Math 4990 Fall 2017 (Darij Grinberg): homework set 5 [corrected 27 Oct 2017] due date: Tuesday 31 Oct 2017 at the beginning of class, or before that by email or moodle

Please solve at most 4 of the 7 exercises!

#### 0.1. The binomial transform, again

If  $\mathbf{a} = (a_0, a_1, \dots, a_N)$  is a list<sup>1</sup> of rational numbers, then the *binomial transform* of this list  $\mathbf{a}$  is defined to be the list  $(b_0, b_1, \dots, b_N)$  of rational numbers, where

$$b_n = \sum_{i=0}^n (-1)^i \binom{n}{i} a_i \qquad \text{for each } n \in \{0, 1, \dots, N\}.$$

We shall denote the binomial transform of the list **a** by  $B(\mathbf{a})$ . We have already studied binomial transforms implicitly on the previous homework set: Namely, Exercise 5 on homework set #4 says that if **b** is the binomial transform of a list **a**, then **a** is (in turn) the binomial transform of **b**. In other words: If  $\mathbf{b} = B(\mathbf{a})$ , then  $\mathbf{a} = B(\mathbf{b})$ . In other words, if we regard B as a map that transforms lists into lists, then  $B^2 = B \circ B = \mathrm{id}$ .

#### **Exercise 1.** Let $N \in \mathbb{N}$ .

- (a) Find the binomial transform of the list  $(1,1,\ldots,1)$  (with N+1 entries).
- **(b)** For any given  $a \in \mathbb{N}$ , find the binomial transform of the list  $\binom{0}{a}$ ,  $\binom{1}{a}$ , ...,  $\binom{N}{a}$ .
- (c) For any given  $q \in \mathbb{Z}$ , find the binomial transform of the list  $(q^0, q^1, \dots, q^N)$ .
- (d) Find the binomial transform of the list (1,0,1,0,1,0,...) (this ends with 1 if N is even, and with 0 if N is odd).

**Exercise 2.** Let  $N \in \mathbb{N}$ . If  $\mathbf{a} = (a_0, a_1, \dots, a_N)$  is a list of rational numbers, then  $W(\mathbf{a})$  denotes the list  $\left((-1)^N a_N, (-1)^N a_{N-1}, \dots, (-1)^N a_0\right)$  of rational numbers. (Thus, the list  $W(\mathbf{a})$  is obtained by reversing the list  $\mathbf{a}$  and then multiplying each of its entries by  $(-1)^N$ .) Hence, W and W are two maps, each transforming lists into lists.

Prove that  $B \circ W \circ B = W \circ B \circ W$  and  $(B \circ W)^3 = id$ .

The equality  $(B \circ W)^3 = id$ , spelt out in words, says that if we start with a list, apply the map W, apply the binomial transform, then apply the map W to the result, then again apply the binomial transform, then again apply the map W to the result, then apply the binomial transform once again, then we end up with the original list.

<sup>&</sup>lt;sup>1</sup>The words "finite list", "tuple" and "finite sequence" mean the same thing. I only consider finite lists on this homework set.

#### 0.2. Another recurrence

**Exercise 3.** Consider the sequence  $(a_0, a_1, a_2, ...)$  of integers given by

$$a_0 = 2$$
,  $a_1 = 20$ ,  $a_n = 20a_{n-1} - 99a_{n-2}$  for  $n \ge 2$ .

Find an explicit formula for  $a_n$ .

[Hint: Use of generating functions is allowed. To solve Exercise 3 in the same way as I proved Binet's formula in class, partial fraction decomposition is needed. The Wikipedia examples can be useful.]

## 0.3. Counting permutations by descents

If  $\sigma$  is a permutation of [n] for some  $n \in \mathbb{N}$ , then a *descent* of  $\sigma$  means an element  $i \in [n-1]$  satisfying  $\sigma(i) > \sigma(i+1)$ . For example, the permutation  $\sigma$  of [5] with  $(\sigma(1), \sigma(2), \sigma(3), \sigma(4), \sigma(5)) = (3, 1, 4, 5, 2)$  has descents 1 (since 3 > 1) and 4 (since 5 > 2).

