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0.1. The binomial transform, again

If a = (a0, a1, . . . , aN) is a list1 of rational numbers, then the binomial transform of
this list a is defined to be the list (b0, b1, . . . , bN) of rational numbers, where

bn =
n

∑
i=0

(−1)i
(

n
i

)
ai for each n ∈ {0, 1, . . . , N} .

We shall denote the binomial transform of the list a by B (a). We have already
studied binomial transforms implicitly on the previous homework set: Namely,
Exercise 5 on homework set #4 says that if b is the binomial transform of a list a,
then a is (in turn) the binomial transform of b. In other words: If b = B (a), then
a = B (b). In other words, if we regard B as a map that transforms lists into lists,
then B2 = B ◦ B = id.

Exercise 1. Let N ∈N.
(a) Find the binomial transform of the list (1, 1, . . . , 1) (with N + 1 entries).
(b) For any given a ∈ N, find the binomial transform of the list((

0
a

)
,
(

1
a

)
, . . . ,

(
N
a

))
.

(c) For any given q ∈ Z, find the binomial transform of the list
(
q0, q1, . . . , qN).

(d) Find the binomial transform of the list (1, 0, 1, 0, 1, 0, . . .) (this ends with 1
if N is even, and with 0 if N is odd).

Before we solve this exercise, let us recall some fundamental facts about binomial
coefficients:

Proposition 0.1. Let n ∈N. Let x ∈ Q and y ∈ Q. Then,

(x + y)n =
n

∑
k=0

(
n
k

)
xkyn−k.

1The words “finite list”, “tuple” and “finite sequence” mean the same thing. I only consider finite
lists on this homework set.
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Proposition 0.2. We have (
m
n

)
= 0

for every m ∈N and n ∈N satisfying m < n.

Corollary 0.3. Let n ∈N. Let i ∈ {0, 1, . . . , n}. Then,

n

∑
j=i

(−1)j+i
(

n
j

)(
j
i

)
= [i = n] .

Proposition 0.1 is simply the binomial formula. Proposition 0.2 is fundamental
and easy to prove. Corollary 0.3 was proven in the solutions to homework set #4.

Let us derive a few simple corollaries from these facts.

Corollary 0.4. Let n ∈N and q ∈ Q. Then,

n

∑
i=0

(−1)i
(

n
i

)
qi = (1− q)n .

Proof of Corollary 0.4. We have 1− q︸ ︷︷ ︸
=(−q)+1


n

= ((−q) + 1)n =
n

∑
k=0

(
n
k

)
(−q)k 1n−k︸︷︷︸

=1

(by Proposition 0.1, applied to x = −q and y = 1)

=
n

∑
k=0

(
n
k

)
(−q)k︸ ︷︷ ︸
=(−1)kqk

=
n

∑
k=0

(
n
k

)
(−1)k qk

=
n

∑
k=0

(−1)k
(

n
k

)
qk =

n

∑
i=0

(−1)i
(

n
i

)
qi

(here, we have renamed the summation index k as i). This proves Corollary 0.4.

Corollary 0.5. Let n ∈N. Let i ∈N. Then,

n

∑
j=0

(−1)j
(

n
j

)(
j
i

)
= (−1)i [n = i] .

Proof of Corollary 0.5. Notice that each j ∈ {0, 1, . . . , i− 1} satisfies(
j
i

)
= 0 (1)

http://www.cip.ifi.lmu.de/~grinberg/t/17f/hw4os.pdf
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2.
We are in one of the following two cases:
Case 1: We have i ≤ n.
Case 2: We have i > n.
Let us first consider Case 1. In this case, we have i ≤ n. Thus, i ∈ {0, 1, . . . , n}.

Now,

n

∑
j=0

(−1)j
(

n
j

)(
j
i

)

=
i−1

∑
j=0

(−1)j
(

n
j

) (
j
i

)
︸︷︷︸
=0

(by (1))

+
n

∑
j=i

(−1)j︸ ︷︷ ︸
=(−1)i+(j+i)

(since j≡2i+j=i+(j+i)mod 2)

(
n
j

)(
j
i

)

(here, we have split the sum at j = i, since 0 ≤ i ≤ n)

=
i−1

∑
j=0

(−1)j
(

n
j

)
0︸ ︷︷ ︸

=0

+
n

∑
j=i

(−1)i+(j+i)
(

n
j

)(
j
i

)
=

n

∑
j=i

(−1)i+(j+i)︸ ︷︷ ︸
=(−1)i(−1)j+i

(
n
j

)(
j
i

)

=
n

∑
j=i

(−1)i (−1)j+i
(

n
j

)(
j
i

)
= (−1)i

n

∑
j=i

(−1)j+i
(

n
j

)(
j
i

)
︸ ︷︷ ︸

=[i=n]
(by Corollary 0.3)

= (−1)i

 i = n︸ ︷︷ ︸
⇐⇒ (n=i)

 = (−1)i [n = i] .

Hence, Corollary 0.5 is proven in Case 1.
Let us now consider Case 2. In this case, we have i > n. Thus, n < i, so that

n ∈ {0, 1, . . . , i− 1} (since n ∈ N). But we don’t have n = i (since we have n < i);
thus, we have [n = i] = 0. Hence, (−1)i [n = i]︸ ︷︷ ︸

=0

= 0. But

n

∑
j=0

(−1)j
(

n
j

) (
j
i

)
︸︷︷︸
=0

(by (1)
(since j∈{0,1,...,i−1}

(because j≤n<i and j∈N)))

=
n

∑
j=0

(−1)j
(

n
j

)
0 = 0 = (−1)i [n = i] .

Hence, Corollary 0.5 is proven in Case 2.

2Proof: Let j ∈ {0, 1, . . . , i− 1}. Thus, j ≤ i− 1 < i and j ∈ N. Hence, Proposition 0.2 (applied to j

and i instead of m and n) shows that
(

j
i

)
= 0. This proves (1).
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We have now proven Corollary 0.5 in both Cases 1 and 2. Hence, Corollary 0.5
always holds.

Solution to Exercise 1. (b)

Claim 1: Let a ∈N. The binomial transform of the list
((

0
a

)
,
(

1
a

)
, . . . ,

(
N
a

))
is the list (

(−1)a [0 = a] , (−1)a [1 = a] , . . . , (−1)a [N = a]
)

.

(This is the list whose entries are all 0 except for the a-th entry – counted
from 0 –, which is (−1)a. However, if a > N, then this list has no a-th
entry, and thus all of its entries are 0.)

