Math 4990 Fall 2017 (Darij Grinberg): homework set 6 with solutions

Contents

0.1.	Reminders on binomial coefficients	1
0.2.	Idempotent maps	2
	Fixed points	
0.4.	A binomial coefficient in a denominator	7
0.5.	Derangements with at most 1 descent	2
0.6.	Connected permutations	.6
0.7.	Permutations and intervals	8
0.8.	Inverting a power series	2

0.1. Reminders on binomial coefficients

Let us first recall some facts about binomial coefficients:

Proposition 0.1. For every $x \in \mathbb{Q}$ and $y \in \mathbb{Q}$ and $n \in \mathbb{N}$, we have

$$\binom{x+y}{n} = \sum_{k=0}^{n} \binom{x}{k} \binom{y}{n-k}.$$

Proposition 0.2. Let a and b be two integers such that $a \ge b \ge 0$. Then,

$$\binom{a}{b} = \frac{a!}{b! (a-b)!}.$$

Proposition 0.3. We have

$$\binom{n}{k} = (-1)^k \binom{k-n-1}{k}$$

for any $n \in \mathbb{Q}$ and $k \in \mathbb{N}$.

Proposition 0.4. We have $k \binom{n}{k} = n \binom{n-1}{k-1}$ for any $n \in \mathbb{Q}$ and any positive integer k.

Proposition 0.5. We have

$$\binom{m}{n} = 0$$

for every $m \in \mathbb{N}$ and $n \in \mathbb{N}$ satisfying m < n.

Proposition 0.6. If $n \in \mathbb{Q}$ and if a and b are two integers such that $a \geq b \geq 0$, then

$$\binom{n}{a}\binom{a}{b} = \binom{n}{b}\binom{n-b}{a-b}.$$

Proposition 0.7. We have $\binom{m}{m} = 1$ for every $m \in \mathbb{N}$.

Proposition 0.8. We have

$$\binom{m}{n} = \binom{m}{m-n} \tag{1}$$

for any $m \in \mathbb{N}$ and $n \in \mathbb{N}$ satisfying $m \ge n$.

Proposition 0.1 is the *Vandermonde convolution identity*, and is proven in multiple places¹. Proposition 0.2 was proven in the solutions to homework set 1. Proposition 0.3 is Exercise 2 (a) in homework set 1. Proposition 0.4 is Exercise 2 (b) in homework set 1. Proposition 0.5 is fundamental and easy to prove. Proposition 0.6 is Exercise 2 (c) in homework set 1. Proposition 0.7 and Proposition 0.8 are easy to check.

0.2. Idempotent maps

If *S* is a set, then a map $f: S \to S$ is said to be *idempotent* if and only if $f \circ f = f$. For instance, the map $[3] \to [3]$ sending 1, 2, 3 to 1, 3, 3 (respectively) is idempotent.

Exercise 1. Let $n \in \mathbb{N}$.

- (a) Prove that a map $f : [n] \to [n]$ is idempotent if and only if every $y \in f([n])$ satisfies f(y) = y.
 - **(b)** Prove that the number of idempotent maps $[n] \to [n]$ is $\sum_{k=0}^{n} \binom{n}{k} k^{n-k}$.
- (c) Prove that the number of idempotent maps $[n] \to [n]$ has the form an + 1 for some $a \in \mathbb{N}$. (Of course, a will depend on n.)

[**Hint:** When is $\binom{n}{k} k^{n-k}$ divisible by n ?]

Solution to Exercise 1 (sketched). (a) Let $f : [n] \to [n]$ be a map. We must prove that f is idempotent if and only if every $y \in f([n])$ satisfies f(y) = y.

 \Longrightarrow : Assume that f is idempotent. We must prove that every $y \in f([n])$ satisfies f(y) = y.

We have assumed that f is idempotent. In other words, $f \circ f = f$. Now, let $y \in f([n])$. Thus, there exists some $x \in [n]$ satisfying y = f(x). Consider this

¹For an elementary proof, see, e.g., [Grinbe16, first proof of Theorem 3.29].

$$x$$
. We have $f\left(\underbrace{y}_{=f(x)}\right) = f\left(f\left(x\right)\right) = \underbrace{\left(f\circ f\right)}_{=f}(x) = f\left(x\right) = y$. Now, forget that we

fixed y. We thus have shown that every $y \in f([n])$ satisfies f(y) = y. This proves the " \Longrightarrow " direction of Exercise 1 (a).

 \Leftarrow : Assume that every $y \in f([n])$ satisfies f(y) = y. We must prove that f is idempotent.

Let $x \in [n]$. Thus, $f(x) \in f([n])$. But we assumed that every $y \in f([n])$ satisfies f(y) = y. Applying this to y = f(x), we obtain f(f(x)) = f(x) (since $f(x) \in f([n])$). Hence, $(f \circ f)(x) = f(f(x)) = f(x)$. Now, forget that we fixed x. We thus have proven that $(f \circ f)(x) = f(x)$ for each $x \in [n]$. In other words, $f \circ f = f$. In other words, $f \circ f = f$. In other words, $f \circ f = f$. In other words, $f \circ f = f$. In other words, $f \circ f = f$. In other words, $f \circ f = f$. In other words, $f \circ f = f$. In other words, $f \circ f = f$. In other words, $f \circ f = f$. In other words, $f \circ f = f$. In other words, $f \circ f = f$. In other words, $f \circ f = f$. In other words, $f \circ f = f$. In other words, $f \circ f = f$. In other words, $f \circ f = f$. In other words, $f \circ f = f$. In other words, $f \circ f = f$. In other words, $f \circ f = f$. In other words, $f \circ f = f$.

Hence, Exercise 1 (a) is solved (since we have proven both of its directions). (b) The following algorithm constructs every idempotent map $f : [n] \to [n]$:

- First, we choose an integer $k \in \{0,1,\ldots,n\}$. This integer k shall be the size |f([n])| of the image of f. (Of course, this size has to be in $\{0,1,\ldots,n\}$, because f([n]) must be a subset of [n].)
- Next, we choose a k-element subset S of [n]. This subset S shall be the image f([n]) of f. There are $\binom{n}{k}$ choices for S (since the number of k-element subsets of [n] is $\binom{n}{k}$).
- At this point, the values of f on all elements of S are already uniquely determined: Indeed, Exercise 1 (a) shows that every y ∈ f ([n]) has to satisfy f (y) = y for f to be idempotent; in other words, every y ∈ S has to satisfy f (y) = y (since we want f ([n]) to be S).
- Finally, we choose the values of f on all remaining elements of [n] (that is, on all elements of $[n] \setminus S$). These values must belong to S (because we want f([n]) to be S), but are otherwise unconstrained. Thus, there are $|S|^{|[n] \setminus S|}$ choices at this step. In other words, there are k^{n-k} choices at this step (since |S| = k and $|[n] \setminus S| = n \underbrace{|S|}_{-k} = n k$).

It is easy to check that this algorithm really constructs idempotent maps $f : [n] \rightarrow [n]$, and constructs each of them exactly once. Thus, the number of idempotent

²At this step, we do not need to ensure that every element of *S* is taken as a value of *f*, because this has already been ensured (indeed, every $y \in S$ satisfies f(y) = y, so that y is already a value of f).

maps $f:[n] \to [n]$ is

$$\sum_{k \in \{0,1,\dots,n\}} \binom{n}{k} k^{n-k}$$

(since we get to choose $k \in \{0, 1, ..., n\}$ in the first step of the algorithm, then we have $\binom{n}{k}$ choices in the second step, then a unique choice in the third step, and finally k^{n-k} choices in the fourth step). Hence, the number of idempotent maps $f: [n] \to [n]$ is

$$\sum_{k\in\{0,1,\dots,n\}} \binom{n}{k} k^{n-k} = \sum_{k=0}^{n} \binom{n}{k} k^{n-k}.$$

This solves Exercise 1 (b).

(c) If n = 0, then the number of idempotent maps $[n] \to [n]$ is 1, which clearly has the form an + 1 for some $a \in \mathbb{N}$ (namely, for a = 0). Hence, for the rest of this solution, we WLOG assume that we don't have n = 0. Thus, n > 0, so that $n \ge 1$.

