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0.1. The binomial transform, again

If a = (ag,a1,...,ayn) is a listﬂ of rational numbers, then the binomial transform of
this list a is defined to be the list (b, by, . .., bn) of rational numbers, where

n .
by =) (-1) <7Z)ai for eachn € {0,1,...,N}.
i=0

We shall denote the binomial transform of the list a by B (a). We have already
studied binomial transforms implicitly on the previous homework set: Namely,
Exercise 5 on homework set #4 says that if b is the binomial transform of a list a,
then a is (in turn) the binomial transform of b. In other words: If b = B (a), then
a = B(b). In other words, if we regard B as a map that transforms lists into lists,
then B> = Bo B = id.

Exercise 1. Let N € IN.
(a) Find the binomial transform of the list (1,1,...,1) (with N + 1 entries).
(b) For any given a € IN, find the binomial transform of the list

(o) (o) ()

(c) For any given q € Z, find the binomial transform of the list (¢°,4,...,4V).
(d) Find the binomial transform of the list (1,0,1,0,1,0,...) (this ends with 1
if N is even, and with 0 if N is odd).

Before we solve this exercise, let us recall some fundamental facts about binomial
coefficients:

Proposition 0.1. Let n € IN. Let x € Q and vy € Q. Then,

(x4y)" =) (Z) xyE,

k=0

'The words “finite list”, “tuple” and “finite sequence” mean the same thing. I only consider finite
lists on this homework set.
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(n) =

for every m € IN and n € IN satisfying m < n.

Proposition 0.2. We have

Corollary 0.3. Let n € N. Leti € {0,1,...,n}. Then,
n L. .
Yy (-1t (”) (]> =[i=n].
j=i 7\

Proposition [0.1] is simply the binomial formula. Proposition [0.2] is fundamental
and easy to prove. Corollary [0.3was proven in the solutions to homework set #4.
Let us derive a few simple corollaries from these facts.

Corollary 0.4. Let n € IN and g € Q. Then,

Proof of Corollary We have

n

g | =t =% (1) ot

v k=0 =1

(by Proposition [0.1} applied to x = —gand y = 1)

=3 (3) ot =2 (}) e

k=0 e
=3 0 ()= p 0 (5)q

(here, we have renamed the summation index k as 7). This proves Corollary O
Corollary 0.5. Let n € IN. Let i € IN. Then,

£ (7)) - vrna

Proof of Corollary Notice that each j € {0,1,...,i — 1} satisfies

AR
()
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B

We are in one of the following two cases:

Case 1: We have i < n.

Case 2: We have i > n.

Let us first consider Case 1. In this case, we have i < n. Thus, i € {0,1,...,n}.

Now,

L0 ()0
i—1 YANZ n : n\ (j
LG 0 @ ()0

] 5 :(_1 i+(j+i)
(by_) (since j=2i+j=i+(j+i) mod 2)

—

(here, we have split the sum at j = 7, since 0 < i < n)

e (g ()0) £ ()()

Sy

=0
=L e (7)) = coLen () (])
oy oo 3
=(-1)'| i=n | =(-)'[n=1.
— (n=i)

Hence, Corollary [0.5]is proven in Case 1.
Let us now consider Case 2. In this case, we have i > n. Thus, n < i, so that
ne{0,1,...,i—1} (since n € IN). But we don’t have n = i (since we have n < i);

thus, we have [n = i] = 0. Hence, (—1)' [n = i] = 0. But
N——

=0
5 () Q =R (oo (0=,
by {0

(since je{01,...,i—1}
(because j<n<i and j€IN)))

Hence, Corollary [0.5]is proven in Case 2.

2Proof: Let j € {0,1,...,i —1}. Thus, j <i—1 < iand j € N. Hence, Proposition (applied to j
and 7 instead of m and n) shows that (Z) = 0. This proves H
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We have now proven Corollary [0.5/in both Cases 1 and 2. Hence, Corollary [0.5 -
always holds.

Solution to Exercise[1l (b)

Claim 1: Let a € IN. The binomial transform of the list ( (2) , (1) P (N> )
is the list

I
2,
~
—~
|
—_
~—
2
—_
I
=,
~
<
—~
|
—_
~—
S
I
=
~—

(=1)"[0

(This is the list whose entries are all 0 except for the a-th entry — counted
from 0 —, which is (—1)". However, if a > N, then this list has no a-th
entry, and thus all of its entries are 0.)