[Proof of Claim 1: Let (b0, b1, . . . , bN) be the binomial transform of the list((
0
a

)
,
(

1
a

)
, . . . ,

(
N
a

))
. Thus,

bn =
n

∑
i=0

(−1)i
(

n
i

)(
i
a

)
for each n ∈ {0, 1, . . . , N}

(by the definition of the binomial transform).
Hence, each n ∈ {0, 1, . . . , N} satisfies

bn =
n

∑
i=0

(−1)i
(

n
i

)(
i
a

)
=

n

∑
j=0

(−1)j
(

n
j

)(
j
a

)
(here, we have renamed the summation index i as j)

= (−1)a [n = a] (by Corollary 0.5, applied to i = a) .

In other words,

(b0, b1, . . . , bN) =
(
(−1)a [0 = a] , (−1)a [1 = a] , . . . , (−1)a [N = a]

)
.

Thus, the binomial transform of the list
((

0
a

)
,
(

1
a

)
, . . . ,

(
N
a

))
is(

(−1)a [0 = a] , (−1)a [1 = a] , . . . , (−1)a [N = a]
)

(since the binomial transform of

the list
((

0
a

)
,
(

1
a

)
, . . . ,

(
N
a

))
is (b0, b1, . . . , bN)). This proves Claim 1.]

Thus, Exercise 1 (b) is solved.
(a)

Claim 2: The binomial transform of the list (1, 1, . . . , 1) (with N + 1 en-
tries) is the list (1, 0, 0, . . . , 0) (with one 1 and N zeroes).
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[Proof of Claim 2: We have
(

n
0

)
= 1 for each n ∈ {0, 1, . . . , N}. Hence,

((
0
0

)
,
(

1
0

)
, . . . ,

(
N
0

))
= (1, 1, . . . , 1) (2)

(with N + 1 entries).
But Claim 1 (applied to a = 0) shows that the binomial transform of the list((

0
0

)
,
(

1
0

)
, . . . ,

(
N
0

))
is the list

(−1)0︸ ︷︷ ︸
=1

[0 = 0] , (−1)0︸ ︷︷ ︸
=1

[1 = 0] , . . . , (−1)0︸ ︷︷ ︸
=1

[N = 0]


= ([0 = 0] , [1 = 0] , . . . , [N = 0]) = (1, 0, 0, . . . , 0)

(with one 1 and N zeroes). In view of (2), this rewrites as follows: The binomial
transform of the list (1, 1, . . . , 1) (with N + 1 entries) is the list (1, 0, 0, . . . , 0) (with
one 1 and N zeroes). This proves Claim 2.]

Thus, Exercise 1 (a) is solved.
(c)

Claim 3: Let q ∈ Z. The binomial transform of the list
(
q0, q1, . . . , qN) is(

(1− q)0 , (1− q)1 , . . . , (1− q)N
)

.

[Proof of Claim 3: Let (b0, b1, . . . , bN) be the binomial transform of the list
(
q0, q1, . . . , qN).

Thus,

bn =
n

∑
i=0

(−1)i
(

n
i

)
qi for each n ∈ {0, 1, . . . , N}

(by the definition of the binomial transform). Hence, each n ∈ {0, 1, . . . , N} satisfies

bn =
n

∑
i=0

(−1)i
(

n
i

)
qi = (1− q)n

(by Corollary 0.4). In other words, (b0, b1, . . . , bN) =
(
(1− q)0 , (1− q)1 , . . . , (1− q)N

)
.

Thus, the binomial transform of the list
(
q0, q1, . . . , qN) is

(
(1− q)0 , (1− q)1 , . . . , (1− q)N

)
(since the binomial transform of the list

(
q0, q1, . . . , qN) is (b0, b1, . . . , bN)). This

proves Claim 3.]
Thus, Exercise 1 (c) is solved.
(d)

Claim 4: The binomial transform of the list (1, 0, 1, 0, 1, 0, . . .) (with N + 1
entries) is

(
1, 20, 21, . . . , 2N−1).
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[Proof of Claim 4: Let (a0, a1, . . . , aN) be the list (1, 0, 1, 0, 1, 0, . . .) (with N + 1
entries). Thus, for each i ∈ {0, 1, . . . , N}, we have

ai =

{
1, if i is even;
0, if i is odd

=
1
2

(
1 + (−1)i

)
. (3)

(In fact, the last equality is easy to check: If i is even, then (−1)i = 1 and thus
1
2

(
1 + (−1)i

)
=

1
2
(1 + 1) = 1; but if i is odd, then (−1)i = −1 and therefore

1
2

(
1 + (−1)i

)
= 0.)

Let (b0, b1, . . . , bN) be the binomial transform of the list (1, 0, 1, 0, 1, 0, . . .) (with
N + 1 entries). Thus, (b0, b1, . . . , bN) is the binomial transform of the list (a0, a1, . . . , aN)
(because the list (1, 0, 1, 0, 1, 0, . . .) (with N + 1 entries) is precisely (a0, a1, . . . , aN)).
Hence,

bn =
n

∑
i=0

(−1)i
(

n
i

)
ai for each n ∈ {0, 1, . . . , N}

(by the definition of the binomial transform). Thus, for each n ∈ {0, 1, . . . , N}, we
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obtain

bn =
n

∑
i=0

(−1)i
(

n
i

)
ai︸︷︷︸

=
1
2
(

1+(−1)i
)

(by (3))

=
n

∑
i=0

(−1)i
(

n
i

)
· 1

2

(
1 + (−1)i

)
︸ ︷︷ ︸

=
1
2
(−1)i

(
n
i

)
·1+

1
2
(−1)i

(
n
i

)
(−1)i

=
n

∑
i=0

(
1
2
(−1)i

(
n
i

)
· 1 + 1

2
(−1)i

(
n
i

)
(−1)i

)
=

1
2

n

∑
i=0

(−1)i
(

n
i

)
· 1︸︷︷︸

=1i

+
1
2

n

∑
i=0

(−1)i
(

n
i

)
(−1)i

=
1
2

n

∑
i=0

(−1)i
(

n
i

)
· 1i

︸ ︷︷ ︸
=(1−1)n

(by Corollary 0.4, applied to q=1)

+
1
2

n

∑
i=0

(−1)i
(

n
i

)
(−1)i

︸ ︷︷ ︸
=(1−(−1))n

(by Corollary 0.4, applied to q=−1)

=
1
2

1− 1︸ ︷︷ ︸
=0

n

+
1
2

1− (−1)︸ ︷︷ ︸
=2

n

=
1
2

0n︸︷︷︸
=

1, if n = 0;
0, if n > 0

+
1
2

2n︸︷︷︸
=2n−1

=
1
2

{
1, if n = 0;
0, if n > 0

+ 2n−1 =


1
2
· 1 + 2n−1, if n = 0;

1
2
· 0 + 2n−1, if n > 0

=

{
1, if n = 0;
2n−1, if n > 0

(because
1
2
· 1 + 2n−1 = 1 in the case when n = 0, whereas

1
2
· 0 + 2n−1 = 2n−1

in the case when n > 0). In other words, (b0, b1, . . . , bN) =
(
1, 20, 21, . . . , 2N−1).