For each $k \in \{1, 2, ..., n-1\}$, the number $\binom{n-1}{k-1}k^{n-k-1}$ is a nonnegative in-

teger³. Hence, $\sum_{k=1}^{n-1} \binom{n-1}{k-1} k^{n-k-1}$ is a sum of nonnegative integers, thus itself a nonnegative integer. In other words,

$$\sum_{k=1}^{n-1} \binom{n-1}{k-1} k^{n-k-1} \in \mathbb{N}.$$

³*Proof.* Let $k \in \{1, 2, ..., n-1\}$. Thus, $1 \le k \le n-1$. From $1 \le k$, we obtain $k-1 \in \mathbb{N}$. Also, $n-1 \in \mathbb{N}$ (since $n \ge 1$). Hence, $\binom{n-1}{k-1}$ is the number of (k-1)-element subsets of the set [n-1] (by the combinatorial interpretation of binomial coefficients). Therefore, $\binom{n-1}{k-1}$ is a nonnegative integer. Also, $n-\underbrace{k}_{\le n-1} = n-(n-1)-1=0$, so that $n-k-1 \in \mathbb{N}$. Thus, $k^{n-k-1} \in \mathbb{N}$ (since $k \in \{1, 2, ..., n-1\} \subseteq \mathbb{N}$). In other words, k^{n-k-1} is a nonnegative integer. Hence, the number $\binom{n-1}{k-1}k^{n-k-1}$ is a product of two nonnegative integers, hence itself a nonnegative integer. Qed.

Exercise 1 **(b)** shows that the number of idempotent maps $[n] \rightarrow [n]$ is

$$\sum_{k=0}^{n} \binom{n}{k} k^{n-k} = \sum_{k=0}^{n-1} \binom{n}{k} \underbrace{\sum_{\substack{k=0 \text{oince } n-k>0 \\ \text{(since } n-k>0 \text{oince } n-k>0 \\ \text{(since } n-k>0 \text{oince } n-k>0 \text{oince$$

Hence, this number has the form an+1 for some $a \in \mathbb{N}$ (namely, for $a = \sum_{k=1}^{n-1} \binom{n-1}{k-1} k^{n-k-1}$). This solves Exercise 1 (c).

0.3. Fixed points

Exercise 2. Let *S* be a finite set. For any map $f: S \to S$, we let Fix *f* denote the set of all fixed points of *f*. (That is, Fix $f = \{s \in S \mid f(s) = s\}$.)

- (a) Prove that $|\operatorname{Fix}(f \circ g)| = |\operatorname{Fix}(g \circ f)|$ for any two maps $f: S \to S$ and $g: S \to S$.
- **(b)** Is it true that every three maps f, g, h from S to S satisfy $|\text{Fix}(f \circ g \circ h)| = |\text{Fix}(g \circ f \circ h)|$?

[Hint: For (a), find a bijection.]

Solution to Exercise 2. **(a)** Let $f: S \to S$ and $g: S \to S$ be two maps. Then, $g(x) \in \text{Fix}(g \circ f)$ for each $x \in \text{Fix}(f \circ g)$ ⁴. The same argument (applied to g and f instead of f and g) shows that $f(x) \in \text{Fix}(f \circ g)$ for each $x \in \text{Fix}(g \circ f)$.

⁴*Proof.* Let *x* ∈ Fix ($f \circ g$). We must show that $g(x) \in Fix(g \circ f)$.

Let γ be the map

$$\operatorname{Fix}(f \circ g) \to \operatorname{Fix}(g \circ f), \qquad x \mapsto g(x).$$

(This is well-defined, because $g(x) \in \text{Fix}(g \circ f)$ for each $x \in \text{Fix}(f \circ g)$.) Let φ be the map

$$Fix (g \circ f) \to Fix (f \circ g), \qquad x \mapsto f(x).$$

(This is well-defined, because $f(x) \in \text{Fix}(f \circ g)$ for each $x \in \text{Fix}(g \circ f)$.)

We have $\varphi \circ \gamma = \mathrm{id}^{-5}$. The same argument (applied to g, f, γ and φ instead of f, g, φ and γ) shows that $\gamma \circ \varphi = \mathrm{id}$.

The maps φ and γ are mutually inverse (since $\varphi \circ \gamma = \operatorname{id}$ and $\gamma \circ \varphi = \operatorname{id}$), and thus bijections. Hence, we have found a bijection $\operatorname{Fix}(f \circ g) \to \operatorname{Fix}(g \circ f)$ (namely, γ). Hence, $|\operatorname{Fix}(f \circ g)| = |\operatorname{Fix}(g \circ f)|$. This solves Exercise 2 (a).

(b) It is false. Here is one of many possible counterexamples:

Let *S* be the 3-element set $[3] = \{1,2,3\}$. Let s_1 be the permutation of [3] that switches 1 and 2 while leaving 3 unchanged. Let s_2 be the permutation of [3] that switches 2 and 3 while leaving 1 unchanged. Then, $s_1 \circ s_1 = \text{id}$ and $s_2 \circ s_2 = \text{id}$.

Now, set $f = s_1$, $g = s_2$ and $h = s_1 \circ s_2$. Then, the map $f \circ g \circ h = s_1 \circ s_2 \circ s_1 \circ s_2$ has no fixed points at all (check this!), so that $|\text{Fix}(f \circ g \circ h)| = 0$. But

$$g \circ f \circ h = s_2 \circ \underbrace{s_1 \circ s_1}_{=\mathrm{id}} \circ s_2 = s_2 \circ s_2 = \mathrm{id},$$

and thus $|\operatorname{Fix}(g \circ f \circ h)| = |\operatorname{Fix}(\operatorname{id})| = |S| = 3$. Hence, $|\operatorname{Fix}(f \circ g \circ h)| \neq |\operatorname{Fix}(g \circ f \circ h)|$. This solves Exercise 2 **(b)**.

We know that $x \in \text{Fix}\,(f \circ g)$. In other words, x is a fixed point of $f \circ g$ (since $\text{Fix}\,(f \circ g)$ is defined as the set of all fixed points of $f \circ g$). In other words, $(f \circ g)(x) = x$. Thus, $f(g(x)) = (f \circ g)(x) = x$. Hence,

$$(g \circ f) (g (x)) = g \left(\underbrace{f (g (x))}_{=x}\right) = g (x).$$

In other words, g(x) is a fixed point of $g \circ f$. In other words, $g(x) \in \text{Fix}(g \circ f)$ (since $\text{Fix}(g \circ f)$ is defined as the set of all fixed points of $g \circ f$). This completes our proof.

⁵*Proof.* Let $x \in \text{Fix}(f \circ g)$. Thus, $\gamma(x) = g(x)$ (by the definition of γ). But $\gamma(x) \in \text{Fix}(g \circ f)$, so that $\varphi(\gamma(x)) = f(\gamma(x))$ (by the definition of φ).

We have $x \in \text{Fix}(f \circ g)$. In other words, x is a fixed point of $f \circ g$ (since $\text{Fix}(f \circ g)$ is defined as the set of all fixed points of $f \circ g$). In other words, $(f \circ g)(x) = x$. Now,

$$(\varphi \circ \gamma)(x) = \varphi(\gamma(x)) = f\left(\underbrace{\gamma(x)}_{=g(x)}\right) = f(g(x)) = (f \circ g)(x) = x = \mathrm{id}(x).$$

Now, forget that we fixed x. We thus have proven that $(\varphi \circ \gamma)(x) = \operatorname{id}(x)$ for each $x \in \operatorname{Fix}(f \circ g)$. In other words, $\varphi \circ \gamma = \operatorname{id}$.

Remark 0.9. Exercise 2 (a) can be slightly generalized:

Proposition 0.10. Let *S* and *T* be two finite sets. Then, $|\operatorname{Fix}(f \circ g)| = |\operatorname{Fix}(g \circ f)|$ for any two maps $f: S \to T$ and $g: T \to S$.

Setting T = S in Proposition 0.10, we recover Exercise 2 (a). The proof of Proposition 0.10 is analogous to the above solution of Exercise 2 (a).

Remark 0.11. Exercise 2 (and Proposition 0.10) might remind you of something you have seen in linear algebra. Namely, if A is an $n \times m$ -matrix and B is an $m \times n$ -matrix (so that both products AB and BA are well-defined), then

$$Tr(AB) = Tr(BA), (2)$$

but it is not true that any three $n \times n$ -matrices A, B, C satisfy Tr(ABC) = Tr(BAC).

This is more than just a similarity. You can actually prove Proposition 0.10 using (2). Here is an outline of this proof: To any map $w:[p] \to [q]$ (where p and q are two nonnegative integers), we assign a $q \times p$ -matrix M_w whose (i,j)-th entry is [i=w(j)] (where we are using the Iverson bracket notation). In other words, M_w is the matrix whose j-th column has a 1 in its w(j)-th row and 0's everywhere else. If p=q (so that w is a map from the set [p] to itself), then this matrix M_w is a square matrix with trace

$$\operatorname{Tr}(M_w) = |\operatorname{Fix} w| \tag{3}$$

(check this!). Now, let $f: S \to T$ and $g: T \to S$ be two maps. WLOG assume that S = [n] and T = [m] for two nonnegative integers n and m (otherwise, "relabel" the elements of S and T). Then, it is easy to see that $M_{f \circ g} = M_f M_g$ and $M_{g \circ f} = M_g M_f$. Meanwhile, (3) yields $\operatorname{Tr}(M_{f \circ g}) = |\operatorname{Fix}(f \circ g)|$ and $\operatorname{Tr}(M_{g \circ f}) = |\operatorname{Fix}(g \circ f)|$. Hence,

$$|\operatorname{Fix}(f \circ g)| = \operatorname{Tr}\left(\underbrace{M_{f \circ g}}_{=M_{f}M_{g}}\right) = \operatorname{Tr}\left(M_{f}M_{g}\right) = \operatorname{Tr}\left(\underbrace{M_{g}M_{f}}_{=M_{g \circ f}}\right)$$

$$= \operatorname{Tr}\left(M_{g \circ f}\right) = |\operatorname{Fix}\left(g \circ f\right)|.$$
(by (2))

So we have again proved Proposition 0.10.