[Proof of Claim 1: Let (b, by, . .., bn) be the binomial transform of the list
0 1 N
a a a
bn:i(—l)i ) (! foreachn € {0,1,...,N}
._ Z' a 4 4 4

(by the definition of the binomial transform).
Hence, each n € {0,1,..., N} satisfies

-5 ()6 =5 ()0

(here, we have renamed the summation index i as j)

= (-1)"[n = 4 (by Corollary [0.5] applied to i = a).
In other words,
(bo, b1, bn) = (=) [0 =a], (=1)" [T =a],..., (=1)" [N = a]).
Thus, the binomial transform of the list ((2) ( ) ( ) )
(-D*[0=4],(-1)"[1=4],. “[N = a]) (since the binomial transform of

the list ((S), (Z e, (Z;])) is (bo, bl, ...,bn)). This proves Claim 1.]
Thus, Exercise (1| (b) is solved.

(a)

Claim 2: The binomial transform of the list (1,1,...,1) (with N +1 en-
tries) is the list (1,0,0,...,0) (with one 1 and N zeroes).
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[Proof of Claim 2: We have (g) =1foreachn € {0,1,...,N}. Hence,

0 1 N
<<O),(O),...,(O))—(1,1,...,1) 2)
(with N + 1 entries).
But Claim 1 (applied to a = 0) shows that the binomial transform of the list

(e

((1)“’ 0=0), (-1’1 =0],.... -1 [N = O])
ylfl_/ =1 =1

=(0=0],1=0],...,[N=0]) = (1,0,0,...,0)

(with one 1 and N zeroes). In view of (2), this rewrites as follows: The binomial
transform of the list (1,1,...,1) (with N + 1 entries) is the list (1,0,0,...,0) (with
one 1 and N zeroes). This proves Claim 2.]

Thus, Exercise [I] (a) is solved.

(c)

Claim 3: Let q € Z. The binomial transform of the list (¢°,4%,...,4") is

(= a-g'...a-9").

[Proof of Claim 3: Let (by, by, . .., by) be the binomial transform of the list (¢°, 4%, ...,4").
Thus,

n . .
by =) (1) (1?>q’ foreachn € {0,1,...,N}

i=0 !

(by the definition of the binomial transform). Hence, each n € {0,1, ..., N} satisfies
< i(n i n
bi=) (=1)'(,)d=0-0q)

(by Corollary . In other words, (bg, by, ...,bn) = ((1 —9)°,1-9t,..., - q)N>.
Thus, the binomial transform of the list (¢4°,4%,...,¢") is ((1 — q)o, (1-— q)1 ,oo (1= q)N>

(since the binomial transform of the list (4%, 4',...,4Y) is (by,by,...,by)). This
proves Claim 3.]

Thus, Exercise [I] (c) is solved.

d

Claim 4: The binomial transform of the list (1,0,1,0,1,0,...) (with N +1
entries) is (1,2°,21,...,2N"1).
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[Proof of Claim 4: Let (ag,ay,...,ayn) be the list (1,0,1,0,1,0,...) (with N 41
entries). Thus, for each i € {0,1,..., N}, we have

1, ifiiseven; 1 ;
=<7 =211 —1)"). 3
g {o, if i is odd 2< +( )> ®)

(In fact, the last equality is easy to check: If i is even, then (—1)i = 1 and thus

% (1 + (—1)i) = %(1 +1) = 1; but if i is odd, then (—1)' = —1 and therefore
1 N
5 (1+ (-1)) =0)

Let (bo,b1,...,bNn) be the binomial transform of the list (1,0,1,0,1,0,...) (with
N + 1 entries). Thus, (b, by, . .., by) is the binomial transform of the list (ag, a1, ..., an)
(because the list (1,0,1,0,1,0,...) (with N 4 1 entries) is precisely (ag, a1, ...,an)).
Hence,

n .
by =) (-1) (?)a,- foreachn € {0,1,...,N}
i=0
(by the definition of the binomial transform). Thus, for each n € {0,1,..., N}, we
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obtain

—%(1+(—1)i)

i=0 —1i i=0
1 & n 1 L n
-5 e (D) ay tev(f) e
= i 2 = i
= ;:1 n - 1_t1 n
(by Corollary applied to g=1) (by Corollary applied to g=-1)
n n
1 1 1 1
=_(1-1 “l1-(-1| == 0" + -2
=0 =2 1, ifn=0 _,n
0, ifn>0

14271 ifn=0;
0, ifn>0

RY if n =0;
)2t ifn >0

1 1
(because 5 1+2""1 = 1 in the case when n = 0, whereas = - 0 + 2" 1 = 271

:1{L =0y _
2 0421, ifn>0

NI =N =

in the case when n > 0). In other words, (by,by,...,by) = (1,20,21,...,2N"1),
Thus, the binomial transform of the list (1,0,1,0,1,0,...) (with N + 1 entries) is
(1, 20 21 . .,ZNfl) (since the binomial transform of the list (1,0,1,0,1,0,...) (with
N + 1 entries) is (b, by, . .., bn)). This proves Claim 4.]