Thus, the binomial transform of the list (1, 0, 1, 0, 1, 0, . . .) (with N + 1 entries) is(
1, 20, 21, . . . , 2N−1) (since the binomial transform of the list (1, 0, 1, 0, 1, 0, . . .) (with

N + 1 entries) is (b0, b1, . . . , bN)). This proves Claim 4.]
Thus, Exercise 1 (d) is solved.

Exercise 2. Let N ∈ N. If a = (a0, a1, . . . , aN) is a list of N + 1 rational num-
bers, then W (a) denotes the list

(
(−1)N aN, (−1)N aN−1, . . . , (−1)N a0

)
of ratio-

nal numbers. (Thus, the list W (a) is obtained by reversing the list a and then
multiplying each of its entries by (−1)N.) Hence, W and B are two maps, each
transforming lists into lists.

Prove that B ◦W ◦ B = W ◦ B ◦W and (B ◦W)3 = id.
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The equality (B ◦W)3 = id, spelt out in words, says that if we start with a list,
apply the map W, apply the binomial transform, then apply the map W to the
result, then again apply the binomial transform, then again apply the map W to
the result, then apply the binomial transform once again, then we end up with the
original list.

Before we solve Exercise 2, we shall arm ourselves with an identity:

Lemma 0.6. Let N, n and j be nonnegative integers such that N ≥ n and N ≥ j.
Then,

n

∑
i=0

(−1)i
(

n
i

)(
N − i

j

)
=

(
N − n
N − j

)
.

There are two ways to prove Lemma 0.6. One way is combinatorial (using the
principle of inclusion and exclusion) and is explained in [Galvin17, proof of Iden-
tity 17.1].

The other way is algebraic. It relies on the following identity:

Lemma 0.7. For every x ∈N and y ∈ Z and n ∈N with x ≤ n, we have(
y− x− 1

n− x

)
=

n

∑
k=0

(−1)k−x
(

k
x

)(
y

n− k

)
.

Lemma 0.7 is precisely [Grinbe16, Proposition 3.32 (e)] (where it is proven using
the Vandermonde convolution identity).

To derive Lemma 0.6 from Lemma 0.7, we will need the upper negation formula:

Proposition 0.8. We have (
n
k

)
= (−1)k

(
k− n− 1

k

)
for any n ∈ Q and k ∈N.

Proposition 0.8 is Exercise 2 (a) in homework set 1.

Proof of Lemma 0.6. We have j ≤ N (since N ≥ j). Thus, Lemma 0.7 (applied to j, n

http://www.cip.ifi.lmu.de/~grinberg/t/17f/hw1s.pdf
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and N instead of x, y and n) yields(
n− j− 1

N − j

)
=

N

∑
k=0

(−1)k−j︸ ︷︷ ︸
=(−1)(N−j)+(N−k)

(since k−j≡2N+k−j=(N−j)+(N−k)mod 2)

(
k
j

)(
n

N − k

)

=
N

∑
k=0

(−1)(N−j)+(N−k)︸ ︷︷ ︸
=(−1)N−j(−1)N−k

(
k
j

)(
n

N − k

)

=
N

∑
k=0

(−1)N−j (−1)N−k
(

k
j

)(
n

N − k

)
. (4)

But N − j ≥ 0 (since N ≥ j), so that N − j ∈ N. Hence, Proposition 0.8 (applied to
N − n and N − j instead of n and k) yields(

N − n
N − j

)
= (−1)N−j

(
(N − j)− (N − n)− 1

N − j

)
︸ ︷︷ ︸

=

(
n− j− 1

N − j

)
=

N
∑

k=0
(−1)N−j(−1)N−k

(
k
j

)(
n

N − k

)
(by (4))

= (−1)N−j
N

∑
k=0

(−1)N−j (−1)N−k
(

k
j

)(
n

N − k

)
= (−1)N−j (−1)N−j︸ ︷︷ ︸

=((−1)·(−1))N−j=1N−j=1

N

∑
k=0

(−1)N−k
(

k
j

)(
n

N − k

)

=
N

∑
k=0

(−1)N−k
(

k
j

)(
n

N − k

)
. (5)

But 0 ≤ n ≤ N (since N ≥ n). Hence, we can split the sum
N
∑

i=0
(−1)i

(
n
i

)(
N − i

j

)
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at i = n. We thus find

N

∑
i=0

(−1)i
(

n
i

)(
N − i

j

)
=

n

∑
i=0

(−1)i
(

n
i

)(
N − i

j

)
+

N

∑
i=n+1

(−1)i
(

n
i

)
︸︷︷︸
=0

(by Proposition 0.2,
applied to n and i instead of m and n

(since n<i (since i≥n+1>n)))

(
N − i

j

)

=
n

∑
i=0

(−1)i
(

n
i

)(
N − i

j

)
+

N

∑
i=n+1

(−1)i 0
(

N − i
j

)
︸ ︷︷ ︸

=0

=
n

∑
i=0

(−1)i
(

n
i

)(
N − i

j

)
.

Hence,

n

∑
i=0

(−1)i
(

n
i

)(
N − i

j

)
=

N

∑
i=0

(−1)i
(

n
i

)(
N − i

j

)
=

N

∑
k=0

(−1)N−k
(

n
N − k

)(
N − (N − k)

j

)
︸ ︷︷ ︸

=

(
k
j

)
(here, we have substituted N − k for i in the sum)

=
N

∑
k=0

(−1)N−k
(

n
N − k

)(
k
j

)
︸ ︷︷ ︸
=

(
k
j

)(
n

N − k

)
=

N

∑
k=0

(−1)N−k
(

k
j

)(
n

N − k

)
=

(
N − n
N − j

)
(by (5)). This proves Lemma 0.6.

We are now ready to solve Exercise 2.