0.4. A binomial coefficient in a denominator

Exercise 3. Let *n* and *a* be two integers with $n \ge a \ge 1$. Prove that

$$\sum_{k=a}^{n} \frac{(-1)^{k}}{k} \binom{n-a}{k-a} = \frac{(-1)^{a}}{a \binom{n}{a}}.$$

Exercise 3 is an identity that tends to creep up in various seemingly(?) unrelated situations in mathematics. I have first encountered it in [Schmit04, proof of Theorem 9.5] (where it appears with an incorrect power of -1 on the right hand side). It also has recently appeared on math.stackexchange ([dilemi17], with a, n - a and k - a renamed as p, n and k), where it has been proven in three different ways: once using the beta function, once using residues, and once (by myself in the comments) using finite differences. Let me here give a different, elementary proof.⁶

We begin with the following identities:

Proposition 0.12. Let $i \in \mathbb{Z}$, $n \in \mathbb{Z}$ and $j \in \mathbb{N}$. Then:

(a) We have

$$\sum_{k=0}^{j} (-1)^k \binom{n}{j-k} \binom{k+i-1}{k} = \binom{n-i}{j}.$$

(b) If i is positive, then

$$\sum_{k=0}^{j} \frac{(-1)^k}{k+i} \binom{n}{j-k} \binom{k+i}{i} = \frac{1}{i} \binom{n-i}{j}.$$

Proof of Proposition 0.12. (a) Proposition 0.1 (applied to -i, n and j instead of x, y

⁶This proof also appears in [Grinbe16, solution to Exercise 3.16].

and n) yields

$$\begin{pmatrix} (-i)+n \\ j \end{pmatrix} = \sum_{k=0}^{j} \begin{pmatrix} -i \\ k \end{pmatrix} \begin{pmatrix} n \\ j-k \end{pmatrix}$$

$$= (-1)^{k} \begin{pmatrix} k-(-i)-1 \\ k \end{pmatrix}$$
(by Proposition 0.3, applied to $-i$ instead of n)
$$= \sum_{k=0}^{j} (-1)^{k} \begin{pmatrix} k-(-i)-1 \\ k \end{pmatrix} \begin{pmatrix} n \\ j-k \end{pmatrix}$$

$$= \begin{pmatrix} k+i-1 \\ k \end{pmatrix}$$
(since $k-(-i)-1=k+i-1$)
$$= \sum_{k=0}^{j} (-1)^{k} \begin{pmatrix} k+i-1 \\ k \end{pmatrix} \begin{pmatrix} n \\ j-k \end{pmatrix} = \sum_{k=0}^{j} (-1)^{k} \begin{pmatrix} n \\ j-k \end{pmatrix} \begin{pmatrix} k+i-1 \\ k \end{pmatrix}.$$

Thus,

$$\sum_{k=0}^{j} (-1)^k \binom{n}{j-k} \binom{k+i-1}{k} = \binom{(-i)+n}{j} = \binom{n-i}{j}.$$

This proves Proposition 0.12 (a).

(b) Assume that i is positive. Let $k \in \mathbb{N}$. Then, $i-1 \in \mathbb{N}$ (since i is a positive integer). Thus, $i-1 \geq 0$. Also, $\underbrace{k}_{>0} + i - 1 \geq i - 1$. Hence, Proposition 0.8 (applied

to k + i - 1 and i - 1 instead of m and n) yields

$$\binom{k+i-1}{i-1} = \binom{k+i-1}{(k+i-1)-(i-1)} = \binom{k+i-1}{k}$$

(since (k+i-1) - (i-1) = k).

Furthermore, Proposition 0.4 (applied to k + i and i instead of n and k) yields

$$i\binom{k+i}{i} = (k+i) \underbrace{\binom{k+i-1}{i-1}}_{=\binom{k+i-1}{k}} = (k+i) \binom{k+i-1}{k}.$$

Hence,

$$\binom{k+i}{i} = \frac{1}{i} \left(k+i \right) \binom{k+i-1}{k}.$$

Thus,

$$\frac{(-1)^k}{k+i} \binom{n}{j-k} \underbrace{\binom{k+i}{i}}_{i}$$

$$= \frac{1}{i} (k+i) \binom{k+i-1}{k}$$

$$= \frac{(-1)^k}{k+i} \binom{n}{j-k} \cdot \frac{1}{i} (k+i) \binom{k+i-1}{k}$$

$$= \frac{1}{i} (-1)^k \binom{n}{j-k} \binom{k+i-1}{k}.$$
(4)

Now, forget that we fixed k. We thus have proven (4) for each $k \in \mathbb{N}$. Now,

$$\sum_{k=0}^{j} \frac{(-1)^{k}}{k+i} \binom{n}{j-k} \binom{k+i}{i}$$

$$= \frac{1}{i} (-1)^{k} \binom{n}{j-k} \binom{k+i-1}{k}$$

$$= \sum_{k=0}^{j} \frac{1}{i} (-1)^{k} \binom{n}{j-k} \binom{k+i-1}{k}$$

$$= \frac{1}{i} \sum_{k=0}^{j} (-1)^{k} \binom{n}{j-k} \binom{k+i-1}{k} = \frac{1}{i} \binom{n-i}{j}.$$
(by Proposition 0.12 (a))

This proves Proposition 0.12 (b).

Let us now solve the actual exercise:

Solution to Exercise 3. From $n \ge a$, we obtain $n - a \in \mathbb{N}$. Also, $n \ge a \ge 1 \ge 0$, and therefore Proposition 0.2 (applied to n and a instead of a and b) yields $\binom{n}{a} = n$

$$\frac{n!}{a!(n-a)!} \neq 0 \text{ (since } n! \neq 0).$$
Any $k \in \{a, a+1, \dots, n\}$ satisfies

$$\binom{n}{a}\binom{n-a}{k-a} = \binom{n}{n-k}\binom{k}{a} \tag{5}$$

⁷. We have

$$\binom{n}{a} \sum_{k=a}^{n} \frac{(-1)^{k}}{k} \binom{n-a}{k-a}$$

$$= \sum_{k=a}^{n} \frac{(-1)^{k}}{k} \underbrace{\binom{n}{a} \binom{n-a}{k-a}}_{=\binom{n-k}{(by (5))}}$$

$$= \binom{n}{n-k} \binom{k}{a}$$

$$= \sum_{k=a}^{n} \frac{(-1)^{k}}{k} \binom{n}{n-k} \binom{k}{a} = \sum_{k=0}^{n-a} \underbrace{\frac{(-1)^{k+a}}{k+a}}_{=\binom{n-(k+a)}{(n-a)-k}} \binom{k+a}{a}$$

$$= \frac{(-1)^{k} (-1)^{a}}{k+a} = \binom{n}{(n-a)-k}$$

$$(\text{since } (-1)^{k+a} = (-1)^{k} (-1)^{a}) \text{ (since } n-(k+a) = (n-a)-k)}$$

(here, we have substituted k + a for k in the sum)

(here, we have substituted
$$k+a$$
 for k in the sum)
$$=\sum_{k=0}^{n-a}\frac{(-1)^k(-1)^a}{k+a}\binom{n}{(n-a)-k}\binom{k+a}{a}=(-1)^a\sum_{k=0}^{n-a}\frac{(-1)^k}{k+a}\binom{n}{(n-a)-k}\binom{k+a}{a}$$

$$=\frac{1}{a}\binom{n-a}{n-a}$$
(by Proposition 0.12 (b), applied to $j=n-a$ and $i=a$)

$$= (-1)^a \frac{1}{a} \underbrace{\binom{n-a}{n-a}}_{=1} = (-1)^a \frac{1}{a}.$$
(by Proposition 0.7, applied to $m=n-a$)

7*Proof of (5):* Let $k \in \{a, a+1, ..., n\}$. Thus, $a \le k \le n$, so that $k \ge a \ge 1 \ge 0$, so that $k \in \mathbb{N}$. Hence, Proposition 0.8 (applied to n and k instead of m and n) yields $\binom{n}{k} = \binom{n}{n-k}$. But Proposition 0.6 (applied to *k* and *a* instead of *a* and *b*) shows tha

$$\binom{n}{k}\binom{k}{a} = \binom{n}{a}\binom{n-a}{k-a}.$$

Hence,

$$\binom{n}{a}\binom{n-a}{k-a} = \underbrace{\binom{n}{k}}_{k} \binom{k}{a} = \binom{n}{n-k}\binom{k}{a}.$$
$$= \binom{n}{n-k}$$

This proves (5).