Thus, Exercise [1] (d) is solved. O

Exercise 2. Let N € IN. If a = (ag,4aq,...,ayn) is a list of N + 1 rational num-
bers, then W (a) denotes the list ((—1)NaN, (—D)Nan_1,..., (—1)Na0> of ratio-
nal numbers. (Thus, the list W (a) is obtained by reversing the list a and then

multiplying each of its entries by (—1)N.) Hence, W and B are two maps, each
transforming lists into lists.

Prove that BoWo B = WoBoW and (Bo W)’ = id.
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The equality (Bo W)> = id, spelt out in words, says that if we start with a list,
apply the map W, apply the binomial transform, then apply the map W to the
result, then again apply the binomial transform, then again apply the map W to
the result, then apply the binomial transform once again, then we end up with the
original list.

Before we solve Exercise [2, we shall arm ourselves with an identity:

Lemma 0.6. Let N, n and j be nonnegative integers such that N > n and N > j.

Then, ) | N N
s () =G5)

There are two ways to prove Lemma One way is combinatorial (using the
principle of inclusion and exclusion) and is explained in [Galvinl?7, proof of Iden-
tity 17.1].

The other way is algebraic. It relies on the following identity:

Lemma 0.7. For every x € IN and y € Z and n € IN with x < n, we have
_ _ n
() =5 ()G
n—x P x)\n—k

Lemma |0.7]is precisely [Grinbel6, Proposition 3.32 (e)] (where it is proven using
the Vandermonde convolution identity).
To derive Lemma [0.6| from Lemma [0.7, we will need the upper negation formula:

Q-3

Proposition [0.8]is Exercise 2 (a) in homework set 1.

Proposition 0.8. We have

forany n € Q and k € IN.

Proof of Lemma We have j < N (since N > j). Thus, Lemma [0.7] (applied to j, n
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and N instead of x, y and n) yields

V5L Sl () (")

=(—1)N=D+(N=F)
(since k—j=2N+k—j=(N—j)+(N—k) mod 2)

5 (1) +HNE) <k)( n >
P ~— i) \N —k

=DM

Eer o ()

But N —j > 0 (since N > j), so that N — j € IN. Hence, Proposition [0.8] (applied to
N —n and N — j instead of n and k) yields

(W)= \((N N 1)4

(n—j—1
s
N IN—j 1 \N—k k n
oo (0
(by @)

~ IR e e () (V)

N—j No Nk (k n
oY ety e () ()
(N Tz

-y

kljo ) (W) ®)

N , N—i
But0 < n < N (since N > n). Hence, we can split the sum }_ (_1)1 (’Z) ( ] z)
=0
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at i = n. We thus find
zo ()
n ) g N .
E () e ()

=0
(by Proposition
applied to n and i instead of m and n
(since n<i (since i>n+1>n)))

)

(here, we have substituted N — k for i in the sum)

_ :ZO (~)NH w
()"
e () () = (5

(by (B)). This proves Lemma O

We are now ready to solve Exercise

First solution to Exercise |2l Let us first focus on proving that BoWoB =WoBoW.
Indeed, let a be a list of N + 1 rational numbers. Write a in the form a =
(ag,a1,...,aN).
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Let b be the list B (a). Write the list b in the form b = (b, by, ...,by). Recall
that B (a) is the binomial transform of the list a. In other words, (bg, by, ...,bn)
is the binomial transform of the list (ag,a4,...,an) (since a = (ag,ay,...,ay) and
B(a) =b = (by,by,...,bN)). Thus,

n .
by =) (—1) (?)ai foreachn € {0,1,...,N} (6)
i=0
(by the definition of the binomial transform). Thus,
N v
bn:Z(—l)l(l)ai foreachn € {0,1,...,N} (7)
i=0

Bl

We have b = (bo, by, . .., by). Thus, W (b) = ((—1)N bn, (—1D)Nby_1, ..., (=N b0>

(by the definition of the list W (b)).
Now, let ¢ be the binomial transform of the list W (b). Thus, ¢ = B (W (b)).
Write the list ¢ in the form ¢ = (¢, c1,...,cn). Recall that ¢ is the binomial
transform of the list W (b). In other words, (co,c1,...,cn) is the binomial trans-

form of the list ((—1)NbN,(—1)NbN_1,...,(—1)N bo) (since ¢ = (cp,¢1,-.-,CN)

and W (b) = ((—1)NbN,(—1)NbN_1,...,(—1)Nb0)). Thus,

en = jzo(—ni (”) (—=1)N by for each n € {0,1,...,N} (8)

(by the definition of the binomial transform).