First solution to Exercise 2. Let us first focus on proving that B ◦W ◦ B = W ◦ B ◦W.
Indeed, let a be a list of N + 1 rational numbers. Write a in the form a =

(a0, a1, . . . , aN).
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Let b be the list B (a). Write the list b in the form b = (b0, b1, . . . , bN). Recall
that B (a) is the binomial transform of the list a. In other words, (b0, b1, . . . , bN)
is the binomial transform of the list (a0, a1, . . . , aN) (since a = (a0, a1, . . . , aN) and
B (a) = b = (b0, b1, . . . , bN)). Thus,

bn =
n

∑
i=0

(−1)i
(

n
i

)
ai for each n ∈ {0, 1, . . . , N} (6)

(by the definition of the binomial transform). Thus,

bn =
N

∑
i=0

(−1)i
(

n
i

)
ai for each n ∈ {0, 1, . . . , N} (7)

3.
We have b = (b0, b1, . . . , bN). Thus, W (b) =

(
(−1)N bN, (−1)N bN−1, . . . , (−1)N b0

)
(by the definition of the list W (b)).

Now, let c be the binomial transform of the list W (b). Thus, c = B (W (b)).
Write the list c in the form c = (c0, c1, . . . , cN). Recall that c is the binomial

transform of the list W (b). In other words, (c0, c1, . . . , cN) is the binomial trans-
form of the list

(
(−1)N bN, (−1)N bN−1, . . . , (−1)N b0

)
(since c = (c0, c1, . . . , cN)

and W (b) =
(
(−1)N bN, (−1)N bN−1, . . . , (−1)N b0

)
). Thus,

cn =
n

∑
i=0

(−1)i
(

n
i

)
(−1)N bN−i for each n ∈ {0, 1, . . . , N} (8)

(by the definition of the binomial transform).
On the other hand, a = (a0, a1, . . . , aN). Thus, W (a) =

(
(−1)N aN, (−1)N aN−1, . . . , (−1)N a0

)
(by the definition of W (a)). Let d be the binomial transform of the list W (a). Thus,
d = B (W (a)).

3Proof of (7): Let n ∈ {0, 1, . . . , N}. Then, 0 ≤ n ≤ N. Hence, we can split the sum
N
∑

i=0
(−1)i

(
n
i

)
ai

at i = n. We thus find
N

∑
i=0

(−1)i
(

n
i

)
ai

=
n

∑
i=0

(−1)i
(

n
i

)
ai +

N

∑
i=n+1

(−1)i
(

n
i

)
︸︷︷︸
=0

(by Proposition 0.2,
applied to n and i instead of m and n

(since n<i (since i≥n+1>n)))

ai

=
n

∑
i=0

(−1)i
(

n
i

)
ai +

N

∑
i=n+1

(−1)i 0ai︸ ︷︷ ︸
=0

=
n

∑
i=0

(−1)i
(

n
i

)
ai = bn

(by (6)). This proves (7).
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Write the list d in the form d = (d0, d1, . . . , dN). Recall that d is the binomial
transform of the list W (a). In other words, (d0, d1, . . . , dN) is the binomial trans-
form of the list

(
(−1)N aN, (−1)N aN−1, . . . , (−1)N a0

)
(since d = (d0, d1, . . . , dN)

and W (a) =
(
(−1)N aN, (−1)N aN−1, . . . , (−1)N a0

)
). Thus,

dn =
n

∑
i=0

(−1)i
(

n
i

)
(−1)N aN−i for each n ∈ {0, 1, . . . , N} (9)

(by the definition of the binomial transform).
Finally, from d = (d0, d1, . . . , dN), we obtain

W (d) =
(
(−1)N dN, (−1)N dN−1, . . . , (−1)N d0

)
(10)

(by the definition of W (d)).
We have

(B ◦W ◦ B) (a) = B

W

B (a)︸ ︷︷ ︸
=b

 = B (W (b)) = c

and

(W ◦ B ◦W) (a) = W

B (W (a))︸ ︷︷ ︸
=d

 = W (d) .

We shall now show that c = W (d).
Indeed, for any g ∈ {0, 1, . . . , N}, we have

bg =
N

∑
i=0

(−1)i
(

g
i

)
ai (by (7), applied to n = g)

=
N

∑
j=0

(−1)j
(

g
j

)
aj (11)

(here, we have renamed the summation index i as j).
Now, let n ∈ {0, 1, . . . , N} be arbitrary. Then, n ≤ N, so that N ≥ n. Hence,
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N − n ≥ 0, so that 0 ≤ N − n ≤ N. But (8) becomes

cn =
n

∑
i=0

(−1)i
(

n
i

)
(−1)N bN−i︸︷︷︸

=
N
∑

j=0
(−1)j

(
N − i

j

)
aj

(by (11), applied to g=N−i)

=
n

∑
i=0

(−1)i
(

n
i

)
(−1)N

N

∑
j=0

(−1)j
(

N − i
j

)
aj

=
n

∑
i=0

N

∑
j=0︸ ︷︷ ︸

=
N
∑

j=0

n
∑

i=0

(−1)i
(

n
i

)
(−1)N (−1)j

(
N − i

j

)
aj

=
N

∑
j=0

n

∑
i=0

(−1)i
(

n
i

)
(−1)N (−1)j

(
N − i

j

)
aj

=
N

∑
j=0

(−1)N (−1)j︸ ︷︷ ︸
=(−1)N+j=(−1)N−j

(since N+j≡N−j mod 2)

(
n

∑
i=0

(−1)i
(

n
i

)(
N − i

j

))
︸ ︷︷ ︸

=

(
N − n
N − j

)
(by Lemma 0.6 (since N≥j))

aj︸︷︷︸
=aN−(N−j)

(since j=N−(N−j))

=
N

∑
j=0

(−1)N−j
(

N − n
N − j

)
aN−(N−j) =

N

∑
i=0

(−1)i
(

N − n
i

)
aN−i

(here, we have substituted i for N − j in the sum)

=
N−n

∑
i=0

(−1)i
(

N − n
i

)
aN−i +

N

∑
i=N−n+1

(−1)i
(

N − n
i

)
︸ ︷︷ ︸

=0
(by Proposition 0.2,

applied to N−n and i instead of m and n
(since N−n<i (since i≥N−n+1>N−n)))

aN−i

(here, we have split the sum at i = N − n (because 0 ≤ N − n ≤ N))

=
N−n

∑
i=0

(−1)i
(

N − n
i

)
aN−i +

N

∑
i=N−n+1

(−1)i 0aN−i︸ ︷︷ ︸
=0

=
N−n

∑
i=0

(−1)i
(

N − n
i

)
aN−i.
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Comparing this with

(−1)N dN−n︸ ︷︷ ︸
=

N−n
∑

i=0
(−1)i

(
N − n

i

)
(−1)N aN−i

(by (9), applied to N−n
instead of n)

= (−1)N

(
N−n

∑
i=0

(−1)i
(

N − n
i

)
(−1)N aN−i

)

=
N−n

∑
i=0

(−1)i
(

N − n
i

)
(−1)N (−1)N︸ ︷︷ ︸

=((−1)(−1))N=1N=1

aN−i =
N−n

∑
i=0

(−1)i
(

N − n
i

)
aN−i,

we obtain cn = (−1)N dN−n.
Now, forget that we fixed n. We thus have proven that cn = (−1)N dN−n for each

n ∈ {0, 1, . . . , N}. In other words,

(c0, c1, . . . , cN) =
(
(−1)N dN, (−1)N dN−1, . . . , (−1)N d0

)
.