We can divide both sides of this equality by $\binom{n}{a}$ (since $\binom{n}{a} \neq 0$). Thus, we find

$$\sum_{k=a}^{n} \frac{(-1)^{k}}{k} \binom{n-a}{k-a} = (-1)^{a} \frac{1}{a} / \binom{n}{a} = \frac{(-1)^{a}}{a \binom{n}{a}}.$$

This solves Exercise 3.

0.5. Derangements with at most 1 descent

Exercise 4. Let $n \in \mathbb{N}$. How many derangements σ of [n] have at most 1 descent?

(See homework set #5 for the definitions of descents and of derangements.) Recall that for any $n \in \mathbb{N}$, we let S_n denote the set of all permutations of [n]. The main work of the solution to Exercise 4 is done by the following fact:

Proposition 0.13. Let $n \in \mathbb{N}$. Let $i \in [n-1]$. Then,

(the number of derangements of [n] whose only descent is i)

$$=\binom{n-2}{i-1}.$$

Proposition 0.13 is a result by Gessel and Reutenauer [GesReu93, Theorem 9.5], which they obtained using the theory of quasisymmetric functions. We shall instead prove it by elementary combinatorics.

To simplify its proof, let us first verify a lemma:

Lemma 0.14. Let $n \in \mathbb{N}$. Let $i \in [n-1]$. Let $\sigma \in S_n$ be a permutation satisfying $\sigma(1) < \sigma(2) < \cdots < \sigma(i)$ and $\sigma(i+1) < \sigma(i+2) < \cdots < \sigma(n)$ and $\sigma(1) \neq 1$ and $\sigma(n) \neq n$. Then, σ is a derangement of [n] whose only descent is i.

Proof of Lemma 0.14. Let k be a fixed point of σ . We shall derive a contradiction (from which we will, of course, conclude that σ has no fixed points).

We have $\sigma(k) = k$ (since k is a fixed point of σ).

Assume first that $k \le i$. We have $\sigma(1) < \sigma(2) < \cdots < \sigma(i)$, thus $\sigma(1) < \sigma(2) < \cdots < \sigma(k)$ (since $k \le i$). Thus, the k integers $\sigma(1)$, $\sigma(2)$, ..., $\sigma(k)$ are distinct. Also, $\sigma(1) \ne 1$, so that $\sigma(1) > 1$, so that $\sigma(1) \ge 2$. Hence,

$$2 \le \sigma(1) < \sigma(2) < \cdots < \sigma(k) = k$$
.

Hence, the k integers $\sigma(1)$, $\sigma(2)$,..., $\sigma(k)$ all lie between 2 and k; that is, they lie in the set $\{2,3,\ldots,k\}$. Since this set $\{2,3,\ldots,k\}$ has only k-1 elements, this shows (by the pigeonhole principle) that at least two of the k integers $\sigma(1)$, $\sigma(2)$,..., $\sigma(k)$

must be equal. But this contradicts the fact that the k integers $\sigma(1)$, $\sigma(2)$,..., $\sigma(k)$ are distinct.

This contradiction shows that our assumption (that $k \le i$) was false. Hence, we don't have $k \le i$. In other words, we have k > i. Hence, $k \ge i + 1$.

We have $\sigma(i+1) < \sigma(i+2) < \cdots < \sigma(n)$, thus $\sigma(k) < \sigma(k+1) < \cdots < \sigma(n)$ (since $k \ge i+1$). Thus, the n-k+1 integers $\sigma(k)$, $\sigma(k+1)$,..., $\sigma(n)$ are distinct. But $\sigma(n) \ne n$, so that $\sigma(n) < n$, so that $\sigma(n) \le n-1$. From $\sigma(k) = k$, we obtain

$$k = \sigma(k) < \sigma(k+1) < \cdots < \sigma(n) \le n-1.$$

Hence, the n-k+1 integers $\sigma(k)$, $\sigma(k+1)$,..., $\sigma(n)$ all lie between k and n-1; that is, they lie in the set $\{k, k+1, \ldots, n-1\}$. Since this set $\{k, k+1, \ldots, n-1\}$ has only n-k elements, this shows (by the pigeonhole principle) that at least two of the n-k+1 integers $\sigma(k)$, $\sigma(k+1)$,..., $\sigma(n)$ must be equal. But this contradicts the fact that the n-k+1 integers $\sigma(k)$, $\sigma(k+1)$,..., $\sigma(n)$ are distinct.

Now, forget that we fixed k. We thus have derived a contradiction for any fixed point k of σ . Hence, there exists no fixed point k of σ . In other words, the permutation σ has no fixed points. In other words, σ is a derangement.

Next, we shall show that the only descent of σ is i.

The map σ is a permutation, thus injective. Hence, $\sigma(i) \neq \sigma(i+1)$.

Assume (for the sake of contradiction) that $\sigma(i) \leq \sigma(i+1)$. Hence, $\sigma(i) < \sigma(i+1)$ (since $\sigma(i) \neq \sigma(i+1)$). Now,

$$\sigma(1) < \sigma(2) < \cdots < \sigma(i) < \sigma(i+1) < \sigma(i+2) < \cdots < \sigma(n)$$
.

In other words, $\sigma(1) < \sigma(2) < \cdots < \sigma(n)$. Hence, the numbers $\sigma(1)$, $\sigma(2)$, ..., $\sigma(n)$ are precisely the elements of [n] written down in increasing order (since σ is a permutation). In other words, $\sigma(k) = k$ for each $k \in [n]$. Applying this to k = 1, we find $\sigma(1) = 1$. This contradicts $\sigma(1) \neq 1$.

This contradiction shows that our assumption (that $\sigma(i) \leq \sigma(i+1)$) was false. Thus, we have $\sigma(i) > \sigma(i+1)$. In other words, i is a descent of σ . Moreover, σ cannot have any other descents than i (since $\sigma(1) < \sigma(2) < \cdots < \sigma(i)$ and $\sigma(i+1) < \sigma(i+2) < \cdots < \sigma(n)$); thus, i is the only descent of σ . Hence, σ is a derangement of [n] whose only descent is i. This proves Lemma 0.14.

Proof of Proposition 0.13. From $i \in [n-1]$, we obtain $1 \le i \le n-1$, so that $n-1 \ge 1$. Hence, $n \ge 2$.

Let us first analyze how a derangement of [n] whose only descent is i looks like. Let σ be a derangement of [n] whose only descent is i. Thus,

$$\sigma(1) < \sigma(2) < \dots < \sigma(i) \tag{6}$$

and

$$\sigma(i+1) < \sigma(i+2) < \dots < \sigma(n) \tag{7}$$

but $\sigma(i) > \sigma(i+1)$.

Since σ is a derangement, we know that σ has no fixed points. Hence, in particular, 1 cannot be a fixed point of σ . Thus, $\sigma(1) \neq 1$. Also, (6) shows that the numbers $\sigma(2), \sigma(3), \ldots, \sigma(i)$ are greater than $\sigma(1)$, and therefore greater than 1 (since $\sigma(1) \geq 1$); thus, they are distinct from 1. Hence, all the i numbers $\sigma(1), \sigma(2), \ldots, \sigma(i)$ are distinct from 1.

Furthermore, n cannot be a fixed point of σ (since σ has no fixed points). Hence, $\sigma(n) \neq n$. Also, (7) shows that the numbers $\sigma(i+1)$, $\sigma(i+2)$,..., $\sigma(n-1)$ are smaller than $\sigma(n)$, and thus smaller than n (since $\sigma(n) \leq n$); thus, they are distinct from n. Hence, all the n-i numbers $\sigma(i+1)$, $\sigma(i+2)$,..., $\sigma(n)$ are distinct from n. Therefore, $\sigma^{-1}(n) \notin \{i+1, i+2, \ldots, n\}$. Thus,

$$\sigma^{-1}(n) \in [n] \setminus \{i+1, i+2, \ldots, n\} = \{1, 2, \ldots, i\}.$$

In other words, $n = \sigma(j)$ for some $j \in \{1, 2, ..., i\}$. In other words, one of the numbers $\sigma(1), \sigma(2), ..., \sigma(i)$ is n.

So we know that all the i numbers $\sigma(1)$, $\sigma(2)$,..., $\sigma(i)$ are distinct from 1, but one of these numbers is n. Thus, $\{\sigma(1), \sigma(2), \ldots, \sigma(i)\}$ is a subset of $\{2, 3, \ldots, n\}$ that contains n. This subset is clearly an i-element subset (since $\sigma(1)$, $\sigma(2)$,..., $\sigma(i)$ are distinct).