On the other hand, a = (ag, 41, ...,ay). Thus, W (a) = ((—1)NaN, (DN an_1, ...

(by the definition of W (a)). Let d be the binomial transform of the list W (a). Thus,
d =B (W (a)).

N .
3Proofof :Letn € {0,1,...,N}. Then, 0 < n < N. Hence, we can split the sum }_ (—1)’ (?) a;
i=0

at i = n. We thus find

N .
izo(_l)l <TZ “

\,./

(by ProposmonF
applied to n and i instead of m and n
(since n<i (since i>n+1>n)))

:i( ( )al+z;rl Oaizlé(—l)i ('Z)a,-:bn
e

(by (6))- This proves (7).
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Write the list d in the form d = (dy,dy,...,dn). Recall that d is the binomial
transform of the list W (a). In other words, (dg,dy,...,dy) is the binomial trans-

form of the list ((—1)NIZN, (—1)N61N,1,. . .,(—1)Na0> (since d = (do,dl,. . .,dN)
and W (a) = ((—1)NaN,(—1)NuN_1,..., (—1)Na0>). Thus,

d, = f (-1 (”) (—D)Nay_;i for each n € {0,1,...,N} 9)

(by the definition of the binomial transform).
Finally, from d = (do, dy,...,dn), we obtain

W(d) = ((~)Vdn, ()N dya, o (-1)V do) (10)
(by the definition of W (d)).
We have
(BoWoB)(a)=B (W (B(a))) =B(W(b))=c
oy
and

(WoBoW)(a)=W (B(W(a))) =Ww(d).
=d
We shall now show that ¢ = W (d).
Indeed, for any g € {0,1,..., N}, we have

o
|
™=

Il
=

(-1) (5) a; (by (7), applied to n = g)

(-1) (f) " (1)

I
™=

-
I
o

(here, we have renamed the summation index i as j).
Now, let n € {0,1,...,N} be arbitrary. Then, n < N, so that N > n. Hence,
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N —n > 0,so that 0 < N —n < N. But (8) becomes

n - /n
=LV () DY b
N (N —1i
_‘Zo(_l)]( ' )aj
i=
(by (11), applied to g=N—i)

=y (-1 () VY (1) (N._ i)aj

i=0 ! j=0 J
n N . . _ 4
~yy o (1) et e (Y
i=0j=0 ! ]
——
N n
=y X
j=0i=0
N n . _
—ry e (F) et e (Y
j=0i=0 ! ]
N , n , _
-y ()Y (- ( o (DY )) 2
-0 T i=0 L J ~—
R o =AN-(N-)
(since N+j=N—jmod 2) B N—-—n (since j=N—(N—j))
(N

(by Lemma [0.6] (since N>j))
N N
i (N —n i (N —n
=Y. (-7 ( -)ﬂN Noj) =2 (=1) ( , )aN—'
];) N—j (=) z—ZO ! l
(here, we have substituted i for N — j in the sum)

:N_n(_1)i (Ni_”)aNiJr }% (-1)' <N._”> anN-i

i=N—n+1

I g

(by Propgsition
applied to N—n and i instead of m and n
(since N—n<i (since i>N—n+1>N—n)))

(here, we have split the sum at i = N —n (because 0 < N —n < N))

_ Nin (—1) (N - ") an_i+ i_ﬁm (1) Oay_; = Ij_f; (-1 (N - ”) an_i.

J

=0




page 14

Math 4990 Fall 2017 (Darij Grinberg): homework set 5

Comparing this with
(—1) N dN—n

——
N—n . —
= .ZO (1) (—)Nay
=
(by @), applied to N—n
instead of n)
aN 1)

- () (NZO o (YT 0V
“T e (YT @ et = B e (Y

((-1)(-1)N=1N=1

we obtain ¢, = (—1)" dn_p
Now, forget that we fixed n. We thus have proven that ¢, = (—1)N dn_p for each
N}. In other words,

ne{0,1,...,
((=DNan, (~1)Ndy-1,o, (~1)N do)

(co,c1,---,CN)

Thus
(BoWoB)(a)=B (W (B(a))) =B(W(b))=c
N~

b
CO/C1/---/CN) dN/( 1)NdN_1,...,(—1)Nd()>
( € ) (by (10)
(W(a
W W oBo W) ( )
Now, forget that we fixed a. We thus have proven that (Bo Wo B) (a) = (Wo Bo W) (a)
for each list a of N + 1 rational numbers. In other words,
BoWoB=WoBoW. (12)
Next, we notice that
BoB =id (13)
A and
WoW =id (16)
.,LlN).