Thus,

(B ◦W ◦ B) (a) = B

W

B (a)︸ ︷︷ ︸
=b

 = B (W (b)) = c

= (c0, c1, . . . , cN) =
(
(−1)N dN, (−1)N dN−1, . . . , (−1)N d0

)
= W

 d︸︷︷︸
=B(W(a))

 (by (10))

= W (B (W (a))) = (W ◦ B ◦W) (a) .

Now, forget that we fixed a. We thus have proven that (B ◦W ◦ B) (a) = (W ◦ B ◦W) (a)
for each list a of N + 1 rational numbers. In other words,

B ◦W ◦ B = W ◦ B ◦W. (12)

Next, we notice that
B ◦ B = id (13)

4 and
W ◦W = id (16)

4Proof. Let a be a list of N + 1 rational numbers. Write a in the form a = (a0, a1, . . . , aN).
Let b be the list B (a). Write the list b in the form b = (b0, b1, . . . , bN). Recall that B (a) is the

binomial transform of the list a. In other words, (b0, b1, . . . , bN) is the binomial transform of the
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list (a0, a1, . . . , aN) (since a = (a0, a1, . . . , aN) and B (a) = b = (b0, b1, . . . , bN)). Thus,

bn =
n

∑
i=0

(−1)i
(

n
i

)
ai for each n ∈ {0, 1, . . . , N}

(by the definition of the binomial transform). Hence, Exercise 5 on homework set #4 says that

an =
n

∑
i=0

(−1)i
(

n
i

)
bi for each n ∈ {0, 1, . . . , N} . (14)

Let c be the list B (b). Write the list c in the form c = (c0, c1, . . . , cN). Recall that B (b) is the
binomial transform of the list b. In other words, (c0, c1, . . . , cN) is the binomial transform of the
list (b0, b1, . . . , bN) (since b = (b0, b1, . . . , bN) and B (b) = c = (c0, c1, . . . , cN)). Thus,

cn =
n

∑
i=0

(−1)i
(

n
i

)
bi for each n ∈ {0, 1, . . . , N} (15)

(by the definition of the binomial transform).
Now, for each n ∈ {0, 1, . . . , N}, we have

cn =
n

∑
i=0

(−1)i
(

n
i

)
bi (by (15))

= an (by (14)) .

In other words, (c0, c1, . . . , cN) = (a0, a1, . . . , aN). Thus,

(B ◦ B) (a) = B

B (a)︸ ︷︷ ︸
=b

 = B (b) = c = (c0, c1, . . . , cN) = (a0, a1, . . . , aN)

= a = id (a) .

Now, forget that we fixed a. We thus have shown that (B ◦ B) (a) = id (a) for each list a of
N + 1 rational numbers. In other words, B ◦ B = id. This proves (13).

http://www.cip.ifi.lmu.de/~grinberg/t/17f/hw4os.pdf
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5. Hence,

(B ◦W)3 = B ◦W ◦ B︸ ︷︷ ︸
=W◦B◦W
(by (12))

◦W ◦ B ◦W = W ◦ B ◦W ◦W︸ ︷︷ ︸
=id

(by (16))

◦B ◦W

= W ◦ B ◦ B︸ ︷︷ ︸
=id

(by (13))

◦W = W ◦W = id (by (16)) .

This completes the solution of Exercise 2.

TODO: Write up the second solution.

0.2. Another recurrence

Exercise 3. Consider the sequence (a0, a1, a2, . . .) of integers given by

a0 = 2, a1 = 20, an = 20an−1 − 99an−2 for n ≥ 2.

Find an explicit formula for an.

5Proof. Let a be a list of N + 1 rational numbers. Write a in the form a = (a0, a1, . . . , aN).
Let b be the list W (a). Write the list b in the form b = (b0, b1, . . . , bN). Thus, (b0, b1, . . . , bN) =

b = W (a) =
(
(−1)N aN , (−1)N aN−1, . . . , (−1)N a0

)
(by the definition of W (a), because a =

(a0, a1, . . . , aN)). In other words,

bn = (−1)N aN−n for each n ∈ {0, 1, . . . , N} . (17)

Hence, for each n ∈ {0, 1, . . . , N}, we have

(−1)N bN−n︸ ︷︷ ︸
=(−1)N aN−(N−n)
(by (17), applied

to N−n instead of n)

= (−1)N (−1)N︸ ︷︷ ︸
=((−1)(−1))N=1N=1

aN−(N−n) = aN−(N−n) = an

(since N − (N − n) = n). In other words,(
(−1)N bN , (−1)N bN−1, . . . , (−1)N b0

)
= (a0, a1, . . . , aN) .

But recall that b = (b0, b1, . . . , bN). Hence, the definition of W (b) yields

W (b) =
(
(−1)N bN , (−1)N bN−1, . . . , (−1)N b0

)
= (a0, a1, . . . , aN) = a.

Thus,

(W ◦W) (a) = W

W (a)︸ ︷︷ ︸
=b

 = W (b) = a = id (a) .

Now, forget that we fixed a. We thus have shown that (W ◦W) (a) = id (a) for each list a of
N + 1 rational numbers. In other words, W ◦W = id. This proves (16).
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[Hint: Use of generating functions is allowed. To solve Exercise 3 in the
same way as I proved Binet’s formula in class, partial fraction decomposition
is needed. The Wikipedia examples can be useful.]

Solution to Exercise 3 (sketched). The answer is an = 9n + 11n. Once you have guessed
this, you can of course prove this by a strong induction over n. But how can you
find this?