Now, forget that we fixed σ . We thus have proven that if σ is a derangement of [n] whose only descent is i, then $\{\sigma(1), \sigma(2), \ldots, \sigma(i)\}$ is an i-element subset of $\{2,3,\ldots,n\}$ that contains n. Furthermore, if we know this subset, then we can uniquely reconstruct the whole permutation σ : Indeed, its first i values $\sigma(1), \sigma(2), \ldots, \sigma(i)$ are simply the elements of this subset written in increasing order (because of (6)), whereas the remaining n-i values $\sigma(i+1), \sigma(i+2), \ldots, \sigma(n)$ are the remaining n-i elements of [n] written in increasing order (because of (7)).

Thus, the following algorithm constructs every possible derangement σ of [n] whose only descent is i:

- First, choose an i-element subset S of $\{2,3,\ldots,n\}$ that contains n to become the set $\{\sigma(1),\sigma(2),\ldots,\sigma(i)\}$. There are $\binom{n-2}{i-1}$ choices here⁸.
- Then, the values of $\sigma(1)$, $\sigma(2)$,..., $\sigma(i)$ are uniquely determined (indeed, they have to be the i elements of S in increasing order).
- Furthermore, the values of $\sigma(i+1)$, $\sigma(i+2)$,..., $\sigma(n)$ are also uniquely determined (indeed, they have to be the n-i elements of $[n] \setminus S$ in increasing order).

⁸Here, we are using the fact that the number of *i*-element subsets *S* of $\{2,3,\ldots,n\}$ that contain *n* is $\binom{n-2}{i-1}$. This is easy to prove (in fact, choosing such a subset means choosing its i-1 elements other than n; and these i-1 elements are chosen from the (n-2)-element set $\{2,3,\ldots,n-1\}$).

Furthermore, every permutation σ constructed by this algorithm is actually a derangement σ of [n] whose only descent is i 9. Hence, the number of derangements σ of [n] whose only descent is i equals the number of ways to perform the above algorithm. But the latter number is clearly $\binom{n-2}{i-1}$ (since there are $\binom{n-2}{i-1}$ choices in the first step, and the next two steps are uniquely determined). Thus, the number of derangements σ of [n] whose only descent is i equals $\binom{n-2}{i-1}$. This proves Proposition 0.13.

Let us next recall a fundamental fact (which has already been proven in the solutions to homework set 1):

Proposition 0.15. Let $m \in \mathbb{N}$. Then,

$$\sum_{k=0}^{m} \binom{m}{k} = 2^{m}.$$

Solution to Exercise 4 (sketched). The answer is

$$\begin{cases} 1, & \text{if } n = 0; \\ 0, & \text{if } n = 1; . \\ 2^{n-2}, & \text{if } n > 1 \end{cases}$$

Proof. We WLOG assume that n > 1 (since the cases when n = 0 and when n = 1 can be easily dealt with). Thus, $n \ge 2$, so that $n - 2 \in \mathbb{N}$.

The only permutation having no descents is id, and this is not a derangement (since id has n > 0 fixed points). Thus, there exists no derangement having no descents. In other words,

(the number of all derangements having no descents) = 0.

⁹*Proof.* Let σ be a permutation constructed by this algorithm. From the definition of the algorithm, it follows immediately that $\sigma(1) < \sigma(2) < \cdots < \sigma(i)$ and $\sigma(i+1) < \sigma(i+2) < \cdots < \sigma(n)$ and $\sigma(1), \sigma(2), \ldots, \sigma(i) = S$ (where S is the i-element subset of $\{2, 3, \ldots, n\}$ that was chosen during the algorithm).

We have $i \ge 1$, so that $\sigma(1) \in {\sigma(1), \sigma(2), ..., \sigma(i)} = S \subseteq {2,3,...,n}$. Thus, $\sigma(1) \ge 2 > 1$, so that $\sigma(1) \ne 1$.

The definition of S yields $n \in S = \{\sigma(1), \sigma(2), \dots, \sigma(i)\}$, so that $\sigma^{-1}(n) \in \{1, 2, \dots, i\}$ and thus $\sigma^{-1}(n) \le i \le n - 1 < n$. Thus, $\sigma^{-1}(n) \ne n$, so that $\sigma(n) \ne n$.

Thus, Lemma 0.14 shows that σ is a derangement of [n] whose only descent is i. This is what we wanted to prove.

Now,

(the number of all derangements having at most 1 descent)

= (the number of all derangements having no descents)

+ (the number of all derangements having exactly 1 descent)

= (the number of all derangements having exactly 1 descent)

$$= \sum_{\substack{i \in [n-1] \\ = \sum_{i=1}^{n-1}}} \underbrace{\text{(the number of derangements of } [n] \text{ whose only descent is } i)}_{= \binom{n-2}{i-1}} = \sum_{i=1}^{n-1} \binom{n-2}{i-1} = \sum_{k=0}^{n-2} \binom{n-2}{k} \qquad \left(\begin{array}{c} \text{here, we have substituted } k \\ \text{for } i-1 \text{ in the sum} \end{array}\right)$$

$$= 2^{n-2} \qquad \text{(by Proposition 0.15, applied to } m=n-2\text{)}$$

$$= \begin{cases} 1, & \text{if } n=0; \\ 0, & \text{if } n=1; \\ 2^{n-2}, & \text{if } n>1 \end{cases}$$

This completes the proof.

0.6. Connected permutations

Definition 0.16. Let n be a positive integer. A permutation σ of [n] is said to be *connected* if and only if there exists no $k \in [n-1]$ such that $\sigma([k]) = [k]$.

For example, the permutation σ of [5] sending 1, 2, 3, 4, 5 to 2, 4, 1, 5, 3 is connected, since it satisfies

$$\begin{split} \sigma\left([1]\right) &= \{2\} \neq [1]\,, & \sigma\left([2]\right) &= \{2,4\} \neq [2]\,, \\ \sigma\left([3]\right) &= \{2,4,1\} \neq [3]\,, & \sigma\left([4]\right) &= \{2,4,1,5\} \neq [4]\,. \end{split}$$

But the permutation σ of [4] sending 1,2,3,4 to 2,1,4,3 is not connected, because it satisfies $\sigma([2]) = [2]$. Likewise, a permutation σ of [n] (for n > 1) satisfying $\sigma(1) = 1$ is never connected (since $\sigma([1]) = [1]$); the same holds for a permutation σ satisfying $\sigma(n) = n$ (since $\sigma([n-1]) = [n-1]$).

Exercise 5. For each positive integer n, let c_n denote the number of all connected permutations of [n]. (Thus, $c_1 = 1$, $c_2 = 1$ and $c_3 = 3$.)

Prove that

$$n! = \sum_{k=1}^{n} c_k (n-k)!$$
 for each positive integer n .

Exercise 5 appears (with an outline of a solution) in [Camero16, §3.4, Example: Connected permutations]. See also Sequence A003319 in the OEIS database for the sequence $(c_1, c_2, c_3, ...)$.

Solution to Exercise 5 (sketched). Let *n* be a positive integer.

If $\sigma \in S_n$, then a *return* of σ shall denote a positive integer $k \in [n]$ satisfying $\sigma([k]) = [k]$. Every $\sigma \in S_n$ has at least one return, namely the number n (since $\sigma([n]) = [n]$); thus, the smallest return of σ is well-defined.

It is easy to see that a permutation $\sigma \in S_n$ is connected if and only if its smallest return is n. We shall not use this, but we shall use the following closely connected fact:

Observation 1: Let $j \in [n]$. The number of permutations $\sigma \in S_n$ whose smallest return is j equals $c_j (n - j)!$.

[*Proof of Observation 1:* Let $\sigma \in S_n$ be a permutation whose smallest return is j. Then, j is a return of σ ; in other words, $\sigma([j]) = [j]$ (by the definition of a return). Hence, $\sigma(h) \in \sigma([j]) = [j]$ for each $h \in [j]$. Thus, we can define a map

$$\tau:[j]\to[j]$$
, $h\mapsto\sigma(h)$.

(This map τ is essentially the restriction of σ to [j], but the codomain is also being restricted to [j].) The map τ is injective (since σ is injective), and thus is a permutation of [j] (since it is an injective map between two finite sets of equal size). Moreover, the permutation τ of [j] is connected¹⁰.

Now, forget that we fixed σ . Thus, for each permutation $\sigma \in S_n$ whose smallest return is j, we have constructed a connected permutation τ of [j]. Let us denote this τ by τ_{σ} (to stress its dependence on σ). We now have the following algorithm to construct every permutation $\sigma \in S_n$ whose smallest return is j:

- First, pick any connected permutation τ of [j]; this permutation shall be the τ_{σ} corresponding to our σ . There are c_j choices at this step, since the number of connected permutations of [j] is c_j (by the definition of c_j).
- The values $\sigma(1)$, $\sigma(2)$,..., $\sigma(j)$ are now uniquely determined (because they are the values of the already chosen permutation $\tau_{\sigma} = \tau$), and are simply the numbers 1, 2, ..., j in some order. Next, choose the remaining values $\sigma(j+1)$, $\sigma(j+2)$,..., $\sigma(n)$. These n-j values must be the numbers j+1, j+2,...,n in some order; the only choice at this step is which order they are in. Thus, there are (n-j)! choices at this step.