by). Recall that B (a) is the

4Proof Let a be a list of N + 1 rational numbers. Write a in the form a = (ag, a1,
by) is the binomial transform of the

Let b be the list B (a). Write the list b in the form b = (by, by,
binomial transform of the list a. In other words, (b, by, ...,
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list (ag,a1,...,ay) (since a = (ag,ay,...,ay) and B (a) =b = (by,by,...,bN)). Thus,
! ; (n
bn—Z(—l)l(i)ai foreachn € {0,1,...,N}
i=0
(by the definition of the binomial transform). Hence, Exercise 5 on homework set #4 says that
& : (n
an:Z(—1)l<i>bi for eachn € {0,1,...,N}. (14)
i=0

Let c be the list B (b). Write the list ¢ in the form ¢ = (co, ¢y, ...,cn). Recall that B (b) is the
binomial transform of the list b. In other words, (cg, ¢1,...,cn) is the binomial transform of the
list (bo, by, ...,bN) (since b = (bg,by,...,by) and B (b) = ¢ = (co,¢1,---,¢n)). Thus,

Cy = i (—1)i (7) b; for each n € {0,1,...,N} (15)

(by the definition of the binomial transform).
Now, for each n € {0,1,..., N}, we have

Cn

e (s @
ay (by (14)) .

In other words, (cg,c1,...,cn) = (ag,a1,...,an). Thus,

(BOB) (a) =B B(a) = B(b) =Cc= (Co,Cl,...,CN) = (ﬂo,al,.
iy

=a=id(a).

..,aN)

Now, forget that we fixed a. We thus have shown that (Bo B) (a) = id (a) for each list a of
N + 1 rational numbers. In other words, B o B = id. This proves (I3).
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El Hence,
(BoW)>=BoWoBoWoBoW =WoBoWoWoBoW
S—— S——
=WoBoW =id
(by (12)) (by (16))
:WOE\O/_@OW:WOW:id (by (16)) .
=id
by (1)
This completes the solution of Exercise O

TODO: Write up the second solution.

0.2. Another recurrence

Exercise 3. Consider the sequence (ag, a1, 42, ...) of integers given by
ag =2, a; = 20, a, = 20a,_1 —99a,,_» forn > 2.

Find an explicit formula for a,.

SProof. Let a be a list of N + 1 rational numbers. Write a in the form a = (ag, ay, . .., an).
Let b be the list W (a). Write the list b in the form b = (b, by, ..., bn). Thus, (by, by, ...,bN) =

b=W(a) = ((—1)NaN,(—1)NaN,1,...,(—1)Na0) (by the definition of W (a), because a =
(ag,a1,...,an)). In other words,

by = (—1)N an_p foreachn € {0,1,...,N}. 17)

Hence, for each n € {0,1,..., N}, we have

DY v = (DT EDT av v = v v =
=Dy vy =((-1(-1)N=1N=1

(by (17), applied

to N—n instead of n)

(since N — (N —n) = n). In other words,

((—1)N bNr (—1)N belr ey (—1)N bo) = (ﬂo, ai,... ,aN) .

But recall that b = (bg, by, . .., by). Hence, the definition of W (b) yields

W (b) = ((—1)NbN,(—1)NbN,l,...,(—1)Nb0) = (ag,a1,...,aN) = a.

Thus,

(WoW)(a) =W |[W(a) | =W (b) =a=id(a).
N
—b
Now, forget that we fixed a. We thus have shown that (W o W) (a) = id (a) for each list a of
N + 1 rational numbers. In other words, W o W = id. This proves (16).
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[Hint: Use of generating functions is allowed. To solve Exercise [3| in the
same way as I proved Binet’s formula in class, partial fraction decomposition
is needed. The Wikipedia examples can be useful.]

Solution to Exercise|3| (sketched). The answer is a, = 9" 4+-11". Once you have guessed
this, you can of course prove this by a strong induction over n. But how can you
find this?

Essentially every way to prove the Binet formula for the Fibonacci sequence can
be repurposed to prove a, = 9" 4+ 11". Let me outline how this can be done using
generating functions: Define the generating function A (x) = ag + a1x + apx? + - - -
(a formal power series in the indeterminate x over C). Then,

Ax) = ag + a1x + arx? + asx® +agxt + - -
= 2 +20x + (20a; — 99ag) x*> 4 (20a; — 99a;) x> + (20a3 — 99az) x* + - -
(by the recursive definition of our sequence

)
=2+ 20x + 20x (a1x+a2x2+a3x3+---> —99x? a0+a1x+a2x2+a3x3+-~

(. J (.

—A(x)-ay=A(x)-2 —A(x)
= 24 20x + 20x (A (x) —2) — 99x*A (x)
=2 —20x +20xA (x) — 99x*A (x).