Essentially every way to prove the Binet formula for the Fibonacci sequence can
be repurposed to prove an = 9n + 11n. Let me outline how this can be done using
generating functions: Define the generating function A (x) = a0 + a1x + a2x2 + · · ·
(a formal power series in the indeterminate x over C). Then,

A (x) = a0 + a1x + a2x2 + a3x3 + a4x4 + · · ·
= 2 + 20x + (20a1 − 99a0) x2 + (20a2 − 99a1) x3 + (20a3 − 99a2) x4 + · · ·

(by the recursive definition of our sequence)

= 2 + 20x + 20x
(

a1x + a2x2 + a3x3 + · · ·
)

︸ ︷︷ ︸
=A(x)−a0=A(x)−2

−99x2
(

a0 + a1x + a2x2 + a3x3 + · · ·
)

︸ ︷︷ ︸
=A(x)

= 2 + 20x + 20x (A (x)− 2)− 99x2A (x)

= 2− 20x + 20xA (x)− 99x2A (x) .

This is a linear equation in A (x). Solving it results in

A (x) =
2− 20x

1− 20x + 99x2 .

The denominator 1 − 20x + 99x2 can be factored as (1− 9x) (1− 11x) (and you
can find this factorization easily by finding the roots of 1− 20x + 99x2, using the
quadratic formula). Thus,

A (x) =
2− 20x

(1− 9x) (1− 11x)
=

1
1− 9x︸ ︷︷ ︸

= ∑
n≥0

(9x)n= ∑
n≥0

9nxn

+
1

1− 11x︸ ︷︷ ︸
= ∑

n≥0
(11x)n= ∑

n≥0
11nxn

(by partial fraction decomposition)

= ∑
n≥0

9nxn + ∑
n≥0

11nxn = ∑
n≥0

(9n + 11n) xn.

Comparing coefficients of xn, we obtain an = 9n + 11n (since the coefficient of xn in
A (x) is an).

0.3. Counting permutations by descents

If σ is a permutation of [n] for some n ∈ N, then a descent of σ means an element
i ∈ [n− 1] satisfying σ (i) > σ (i + 1). For example, the permutation σ of [5] with

https://en.wikipedia.org/wiki/Partial_fraction_decomposition#Examples
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(σ (1) , σ (2) , σ (3) , σ (4) , σ (5)) = (3, 1, 4, 5, 2) has descents 1 (since 3 > 1) and 4
(since 5 > 2).

Exercise 4. Let n be a positive integer. How many permutations of [n] have at
most 1 descent?

(For example, the permutation σ of [5] with (σ (1) , σ (2) , σ (3) , σ (4) , σ (5)) =
(1, 4, 2, 3, 5) has exactly 1 descent: namely, 2 is its only descent.)

Solution to Exercise 4 (sketched). The answer is 2n − n. Let me give a proof.
How many permutations of [n] have no descents? These are clearly the permu-

tations σ of [n] satisfying σ (1) ≤ σ (2) ≤ · · · ≤ σ (n). There is only one such
permutation: namely, id. (See [Grinbe16, Exercise 5.2 (d)] for the rigorous proof.)
Thus,

(the number of permutations of [n] having no descents) = 1. (18)

Now, fix k ∈ [n− 1]. How many permutations of [n] have k as their only descent?
Let us ask a somewhat simpler question: How many permutations of [n] have

no descents apart from k (but may or may not have k as a descent)? These are the
permutations σ of [n] satisfying

σ (1) ≤ σ (2) ≤ · · · ≤ σ (k) and σ (k + 1) ≤ σ (k + 2) ≤ · · · ≤ σ (n) .

Here is one way to construct such a permutation σ:

• First, choose a k-element subset S of [n] to become the set {σ (1) , σ (2) , . . . , σ (k)}.

There are
(

n
k

)
choices here.

• Then, the values of σ (1) , σ (2) , . . . , σ (k) are uniquely determined (indeed,
they have to be the k elements of S in increasing order).

• Furthermore, the values of σ (k + 1) , σ (k + 2) , . . . , σ (n) are also uniquely de-
termined (indeed, they have to be the n− k elements of [n] \ S in increasing
order).

Thus, in total, we have
(

n
k

)
options. Hence,

(the number of permutations of [n] having no descents apart from k)

=

(
n
k

)
.
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Hencce,(
n
k

)
= (the number of permutations of [n] having no descents apart from k)
= (the number of permutations of [n] having k as their only descent)

+ (the number of permutations of [n] having no descents)︸ ︷︷ ︸
=1

(by (18))

= (the number of permutations of [n] having k as their only descent) + 1.

Hence,

(the number of permutations of [n] having k as their only descent)

=

(
n
k

)
− 1. (19)

Now, forget that we fixed k. We thus have proven (19) for each k ∈ [n− 1].
But any descent of a permutation of [n] must be one of the integers 1, 2, . . . , n− 1.

Hence,

(the number of permutations of [n] having exactly 1 descent)

=
n−1

∑
k=1

(the number of permutations of [n] having k as their only descent)︸ ︷︷ ︸
=

(
n
k

)
−1

(by (19))

=
n−1

∑
k=1

((
n
k

)
− 1
)
=

n

∑
k=0

((
n
k

)
− 1
)
−


(

n
0

)
︸︷︷︸
=1

−1

−

(

n
n

)
︸︷︷︸
=1

−1


 because the sum

n−1
∑

k=1

((
n
k

)
− 1
)

differs from the sum
n
∑

k=0

((
n
k

)
− 1
)

in the lack of the addends for k = 0 and for k = n


=

n

∑
k=0

((
n
k

)
− 1
)
− (1− 1)− (1− 1) =

n

∑
k=0

((
n
k

)
− 1
)

=
n

∑
k=0

(
n
k

)
︸ ︷︷ ︸

=2n

(as you should
know by now)

− (n + 1) = 2n − (n + 1) .
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Finally,

(the number of permutations of [n] having at most 1 descent)
= (the number of permutations of [n] having exactly 1 descent)︸ ︷︷ ︸

=2n−(n+1)

+ (the number of permutations of [n] having no descents)︸ ︷︷ ︸
=1

(by (18))

= (2n − (n + 1)) + 1 = 2n − n.

0.4. Counting derangements squaring to the identity

Exercise 5. Let n ∈N. How many derangements σ of [n] satisfy σ2 = id ?
(For example, the derangement σ of [6] sending 1, 2, 3, 4, 5, 6 to 3, 6, 1, 5, 4, 2

satisfies σ2 = id.)
[Hint: The answer will depend on whether n is even or odd.]