**Exercise 4.** Let n be a positive integer. How many permutations of [n] have at most 1 descent?

(For example, the permutation  $\sigma$  of [5] with  $(\sigma(1), \sigma(2), \sigma(3), \sigma(4), \sigma(5)) =$ (1,4,2,3,5) has exactly 1 descent: namely, 2 is its only descent.)

## 0.4. Counting derangements squaring to the identity

**Exercise 5.** Let  $n \in \mathbb{N}$ . How many derangements  $\sigma$  of [n] satisfy  $\sigma^2 = \mathrm{id}$ ? (For example, the derangement  $\sigma$  of [6] sending 1,2,3,4,5,6 to 3,6,1,5,4,2 satisfies  $\sigma^2 = id$ .)

[**Hint:** The answer will depend on whether *n* is even or odd.]

# 0.5. Iteration of maps on finite sets

The next two exercises study what happens if you apply a map from a finite set to itself several times.

**Exercise 6.** Let  $n \in \mathbb{N}$ . Let S be an n-element set. Let  $f: S \to S$  be any map.

- (a) Prove that  $f^0(S) \supseteq f^1(S) \supseteq f^2(S) \supseteq \cdots$ . (b) Prove that  $f^n(S) = f^k(S)$  for each integer  $k \ge n$ .
- (c) Define a map  $g: f^n(S) \to f^n(S)$  by

$$g(x) = f(x)$$
 for each  $x \in f^n(S)$ .

(Thus, g is the restriction of f onto the image  $f^{n}(S)$ , regarded as a map from  $f^{n}(S)$  to  $f^{n}(S)$ .)

Prove that g is well-defined (i.e., that f(x) actually belongs to  $f^n(S)$  for each  $x \in f^n(S)$ ) and is a permutation of  $f^n(S)$ .

**[Hint:** For part **(b)**, first prove that there exists some  $m \in \{0, 1, ..., n\}$  such that  $f^m(S) = f^{m+1}(S)$ . Then argue that  $f^n(S) = f^{n+1}(S)$ .]

**Example 0.1.** Let n = 7. Let S = [7]. Let  $f : S \to S$  be the map with

$$(f(1), f(2), f(3), f(4), f(5), f(6), f(7)) = (4,4,5,5,2,3,3).$$

Then,

$$f^{0}(S) = S = \{1,2,3,4,5,6,7\};$$
  
 $f^{1}(S) = f(S) = \{2,3,4,5\};$   
 $f^{2}(S) = \{2,4,5\};$   
 $f^{k}(S) = \{2,4,5\}$  for each  $k \ge 2$ .

Thus, in particular,  $f^n(S) = \{2,4,5\}$ . The map g is the permutation of this set  $f^n(S) = \{2,4,5\}$  sending 2,4,5 to 4,5,2, respectively. It is perhaps worthwhile to draw the "cycle digraph" of f (which is not literally a cycle digraph, because f is not a permutation, but is constructed in the same way):



**Exercise 7.** Let  $n \in \mathbb{N}$ . Let S be an n-element set. Let  $f: S \to S$  be any map.

- (a) If f is a permutation of S, then prove that there exists some  $p \in [n!]$  such that  $f^p = \mathrm{id}$ .
- **(b)** Prove in general (i.e., not only when f is a permutation) that there exist two integers u and v with  $0 \le u < v \le n!$  and  $f^u = f^v$ .

[**Hint:** First prove part **(b)** in the case when f is a permutation (hint: what does the pigeonhole principle say about the permutations  $f^0, f^1, \ldots, f^{n!}$ ?). Then, use this to show part **(a)**. Finally, prove part **(b)** in the general case, by applying part **(a)** to the map g from Exercise 6.]