This is a linear equation in A (x). Solving it results in

2 —20x

A = .
(x) 1 —20x + 99x2

The denominator 1 — 20x + 99x? can be factored as (1 —9x) (1 —11x) (and you
can find this factorization easily by finding the roots of 1 — 20x + 99x2, using the
quadratic formula). Thus,

Ax) = 2 —20x _ 1 N 1
C(1-9x)(1—-11x) 1—9x 1—11x
h\,_./ N’

=Y Ox)'=Y 9nxt =Y (1lx)'= Y 117x"
n>0 n>0 n>0 n>0

(by partial fraction decomposition)

=Y 9+ ) 1M =) (9" +117)«"

n>0 n>0 n>0

Comparing coefficients of x”, we obtain a, = 9" + 11" (since the coefficient of x" in
A (x) is ay). O
0.3. Counting permutations by descents

If o is a permutation of [n] for some n € IN, then a descent of o means an element
i € [n—1] satisfying o (i) > o (i +1). For example, the permutation ¢ of [5] with
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(c(1),0(2),0(3),0(4),0(5)) = (3,1,4,5,2) has descents 1 (since 3 > 1) and 4
(since 5 > 2).

Exercise 4. Let n be a positive integer. How many permutations of [n] have at
most 1 descent?

(For example, the permutation ¢ of [5] with (¢ (1),0(2),0(3),0(4),0(5)) =
(1,4,2,3,5) has exactly 1 descent: namely, 2 is its only descent.)

Solution to Exercise 4| (sketched). The answer is 2" — n. Let me give a proof.

How many permutations of [n] have no descents? These are clearly the permu-
tations o of [n] satisfying (1) < ¢(2) < --- < ¢ (n). There is only one such
permutation: namely, id. (See [Grinbel6, Exercise 5.2 (d)] for the rigorous proof.)
Thus,

(the number of permutations of [n1] having no descents) = 1. (18)

Now, fix k € [n — 1]. How many permutations of [1] have k as their only descent?

Let us ask a somewhat simpler question: How many permutations of [n] have
no descents apart from k (but may or may not have k as a descent)? These are the
permutations o of [n] satisfying

c(1)<oc(2)<---<o(k) and ck+1)<oc(k+2)<---<o(n).
Here is one way to construct such a permutation o

e First, choose a k-element subset S of [11] to become the set {c (1) ,0(2),...,0 (k)}.

There are (Z) choices here.

e Then, the values of 0 (1),0(2),...,0 (k) are uniquely determined (indeed,
they have to be the k elements of S in increasing order).

e Furthermore, the valuesof o (k+1),0 (k+2),...,0 (n) are also uniquely de-
termined (indeed, they have to be the n — k elements of 1] \ S in increasing
order).

n
Thus, in total, we have ( k) options. Hence,

(the number of permutations of [n] having no descents apart from k)

()
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Hencce,

n
k
= (the number of permutations of [n] having no descents apart from k)

= (the number of permutations of [n] having k as their only descent)
+ (the number of permutations of [n] having no descents)

Gy (8

= (the number of permutations of [n] having k as their only descent) + 1.

Hence,

(the number of permutations of [n] having k as their only descent)

n
_ (k> Y (19)

Now, forget that we fixed k. We thus have proven for each k € [n —1].
But any descent of a permutation of [1n] must be one of the integers 1,2,...,n— 1.
Hence,

(the number of permutations of [n] having exactly 1 descent)
n—1
Z (the number of permutations of [1] having k as their only descent)

I
00 |

Y

=1

because the sum Z — 1) differs from the sum Z 1
k=1 k k=0 k
in the lack of the addends for k = 0 and for k =n

n n n
Z -(1-1)— (1—1):2(()—1)
k=0 k=0 k
" (n
-3 ) ) =2 (1),
k=0 k
——’
(as youzshould
know by now)
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Finally,

(the number of permutations of [n] having at most 1 descent)
= (the number of permutations of [n] having exactly 1 descent)

(. /
~

=2"—(n+1)

+ (the number of permutations of [n] having no descents)

- v

-1
(by (18))

— 2" (n+1)+1=2"—n.

0.4. Counting derangements squaring to the identity

Exercise 5. Let n € N. How many derangements ¢ of [n] satisfy 0% = id ?

(For example, the derangement ¢ of [6] sending 1,2,3,4,5,6 to 3,6,1,5,4,2
satisfies 0% = id.)

[Hint: The answer will depend on whether 7 is even or odd.]

Solution to Exercise |5| (sketched). The answer is

(n—1)(n—3)---1, ifniseven;
0, if nisodd

The proof in the case of even 7 is similar to part of the proof of Observation 2 in
the solution of Exercise 3 on homework set #4.
TODO: Details. u

0.5. Iteration of maps on finite sets

The next two exercises study what happens if you apply a map from a finite set to
itself several times.