Solution to Exercise 5 (sketched). The answer is{
(n− 1) (n− 3) · · · 1, if n is even;
0, if n is odd

.

The proof in the case of even n is similar to part of the proof of Observation 2 in
the solution of Exercise 3 on homework set #4.

TODO: Details.

0.5. Iteration of maps on finite sets

The next two exercises study what happens if you apply a map from a finite set to
itself several times.

Exercise 6. Let n ∈N. Let S be an n-element set. Let f : S→ S be any map.
(a) Prove that f 0 (S) ⊇ f 1 (S) ⊇ f 2 (S) ⊇ · · · .
(b) Prove that f n (S) = f k (S) for each integer k ≥ n.
(c) Define a map g : f n (S)→ f n (S) by

g (x) = f (x) for each x ∈ f n (S) .

(Thus, g is the restriction of f onto the image f n (S), regarded as a map from
f n (S) to f n (S).)

Prove that g is well-defined (i.e., that f (x) actually belongs to f n (S) for each
x ∈ f n (S)) and is a permutation of f n (S).

[Hint: For part (b), first prove that there exists some m ∈ {0, 1, . . . , n} such
that f m (S) = f m+1 (S). Then argue that f n (S) = f n+1 (S).]

http://www.cip.ifi.lmu.de/~grinberg/t/17f/hw4os.pdf
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Example 0.9. Let n = 7. Let S = [7]. Let f : S→ S be the map with

( f (1) , f (2) , f (3) , f (4) , f (5) , f (6) , f (7)) = (4, 4, 5, 5, 2, 3, 3) .

Then,

f 0 (S) = S = {1, 2, 3, 4, 5, 6, 7} ;

f 1 (S) = f (S) = {2, 3, 4, 5} ;

f 2 (S) = {2, 4, 5} ;

f k (S) = {2, 4, 5} for each k ≥ 2.

Thus, in particular, f n (S) = {2, 4, 5}. The map g is the permutation of this set
f n (S) = {2, 4, 5} sending 2, 4, 5 to 4, 5, 2, respectively. It is perhaps worthwhile
to draw the “cycle digraph” of f (which is not literally a cycle digraph, because
f is not a permutation, but is constructed in the same way):

6

��

7

��

1

��

3

��

4 // 5

��

2

^^

.

Solution to Exercise 6 (sketched). (a) We must show that f k (S) ⊇ f k+1 (S) for each

k ∈N. But this is clear: If k ∈N, then f k+1 (S) = f k

 f (S)︸ ︷︷ ︸
⊆S

 ⊆ f k (S).

(b) Part (a) shows that f 0 (S) ⊇ f 1 (S) ⊇ f 2 (S) ⊇ · · · . Hence,
∣∣ f 0 (S)

∣∣ ≥∣∣ f 1 (S)
∣∣ ≥ ∣∣ f 2 (S)

∣∣ ≥ · · · .
In other words, the sequence

(∣∣ f 0 (S)
∣∣ ,
∣∣ f 1 (S)

∣∣ ,
∣∣ f 2 (S)

∣∣ , . . .
)

is weakly decreas-
ing. The rough idea of the following argument is to show that this sequence must
stagnate somewhere between its first n + 2 elements (that is, there must exist some
p ∈ [n + 1] satisfying

∣∣ f p−1 (S)
∣∣ = | f p (S)|); and then, to show that once it stag-

nates, it stays constant (i.e., once two consecutive terms of this sequence are equal,
all the terms that follow must also be equal).

Here is the rigorous version:
We claim that there exists some p ∈ [n + 1] satisfying

∣∣ f p−1 (S)
∣∣ = | f p (S)|.

Indeed, assume the contrary. Thus, each p ∈ [n + 1] satisfies
∣∣ f p−1 (S)

∣∣ 6= | f p (S)|,
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and thus
∣∣ f p−1 (S)

∣∣ > | f p (S)| (since
∣∣ f 0 (S)

∣∣ ≥ ∣∣ f 1 (S)
∣∣ ≥ ∣∣ f 2 (S)

∣∣ ≥ · · · ). Hence,∣∣∣ f 0 (S)
∣∣∣ > ∣∣∣ f 1 (S)

∣∣∣ > · · · > ∣∣∣ f n+1 (S)
∣∣∣ .

Thus, the n + 2 numbers
∣∣ f 0 (S)

∣∣ ,
∣∣ f 1 (S)

∣∣ , . . . ,
∣∣ f n+1 (S)

∣∣ are distinct. But this is
absurd, because these n + 2 numbers all lie in the (n + 1)-element set {0, 1, . . . , n}
(since they are sizes of subsets of the n-element set S) and therefore (by the pigeon-
hole principle) they cannot be all distinct. Thus, we obtain a contradiction.

Hence, we have shown that there exists some p ∈ [n + 1] satisfying
∣∣ f p−1 (S)

∣∣ =
| f p (S)|. Consider this p.

Part (a) shows that f p−1 (S) ⊇ f p (S). Combined with
∣∣ f p−1 (S)

∣∣ = | f p (S)|, this
yields f p−1 (S) = f p (S) 6.

Now, I claim that

f p−1 (S) = f h (S) for each h ≥ p− 1. (20)

[Proof of (20): Induction over h.
The induction base (the case h = p− 1) is tautological.
For the induction step, assume that f p−1 (S) = f h (S) for some h ≥ p− 1; we then

must show that f p−1 (S) = f h+1 (S).
Apply the map f to both sides of the equality f p−1 (S) = f h (S), we obtain

f
(

f p−1 (S)
)
= f

(
f h (S)

)
= f h+1 (S). Comparing this with f

(
f p−1 (S)

)
= f p (S) =

f p−1 (S), we obtain f p−1 (S) = f h+1 (S). This completes the induction step. Thus,
(20) is proven.]

We have p ∈ [n + 1], so that p ≤ n + 1, so that n ≥ p− 1. Hence, (20) (applied to
h = n) yields f p−1 (S) = f n (S).

Let k ≥ n be an integer. Thus, k ≥ n ≥ p − 1 and therefore f p−1 (S) = f k (S)
(by (20), applied to h = k). Comparing this with f p−1 (S) = f n (S), we obtain
f n (S) = f k (S). This solves part (b).

(c) It is straightforward to see that g is well-defined: after all, each x ∈ f n (S)

satisfies f (x) ∈ f ( f n (S)) = f n+1 (S) = f n

 f (S)︸ ︷︷ ︸
⊆S

 ⊆ f n (S).

It remains to prove that g is a permutation of f n (S). In other words, it remains
to prove that g is bijective.

