valid proof.]
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