Exercise 6. Let n € IN. Let S be an n-element set. Let f : S — S be any map.
(a) Prove that f0(S) 2 f1(S) 2 f2(S) 2 ---.
(b) Prove that f" (S) = f*(S) for each integer k > n.
(c) Define amap g: f*(S) = f" (S) by

g(x)=f(x) for each x € f" (S).

(Thus, g is the restriction of f onto the image f" (S), regarded as a map from
£7(5) 10 7 (5).

Prove that g is well-defined (i.e., that f (x) actually belongs to f" (S) for each
x € f*(S)) and is a permutation of f" (S).

[Hint: For part (b), first prove that there exists some m € {0,1,...,n} such
that f™ (S) = f"*1(S). Then argue that f* (S) = f"*1(S).]
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Example 0.9. Let n =7. Let S = [7]. Let f : S — S be the map with

(f (1), f(2),£3),f(4).f(5).f(6),f(7) =(44557233).
Then,

= {2,4,5} for each k > 2.

Thus, in particular, " (S) = {2,4,5}. The map g is the permutation of this set
f"(S) = {2,4,5} sending 2,4,5 to 4,5, 2, respectively. It is perhaps worthwhile
to draw the “cycle digraph” of f (which is not literally a cycle digraph, because
f is not a permutation, but is constructed in the same way):

6\ /7

Solution to Exercise[6] (sketched). (a) We must show that f*(S) D fk+1(S) for each

k € N. But this is clear: If k € IN, then f*™1(S) = f5 [ f(S) | C f*(S).
S~~~

cS
(b) Part (a) shows that f2(S) D f1(S) D f2(S) D ---. Hence, (S)] >
FL ) =12 (5)] 2
In other words, the sequence (|f° (S) (9)|,1f*(S)|,...) is weakly decreas-

ing. The rough idea of the following argument is to show that this sequence must
stagnate somewhere between its tirst n + 2 elements (that is, there must exist some
p € [n+1] satisfying [fP~1(S)| = [f?(S)]); and then, to show that once it stag-
nates, it stays constant (i.e., once two consecutive terms of this sequence are equal,
all the terms that follow must also be equal).

Here is the rigorous version:

We claim that there exists some p € [n+ 1] satisfying [fP~1(S)| = |f7(S)]
Indeed, assume the contrary. Thus, each p € [n + 1] satisfies |f7~ 1 (S)| # |7 (S)|
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and thus |fP~1(S)| > [f? (S)] (since |0 (S)| = [f1 (S)| = |f?(S)| = - - ). Hence,
L= e =)

Thus, the n + 2 numbers |0 (S)|,|f! (S) f"+1(S)] are distinct. But this is
absurd, because these n 4 2 numbers all lie in the (7 + 1)-element set {0,1,...,n}
(since they are sizes of subsets of the n-element set S) and therefore (by the pigeon-
hole principle) they cannot be all distinct. Thus, we obtain a contradiction.

Hence, we have shown that there exists some p € [n + 1] satisfying |f*~! (S)| =
|fP(S)|. Consider this p.

Part (a) shows that 71 (S) D f¥ (S). Combined with |fP~1(S)| = |f? (S)|, this
yields fP=1(S) = £7(5) f}

Now, I claim that
FPH(S) = f(S) foreachh > p — 1. (20)

[Proof of (20): Induction over h.

The induction base (the case h = p — 1) is tautological.

For the induction step, assume that fP~1 (S) = " (S) for some h > p — 1; we then
must show that f7~1(S) = fi+1(S).

Apply the map f to both sides of the equality f*~1(S) = f"(S), we obtain
F(FP1(9) = £ (F4(S)) = f*1(S). Comparing this with £ (71 () = f7 (S) —
fP=1(S), we obtain fP~1(S) = f"*+1(S). This completes the induction step. Thus,
is proven.]

We have p € [n+ 1], so that p < n+1, so thatn > p — 1. Hence, (applied to
h = n) yields fP~1(S) = f*(S).

Let k > n be an integer. Thus, k > n > p — 1 and therefore fP~1(S) = f*(S)
(by (20), applied to h = k). Comparing this with fP~1(S) = f"(S), we obtain
f"(S) = f*(S). This solves part (b).

(o) It is straightforward to see that g is well-defined: after all, each x € f"(S)

’ AR

satisfies f (x) € f (f" (5)) = "7 (S) = f* | £(S) | S f"(S).
cs

It remains to prove that g is a permutation of f” (S). In other words, it remains
to prove that g is bijective.