The definition of g shows that g ( f n (S)) = f ( f n (S)) = f n+1 (S). But n + 1 ≥ n.
Hence, part (b) (applied to k = n + 1) yields f n (S) = f n+1 (S). Hence, g ( f n (S)) =
f n+1 (S) = f n (S). In other words, the map g is surjective. Hence, this map g is
bijective (since any surjective map between two finite sets of equal sizes is bijective).
As we have said, this completes the solution of part (c).

TODO: More details.

6What we have used here is the fact that if two finite sets A and B satisfy A ⊇ B and |A| = |B|,
then A = B. (We have applied this fact to A = f p−1 (S) and B = f p (S).)
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Exercise 7. Let n ∈N. Let S be an n-element set. Let f : S→ S be any map.
(a) If f is a permutation of S, then prove that there exists some p ∈ [n!] such

that f p = id.
(b) Prove in general (i.e., not only when f is a permutation) that there exist

two integers u and v with 0 ≤ u < v ≤ n! and f u = f v.
[Hint: First prove part (b) in the case when f is a permutation (hint: what does

the pigeonhole principle say about the permutations f 0, f 1, . . . , f n! ?). Then, use
this to show part (a). Finally, prove part (b) in the general case, by applying part
(a) to the map g from Exercise 6.]

Solution to Exercise 7 (sketched). (a) Assume that f is a permutation of S. Since f is
bijective, so are all the n! + 1 maps f 0, f 1, . . . , f n! (since a composition of bijective
maps is always bijective). In other words, f 0, f 1, . . . , f n! are n! + 1 permutations of
S. But there are only n! permutations of S. Hence, by the pigeonhole principle, (at
least) two of these permutations f 0, f 1, . . . , f n! are equal. That is, there exist two
integers u and v with 0 ≤ u < v ≤ n! and f u = f v. Consider these u and v. Now,
f u = f v = f v−u ◦ f u. Since f u is bijective, we can cancel f u from this equality, and
thus find id = f v−u. Since v− u ∈ [n!], we are done with part (a).

(b) If f is surjective, then f must be bijective (since any surjective map between
two finite sets of equal sizes is bijective), and therefore f is a permutation of S; but
then, the claim of part (b) follows from part (a). Hence, we WLOG assume that f is
not surjective. Thus, the image f (S) is a proper subset of S. Hence, S has a proper
subset; thus, S 6= ∅. Hence, f n (S) 6= ∅. Let q = | f n (S)|.

Let g be as in Exercise 6 (c). Then, g is a permutation of f n (S) (by Exercise 6
(c)). Exercise 7 (a) (applied to f n (S), q and g instead of S, n and f ) thus shows that
there exists some p ∈ [q!] such that gp = id. Consider this p.

Each x ∈ f n (S) satisfies g (x) = f (x) (by the definition of g) and thus

gr (x) = f r (x)

for each r ∈ N (by induction over r). Applying this to r = p, we conclude that
every x ∈ f n (S) satisfies gp (x) = f p (x), hence

f p (x) = gp︸︷︷︸
=id

(x) = id (x) = x. (21)

Thus,
f n = f p+n. (22)

[Proof of (22): Let y ∈ S. Then, f n (y) ∈ f n (S). Hence, (21) (applied to x = f n (y))
yields f p ( f n (y)) = f n (y). Thus, f n (y) = f p ( f n (y)) = f p+n (y). Since we have
shown this for each y ∈ S, we thus conclude that f n = f p+n. This proves (22).]

But Exercise 6 (a) yields f 0 (S) ⊇ f 1 (S) ⊇ f 2 (S) ⊇ · · · , so that f 1 (S) ⊇ f n (S)
(since n = |S| > 0 (because S 6= ∅)). Hence, f n (S) ⊆ f 1 (S) = f (S). Therefore,
f n (S) is a proper subset of S (since f (S) is a proper subset of S). Thus, | f n (S)| <
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|S| = n. Thus, q = | f n (S)| < n, so that q ≤ n− 1, and thus q! ≤ (n− 1)! (since
0! ≤ 1! ≤ 2! ≤ · · · ).

From p ∈ [q!], we obtain 0 < p ≤ q!.
If n ≤ 2, then the claim of Exercise 7 (b) can easily be checked by hand (since

there are at most 4 maps f : S → S in this case). Thus, WLOG assume that n > 2.
Thus, n ≥ 3, and therefore n ≤ (n− 1)2 (check this!). Hence,

n ≤ (n− 1)2 = (n− 1) · (n− 1)︸ ︷︷ ︸
≤1·2·····(n−1)=(n−1)!

≤ (n− 1) · (n− 1)!

= n · (n− 1)!︸ ︷︷ ︸
=n!

− (n− 1)! = n!− (n− 1)!.

Hence, n + (n− 1)! ≤ n!, so that n + q!︸︷︷︸
≤(n−1)!

≤ n + (n− 1)! ≤ n!. Thus,

0 ≤ n = 0︸︷︷︸
<p

+n < p︸︷︷︸
≤q!

+n ≤ q! + n = n + q! ≤ n!.

Hence, from (22), we conclude that there exist two integers u and v with 0 ≤ u <
v ≤ n! and f u = f v (namely, u = n and v = p + n). This solves Exercise 7 (b).

TODO: More details.

References

[Galvin17] David Galvin, Basic discrete mathematics, 13 December 2017.
http://www.cip.ifi.lmu.de/~grinberg/t/17f/
60610lectures2017-Galvin.pdf

[Grinbe16] Darij Grinberg, Notes on the combinatorial fundamentals of algebra, 10 Jan-
uary 2019.
http://www.cip.ifi.lmu.de/~grinberg/primes2015/sols.pdf
The numbering of theorems and formulas in this link might shift
when the project gets updated; for a “frozen” version whose num-
bering is guaranteed to match that in the citations above, see https:
//github.com/darijgr/detnotes/releases/tag/2019-01-10 .

http://www.cip.ifi.lmu.de/~grinberg/t/17f/60610lectures2017-Galvin.pdf
http://www.cip.ifi.lmu.de/~grinberg/t/17f/60610lectures2017-Galvin.pdf
http://www.cip.ifi.lmu.de/~grinberg/primes2015/sols.pdf
https://github.com/darijgr/detnotes/releases/tag/2019-01-10
https://github.com/darijgr/detnotes/releases/tag/2019-01-10

	The binomial transform, again
	Another recurrence
	Counting permutations by descents
	Counting derangements squaring to the identity
	Iteration of maps on finite sets