¹⁰*Proof.* If there was some $k \in [j-1]$ such that $\tau([k]) = [k]$, then this k would be a return of σ (because the definition of τ shows that $\tau([k]) = \sigma([k])$, so that $\sigma([k]) = \tau([k]) = [k]$), which would contradict the fact that j is the **smallest** return of σ (indeed, k is smaller than j). Hence, there exists no $k \in [j-1]$ such that $\tau([k]) = [k]$. In other words, the permutation τ of [j] is connected (by the definition of "connected").

Our argument above shows that each permutation $\sigma \in S_n$ whose smallest return is j can be constructed by this algorithm. Conversely, it is easy to see (more or less by reversing the above argument) that every σ constructed by this algorithm is a permutation $\sigma \in S_n$ whose smallest return is j. Moreover, every set of choices during the algorithm yields a different such permutation. Thus, the number of permutations $\sigma \in S_n$ whose smallest return is j equals the number of ways of making choices during the algorithm. But the latter number is c_j (n-j)! (since we have c_j choices at the first step, and (n-j)! choices at the second step). Thus, the number of permutations $\sigma \in S_n$ whose smallest return is j equals c_j (n-j)!. This proves Observation 1.]

Now,

$$n! = \text{(the number of permutations } \sigma \in S_n)$$

$$= \sum_{\substack{j \in [n] \\ = \sum_{j=1}^n}} \underbrace{\text{(the number of permutations } \sigma \in S_n \text{ whose smallest return is } j)}_{= c_j(n-j)!}$$

$$= \sum_{j=1}^n c_j (n-j)! = \sum_{k=1}^n c_k (n-k)!$$

(here, we have renamed the summation index j as k). This solves Exercise 5.

Remark 0.17. Notice the similarity between our above solution of Exercise 5 and the proof of the recursion

$$m_n = \sum_{k=0}^{n-1} m_k m_{n-k-1}$$

(for n > 0) for the Catalan numbers m_0, m_1, m_2, \ldots (see, e.g., [Galvin17, §24, problem (2)]).

0.7. Permutations and intervals

An *integer interval* means a set of the form $\{a, a+1, ..., b\}$ for some integers a and b. (If a > b, then this set is understood to be empty.)

Exercise 6. Let $n \in \mathbb{N}$ and $r \in [n]$. A permutation σ of [n] is said to be *r-friendly* if for each $k \in \{r, r+1, \ldots, n\}$, the set $\sigma([k])$ is an integer interval.

(For example, the permutation σ of [6] sending 1,2,3,4,5,6 to 2,4,3,5,1,6 is 3-friendly (since $\sigma([3]) = \{2,3,4\}, \sigma([4]) = \{2,3,4,5\}, \sigma([5]) = \{1,2,3,4,5\}$ and $\sigma([6]) = \{1,2,3,4,5,6\}$ are integer intervals), and thus also r-friendly for each $r \geq 3$, but not 2-friendly (since $\sigma([2]) = \{2,4\}$ is not an integer interval).)

Prove that the number of r-friendly permutations of [n] is $2^{n-r}r!$.

See https://artofproblemsolving.com/community/c6h1542350_rfriendly_permutations_sending_some_intervals_to_intervals for a discussion of this exercise.

Before we solve this exercise, let us state two simple lemmas:

Lemma 0.18. Let S and T be two integer intervals such that $T \subseteq S$ and |S| = |T| + 1. Then, either $T = S \setminus \{\max S\}$ or $T = S \setminus \{\min S\}$ (or both).

Proof of Lemma 0.18 (sketched). Write the integer interval S in the form $S = \{a, a + 1, ..., b\}$ for some integers a and b.

From $T \subseteq S$, we obtain $|S \setminus T| = |S| - |T| = 1$ (since |S| = |T| + 1). In other words, $S \setminus T$ is a 1-element set. In other words, $S \setminus T = \{k\}$ for some object k. Consider this k.

From $T \subseteq S$, we obtain $T = S \setminus \underbrace{(S \setminus T)}_{=\{k\}} = S \setminus \{k\}$. Thus, $S \setminus \{k\}$ is an integer

interval (since *T* is an integer interval).

Also, $k \in \{k\} = S \setminus T \subseteq S = \{a, a+1, ..., b\}$. Hence, k is an integer satisfying $a \le k \le b$.

From $S = \{a, a + 1, ..., b\}$ (and $a \le b$), we obtain min S = a and max S = b.

Recall that $k \in \{a, a+1, ..., b\}$. Thus, we are in one of the following three cases:

Case 1: We have k = a.

Case 2: We have a < k < b.

Case 3: We have k = b.

Let us first consider Case 1. In this case, we have k = a. Thus, $T = S \setminus$

$$\left\{\underbrace{k}_{=a=\min S}\right\} = S \setminus \{\min S\}. \text{ Hence, either } T = S \setminus \{\max S\} \text{ or } T = S \setminus \{\min S\}$$

(or both). Therefore, Lemma 0.18 is proven in Case 1.

Let us now consider Case 2. In this case, we have a < k < b. Now,

$$T = \underbrace{S}_{=\{a,a+1,\dots,b\}} \setminus \{k\} = \{a,a+1,\dots,b\} \setminus \{k\}$$
$$= \{a,a+1,\dots,k-1,k+1,k+2,\dots,b\}$$

(since a < k < b). Hence, the set T contains the two elements a and b but not the element k that lies between them (in the sense of being larger than a but smaller than b). Therefore, the set T is not an integer interval. This contradicts the fact that T is an integer interval. Hence, Case 2 is impossible.

Let us finally consider Case 3. In this case, we have k = b. Thus, $T = S \setminus A$

$$\left\{\underbrace{k}_{=b=\max S}\right\} = S \setminus \{\max S\}. \text{ Hence, either } T = S \setminus \{\max S\} \text{ or } T = S \setminus \{\min S\} \text{ (or } T = S \setminus \{\min S\})$$

both). Therefore, Lemma 0.18 is proven in Case 3.

We have thus proven Lemma 0.18 in the two Cases 1 and 3. Since these two cases are the only possibilities (because we have shown that Case 2 is impossible), we thus conclude that Lemma 0.18 always holds.

Lemma 0.19. Let $n \in \mathbb{N}$ and $r \in [n]$. Let σ be an r-friendly permutation of [n]. Let $k \in \{r+1, r+2, \ldots, n\}$. Then, the following holds:

- (a) Both $\sigma([k-1])$ and $\sigma([k])$ are integer intervals.
- **(b)** The integer interval $\sigma([k-1])$ is obtained from the integer interval $\sigma([k])$ by removing either its largest or its smallest element.
 - **(c)** This element removed from $\sigma([k])$ is $\sigma(k)$.

Proof of Lemma 0.19. (a) We have $k \in \{r+1, r+2, ..., n\}$, so that $k-1 \in \{r, r+1, ..., n-1\} \subseteq \{r, r+1, ..., n\}$.

But σ is r-friendly. Thus, $\sigma([k-1])$ is an integer interval (since $k-1 \in \{r,r+1,\ldots,n\}$). For the same reason, $\sigma([k])$ is an integer interval (since $k \in \{r+1,r+2,\ldots,n\} \subseteq \{r,r+1,\ldots,n\}$). Thus, Lemma 0.19 (a) is proven.

(b) From Lemma 0.19 **(a)**, we know that both $\sigma([k-1])$ and $\sigma([k])$ are integer intervals. Moreover, the map σ is injective; therefore, $|\sigma([k])| = |[k]| = k$ and similarly $|\sigma([k-1])| = k-1$. Hence, $|\sigma([k-1])| + 1 = k$. Comparing this with $|\sigma([k])| = k$, we obtain $|\sigma([k])| = |\sigma([k-1])| + 1$.

But $[k-1]\subseteq [k]$, so that $\sigma([k-1])\subseteq \sigma([k])$. Hence, Lemma 0.18 (applied to $S=\sigma([k])$ and $T=\sigma([k-1])$) shows that either $\sigma([k-1])=\sigma([k])\setminus \{\max(\sigma([k]))\}$ or $\sigma([k-1])=\sigma([k])\setminus \{\min(\sigma([k]))\}$ (or both). In other words, the integer interval $\sigma([k-1])$ is obtained from the integer interval $\sigma([k])$ by removing either its largest or its smallest element. This proves Lemma 0.19 **(b)**.

(c) The element removed from $\sigma([k])$ is the unique element of $\sigma([k]) \setminus \sigma([k-1])$. Thus, we must prove that the unique element of $\sigma([k]) \setminus \sigma([k-1])$ is $\sigma(k)$.