The definition of ¢ shows that ¢ (f" (S)) = f (f"(S)) = f"*1(S). Butn+1 > n.
Hence, part (b) (applied to k = n + 1) yields " (S) = f*+1 (S). Hence, g (f" (S)) =
f1(S) = f"(S). In other words, the map g is surjective. Hence, this map ¢ is
bijective (since any surjective map between two finite sets of equal sizes is bijective).

As we have said, this completes the solution of part (c).
TODO: More details. O

®What we have used here is the fact that if two finite sets A and B satisfy A O B and |A| = |B],
then A = B. (We have applied this fact to A = fP~1(S) and B = f? (S).)
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Exercise 7. Let n € IN. Let S be an n-element set. Let f : S — S be any map.

(@) If f is a permutation of S, then prove that there exists some p € [n!] such
that f7 = id.

(b) Prove in general (i.e., not only when f is a permutation) that there exist
two integers u and v with 0 < u < v < n!and f* = f°.

[Hint: First prove part (b) in the case when f is a permutation (hint: what does
the pigeonhole principle say about the permutations f°, f1,..., f* ?). Then, use
this to show part (a). Finally, prove part (b) in the general case, by applying part
(a) to the map g from Exercise [6}]

Solution to Exercise[7] (sketched). (a) Assume that f is a permutation of S. Since f is
bijective, so are all the n! + 1 maps f°, f,..., f* (since a composition of bijective
maps is always bijective). In other words, f°, f1,..., f" are n! + 1 permutations of
S. But there are only n! permutations of S. Hence, by the pigeonhole principle, (at
least) two of these permutations fo, f 1., f”! are equal. That is, there exist two
integers # and v with 0 < u < v < n!and f* = f°. Consider these u and v. Now,
f* = f? = f""o f* Since f* is bijective, we can cancel f* from this equality, and
thus find id = f°*. Since v — u € [n!], we are done with part (a).

(b) If f is surjective, then f must be bijective (since any surjective map between
two finite sets of equal sizes is bijective), and therefore f is a permutation of S; but
then, the claim of part (b) follows from part (a). Hence, we WLOG assume that f is
not surjective. Thus, the image f (S) is a proper subset of S. Hence, S has a proper
subset; thus, S # @. Hence, f" (S) # @. Let g = |f" (S)|-

Let g be as in Exercise [f] (c). Then, g is a permutation of " (S) (by Exercise [f|
(0)). Exercise[7] (a) (applied to /" (S), g and g instead of S, n and f) thus shows that
there exists some p € [g!] such that ¢ = id. Consider this p.

Each x € f" (S) satisfies g (x) = f (x) (by the definition of g) and thus

g (x) = f"(x)

for each r € IN (by induction over r). Applying this to r = p, we conclude that
every x € f" (S) satisfies g¥ (x) = fP (x), hence

fPx)= g (x) =id(x) = x. (21)
—~—
=id
Thus,
fn — fp+?l. (22)

[Proof of (22): Let y € S. Then, f" (y) € " (S). Hence, (applied to x = " (y))

yields f¥ (f"(y)) = f" (y). Thus, f"(y) = f¥(f" (y)) = fP"" (y). Since we have
shown this for each y € S, we thus conclude that " = fP*". This proves (22).]

But Exercise [¢] (a) yields f°(S) 2 f1(S) 2 f2(S) D -+, so that f1(S) 2 f"(S)
(since n = |S| > 0 (because S # @)). Hence, f" (S) C f'(S) = f(S). Therefore,
™ (S) is a proper subset of S (since f (S) is a proper subset of S). Thus, |f" (S)| <
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|S| = n. Thus, g = |f"(S)| < n, so that ¢ < n—1, and thus g! < (n —1)! (since
o220

From p € [q!], we obtain 0 < p < g!.

If n < 2, then the claim of Exercise [7| (b) can easily be checked by hand (since
there are at most 4 maps f : S — S in this case). Thus, WLOG assume that n > 2.

Thus, n > 3, and therefore n < (n — 1)2 (check this!). Hence,

n<(n—-17>=m-1)- (n—1) <(mn—-1) - (n—1)!
<12+ (n—=1)=(n—-1)!

=n-n—-D'—n—-1!=n—(n-1)~L
————

=n!

Hence, n+ (n —1)! <nl,sothatn+ ¢q! <n+ (n—1)! <nl Thus,
~
<(n—1)!

= | = ! |
0<mn 0 tn< p tn<g'+n=n+gq! <nl
<p Sh!

Hence, from , we conclude that there exist two integers u and v with 0 < u <
v <nland f* = f’ (namely, u = n and v = p + n). This solves Exercise [7] (b).
TODO: More details. O
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