The map σ is a bijection. Hence, $\sigma(X \setminus Y) = \sigma(X) \setminus \sigma(Y)$ for any two subsets X and Y of [n]. Applying this to $X = \sigma([k])$ and $Y = \sigma([k-1])$, we obtain $\sigma([k] \setminus [k-1]) = \sigma([k]) \setminus \sigma([k-1])$. Hence,

$$\sigma\left(\left[k\right]\right) \backslash \sigma\left(\left[k-1\right]\right) = \sigma\left(\underbrace{\left[k\right] \backslash \left[k-1\right]}_{=\left\{k\right\}}\right) = \sigma\left(\left\{k\right\}\right) = \left\{\sigma\left(k\right)\right\}.$$

Hence, the unique element of $\sigma([k]) \setminus \sigma([k-1])$ is $\sigma(k)$. This proves Lemma 0.19 **(c)**.

Solution to Exercise 6 (sketched). I claim that the following algorithm constructs every r-friendly permutation σ of [n]:

• We construct a sequence $(I_n, I_{n-1}, \ldots, I_r)$ of subsets of [n] with the property that $I_n \supseteq I_{n-1} \supseteq \cdots \supseteq I_r$ and that each I_i is an integer interval of size i. This construction proceeds recursively (i.e., we start with I_n , then construct I_{n-1} , then I_{n-2} , and so on until I_r); it begins by setting $I_n = [n]$ (which is clearly a subset of [n] and an integer interval of size n). Then, whenever a subset I_p of [n] is constructed (with $p \in \{r+1, r+2, \ldots, n\}$), we define I_{p-1} by removing either the largest or the smallest element from I_p .

This construction clearly guarantees that I_{p-1} will be a subset of [n] and an integer interval of size p-1, provided that I_p is a subset of [n] and an integer interval of size p. Also, it clearly guarantees that $I_n \supseteq I_{n-1} \supseteq \cdots \supseteq I_r$.

• Now, we define a map $\sigma : [n] \to [n]$ as follows: For each $p \in \{r+1, r+2, \ldots, n\}$, we let $\sigma(p)$ be the element of I_p that was removed in the construction of I_{p-1} (that is, the unique element of I_p that is not in I_{p-1}). Then, we define $\sigma(1), \sigma(2), \ldots, \sigma(r)$ to be the r elements of I_r in any order.

Thus, a map $\sigma : [n] \to [n]$ is defined.

This algorithm has the following properties:

Observation 1: The algorithm constructs an r-friendly permutation σ of [n] (whatever choices were made during the algorithm).

Observation 2: Every r-friendly permutation of [n] can be obtained through the algorithm. (That is, if τ is any r-friendly permutation of [n], then we can make the choices in the algorithm in such a way that the resulting permutation σ will be τ .)

Observation 3: The algorithm can be performed in $2^{n-r}r!$ ways (i.e., there is a total of $2^{n-r}r!$ options for the choices made during the algorithm).

Observation 4: Any two of these $2^{n-r}r!$ ways give rise to different permutations σ .

Clearly, once these four Observations are proven, we will immediately see that the number of r-friendly permutations of [n] is $2^{n-r}r!$. Thus, Exercise 6 will be solved. Hence, it remains to prove the four Observations.

[*Proof of Observation 1:* We must prove that the map $\sigma : [n] \to [n]$ constructed by the algorithm is an r-friendly permutation of [n].

Indeed, this map σ has the property that $\{\sigma(1), \sigma(2), \ldots, \sigma(r)\} = I_r$ (because $\sigma(1), \sigma(2), \ldots, \sigma(r)$ were defined to be the r elements of I_r in any order). Hence,

$$\sigma\left(\left[r\right]\right) = \sigma\left(\left\{1, 2, \ldots, r\right\}\right) = \left\{\sigma\left(1\right), \sigma\left(2\right), \ldots, \sigma\left(r\right)\right\} = I_r.$$

Now, it is easy to check that

$$\sigma\left([p]\right) = I_p \tag{8}$$

for each $p \in \{r, r+1, ..., n\}$ ¹¹. Applying this to p = n, we obtain $\sigma([n]) = I_n = [n]$. Hence, the map σ is surjective. Thus, σ is bijective (since any surjective

The *induction base* (i.e., the case p = r) follows from $\sigma([r]) = I_r$.

Now, let us handle the *induction step*. Thus, we must prove $\sigma([p]) = I_p$ under the assumption that $\sigma([p-1]) = I_{p-1}$. Recall that $\sigma(p)$ is the unique element of I_p that is not in I_{p-1} (this is how $\sigma(p)$ was defined). Thus, $I_p \setminus I_{p-1} = {\sigma(p)}$, so that $I_p = I_{p-1} \cup {\sigma(p)}$ (since $I_p \supseteq I_{p-1}$).

¹¹*Proof of (8):* We shall prove (8) by induction over p:

map between two finite sets of equal sizes is bijective). In other words, σ is a permutation of [n]. It remains to prove that σ is r-friendly.

For each $p \in \{r, r+1, ..., n\}$, the set $\sigma([p])$ is the set I_p (by (8)), and thus is an integer interval (since I_p is an integer interval). Renaming p as k in this statement, we obtain the following: For each $k \in \{r, r+1, ..., n\}$, the set $\sigma([k])$ is an integer interval. In other words, the permutation σ is r-friendly (by the definition of "r-friendly"). Thus, Observation 1 is proven.]

[*Proof of Observation 2:* Let τ be an r-friendly permutation of [n]. We must show that τ can be obtained through the algorithm. In other words, we have to explain which options we need to choose in order for the resulting permutation σ to be τ .

This is actually easy. There are two kinds of choices in the algorithm: The first kind of choice is the one made in the construction of I_{p-1} from I_p , in which we have to choose whether to remove the largest or the smallest element from I_p . The second kind of choice is the choice of order in which the elements of I_r are set to be $\sigma(1)$, $\sigma(2)$, ..., $\sigma(r)$.

So which options do we choose? In the first kind of choice, we choose to remove the element $\tau(r)$;

TODO

Let σ be an r-friendly permutation of [n]. Let $k \in [n-r]$. Thus, $k \le n-r$, so that $n-k \ge r$. Hence, the two numbers n-k and n-k+1 are both $\ge r$. Therefore, the sets $\sigma([n-k])$ and $\sigma([n-k+1])$ are two integer intervals (since σ is r-friendly).

TODO

[Proof of Observation 3: TODO]

[Proof of Observation 4: TODO]

0.8. Inverting a power series

Exercise 7. Find and prove an explicit formula for the coefficient of x^n in the formal power series $\frac{1}{1-x-x^2+x^3}$.

[**Hint:** The standard strategy is to factor $1 - x - x^2 + x^3$, then do partial fraction decomposition. But it is perfectly legitimate to guess the formula based on solving

$$(1 - x - x^2 + x^3) (b_0 + b_1 x + b_2 x^2 + b_3 x^3 + b_4 x^4 + \cdots) = 1$$

Now,

$$\sigma\left(\underbrace{[p]}_{=[p-1]\cup\{p\}}\right) = \sigma\left([p-1]\cup\{p\}\right) = \underbrace{\sigma\left([p-1]\right)}_{=I_{p-1}} \cup \underbrace{\sigma\left(\{p\}\right)}_{=\{\sigma(p)\}} = I_{p-1} \cup \{\sigma\left(p\right)\}$$

$$= I_{p}.$$

This completes the induction step. Thus, (8) is proven.

for the first few of the unknown coefficients b_0, b_1, b_2, \ldots , and then prove it by multiplying out. Either option works.]

Solution to Exercise 7 (sketched). The answer is

$$\frac{1}{1-x-x^2+x^3} = \sum_{n=0}^{\infty} \left\lfloor \frac{n+2}{2} \right\rfloor x^n$$
$$= 1+x+2x^2+2x^3+3x^4+3x^5+4x^6+4x^7+\cdots$$

One simple way to prove this is to check that

$$\left(1 - x - x^2 + x^3\right) \left(\sum_{n=0}^{\infty} \left\lfloor \frac{n+2}{2} \right\rfloor x^n\right)$$

$$= \sum_{n=0}^{\infty} \left\lfloor \frac{n+2}{2} \right\rfloor x^n - x \sum_{n=0}^{\infty} \left\lfloor \frac{n+2}{2} \right\rfloor x^n - x^2 \sum_{n=0}^{\infty} \left\lfloor \frac{n+2}{2} \right\rfloor x^n + x^3 \sum_{n=0}^{\infty} \left\lfloor \frac{n+2}{2} \right\rfloor x^n$$

$$= \sum_{n=0}^{\infty} \left\lfloor \frac{n+2}{2} \right\rfloor x^n - \sum_{n=0}^{\infty} \left\lfloor \frac{n+2}{2} \right\rfloor x^{n+1} - \sum_{n=0}^{\infty} \left\lfloor \frac{n+2}{2} \right\rfloor x^{n+2} + \sum_{n=0}^{\infty} \left\lfloor \frac{n+2}{2} \right\rfloor x^{n+3}$$

$$= \sum_{n=0}^{\infty} \left\lfloor \frac{n+2}{2} \right\rfloor x^n - \sum_{n=1}^{\infty} \left\lfloor \frac{n+1}{2} \right\rfloor x^n - \sum_{n=2}^{\infty} \left\lfloor \frac{n}{2} \right\rfloor x^n + \sum_{n=3}^{\infty} \left\lfloor \frac{n-1}{2} \right\rfloor x^n$$

$$\left(\text{ here, we have substituted } n - 1 \text{ for } n \text{ in the second sum, } n - 2 \text{ for } n \text{ in the third, and } n - 3 \text{ for } n \text{ in the fourth} \right)$$

$$= \sum_{n=0}^{\infty} \left\lfloor \frac{n+2}{2} \right\rfloor x^n - \left(\sum_{n=0}^{\infty} \left\lfloor \frac{n+1}{2} \right\rfloor x^n - \left\lfloor \frac{0+1}{2} \right\rfloor x^1 \right)$$

$$+ \left(\sum_{n=0}^{\infty} \left\lfloor \frac{n-1}{2} \right\rfloor x^n - \left\lfloor \frac{0}{2} \right\rfloor x^0 - \left\lfloor \frac{1}{2} \right\rfloor x^1 \right)$$

$$+ \left(\sum_{n=0}^{\infty} \left\lfloor \frac{n-1}{2} \right\rfloor x^n - \left\lfloor \frac{0-1}{2} \right\rfloor x^0 - \left\lfloor \frac{1-1}{2} \right\rfloor x^1 - \left\lfloor \frac{2-1}{2} \right\rfloor x^2 \right)$$

$$\text{here, we have extended the ranges of the last three sums in order for all of them to start at $n = 0$; then, we have subtracted back the extraneous addends
$$= \sum_{n=0}^{\infty} \left\lfloor \frac{n+2}{2} \right\rfloor x^n - \sum_{n=0}^{\infty} \left\lfloor \frac{n+1}{2} \right\rfloor x^n - \sum_{n=0}^{\infty} \left\lfloor \frac{n}{2} \right\rfloor x^n + \sum_{n=0}^{\infty} \left\lfloor \frac{n-1}{2} \right\rfloor x^n$$

$$= \sum_{n=0}^{\infty} \left\lfloor \frac{n+2}{2} \right\rfloor x^n - \sum_{n=0}^{\infty} \left\lfloor \frac{n+1}{2} \right\rfloor x^n - \sum_{n=0}^{\infty} \left\lfloor \frac{n}{2} \right\rfloor x^n + \sum_{n=0}^{\infty} \left\lfloor \frac{n-1}{2} \right\rfloor x^n - \left\lfloor \frac{2-1}{2} \right\rfloor x^2 \right)$$

$$= \sum_{n=0}^{\infty} \left(\left\lfloor \frac{n+2}{2} \right\rfloor - \left\lfloor \frac{n+1}{2} \right\rfloor x^0 + \left\lfloor \frac{1}{2} \right\rfloor x^1 - \left\lfloor \frac{n-1}{2} \right\rfloor x^n + \sum_{n=0}^{\infty} \left\lfloor \frac{1-1}{2} \right\rfloor x^1 - \left\lfloor \frac{2-1}{2} \right\rfloor x^2 \right)$$

$$= \sum_{n=0}^{\infty} \left(\left\lfloor \frac{n+2}{2} \right\rfloor - \left\lfloor \frac{n+1}{2} \right\rfloor - \left\lfloor \frac{n}{2} \right\rfloor + \left\lfloor \frac{n-1}{2} \right\rfloor \right) x^n + 1.$$

$$(9)$$$$

But each $q \in \mathbb{Q}$ satisfies

$$\lfloor q+1\rfloor = \lfloor q\rfloor + 1\tag{10}$$

(this is easy to check). Hence, each $n \in \mathbb{N}$ satisfies

$$\left[\frac{n+2}{2} \right] - \left[\frac{n+1}{2} \right] - \left[\frac{n-1}{2} \right] + \left[\frac{n-1}{2} \right]$$

$$= \left[\frac{n}{2} + 1 \right] = \left[\frac{n}{2} \right] + 1 = \left[\frac{n-1}{2} + 1 \right] = \left[\frac{n-1}{2} \right] + 1$$

$$= \left(\left[\frac{n}{2} \right] + 1 \right) - \left(\left[\frac{n-1}{2} \right] + 1 \right) - \left[\frac{n}{2} \right] + \left[\frac{n-1}{2} \right]$$

$$= 0. \tag{11}$$

Thus, (9) becomes

$$\left(1 - x - x^2 + x^3\right) \left(\sum_{n=0}^{\infty} \left\lfloor \frac{n+2}{2} \right\rfloor x^n\right)$$

$$= \sum_{n=0}^{\infty} \left(\left\lfloor \frac{n+2}{2} \right\rfloor - \left\lfloor \frac{n+1}{2} \right\rfloor - \left\lfloor \frac{n}{2} \right\rfloor + \left\lfloor \frac{n-1}{2} \right\rfloor\right) x^n + 1$$

$$= \sum_{n=0}^{\infty} 0x^n + 1 = 1.$$

Hence,
$$\frac{1}{1-x-x^2+x^3} = \sum_{n=0}^{\infty} \left\lfloor \frac{n+2}{2} \right\rfloor x^n$$
.

[Remark: The above solution is a neat a-posteriori proof, but it does not explain how the answer $\sum_{n=0}^{\infty} \left\lfloor \frac{n+2}{2} \right\rfloor x^n$ could have been found. Here is a quick sketch of this: The polynomial $1-x-x^2+x^3$ factors as $1-x-x^2+x^3=(1+x)(1-x)^2$.

Thus, partial fraction decomposition yields

$$\frac{1}{1-x-x^2+x^3} = \frac{1}{4(1+x)} + \frac{1}{4(1-x)} + \frac{1}{2(1-x)^2}$$

$$= \frac{1}{4} \sum_{n=0}^{\infty} (-1)^n x^n + \frac{1}{4} \sum_{n=0}^{\infty} x^n + \frac{1}{2} \sum_{n=0}^{\infty} (n+1) x^n$$

$$\left(\text{here, we used the formulas } \frac{1}{1+x} = \sum_{n=0}^{\infty} (-1)^n x^n, \frac{1}{1-x} = \sum_{n=0}^{\infty} x^n \text{ and } \frac{1}{(1-x)^2} = \sum_{n=0}^{\infty} (n+1) x^n \right)$$

$$= \sum_{n=0}^{\infty} \underbrace{\left(\frac{1}{4} (-1)^n + \frac{1}{4} + \frac{1}{2} (n+1) \right)}_{\text{(this can be proven by a simple case distinction)}} x^n$$

(this can be proven by a simple case distinction, depending on *n* being even or odd)

$$=\sum_{n=0}^{\infty}\left\lfloor\frac{n+2}{2}\right\rfloor x^n.$$

This is also a valid proof.]

References

[Camero16] Peter J. Cameron, *St Andrews Notes on Advanced Combinatorics, Part 1: The Art of Counting*, 28 March 2016.

https://cameroncounts.files.wordpress.com/2016/04/acnotes1.pdf

Errata can be found at http://www.cip.ifi.lmu.de/~grinberg/algebra/acnotes1-errata.pdf

- [dilemi17] Dilemian et al, math.stackexchange post #2455428 ("An identity involving binomial coefficients and rational functions"), https://math.stackexchange.com/q/2455428.
- [Galvin17] David Galvin, Basic discrete mathematics, 13 December 2017. http://www.cip.ifi.lmu.de/~grinberg/t/17f/60610lectures2017-Galvin.pdf
- [GesReu93] Ira M. Gessel, Christophe Reutenauer, *Counting Permutations with Given Cycle Structure and Descent Set*, Journal of Combinatorial Theory, Series A, **64**, Issue 2, November 1993, pp. 189–215. https://doi.org/10.1016/0097-3165(93)90095-P

- [Grinbe16] Darij Grinberg, Notes on the combinatorial fundamentals of algebra, 10 January 2019.
 - http://www.cip.ifi.lmu.de/~grinberg/primes2015/sols.pdf The numbering of theorems and formulas in this link might shift when the project gets updated; for a "frozen" version whose numbering is guaranteed to match that in the citations above, see https://github.com/darijgr/detnotes/releases/tag/2019-01-10.
- [Schmit04] William R. Schmitt, *Incidence Hopf algebras*, Journal of Pure and Applied Algebra **96** (1994), pp. 299–330, https://doi.org/10.1016/0022-4049(94)90105-8.