Math 4707 Fall 2017 (Darij Grinberg): homework set 5

due date: Wednesday 15 Nov 2017 at the beginning of class, or before that by email or moodle

Please solve at most 4 of the 7 exercises!

0.1. A generalized principle of inclusion/exclusion

Exercise 1. Let $n \in \mathbb{N}$. Let S be a finite set. Let A_1, A_2, \ldots, A_n be finite subsets of S. Let $k \in \mathbb{N}$. Let S_k be the set of all elements of S that belong to exactly k of the subsets A_1, A_2, \ldots, A_n . (In other words, let $S_k = \{s \in S \mid \text{ the number of } i \in [n] \text{ satisfying } s \in A_i \text{ equals } k\}$.) Prove that

$$|S_k| = \sum_{I \subseteq [n]} (-1)^{|I|-k} \binom{|I|}{k} \left| \bigcap_{i \in I} A_i \right|.$$

Note that the principle of inclusion and exclusion (see, e.g., [Galvin17, §16]) is the particular case of Exercise 1 for k = 0 (since $S_0 = S \setminus \bigcup_{i=1}^n A_i$).

0.2. Summing fixed point numbers of permutations

Recall that for any $n \in \mathbb{N}$, we let S_n denote the set of all permutations of [n]. If S is a finite set, and if $f: S \to S$ is a map, then we let Fix f denote the set of all fixed points of f. (That is, Fix $f = \{s \in S \mid f(s) = s\}$.)

Exercise 2. Let n be a positive integer. Prove that $\sum_{w \in S_n} |\operatorname{Fix} w| = n!$. **[Hint:** Rewrite $|\operatorname{Fix} w|$ as $\sum_{i \in [n]} [w(i) = i]$.]

(In other words, this exercise states that the average number of fixed points of a permutation of [n] is 1.)

0.3. Transpositions $t_{1,i}$ generate permutations

Recall a basic notation regarding permutations:

Definition 0.1. Let $n \in \mathbb{N}$. Let i and j be two distinct elements of [n]. We let $t_{i,j}$ be the permutation in S_n which switches i with j while leaving all other elements of [n] unchanged. Such a permutation is called a *transposition*.

Exercise 3. Let $n \in \mathbb{N}$. Prove that each permutation in S_n can be written as a composition of some of the transpositions $t_{1,2}, t_{1,3}, \ldots, t_{1,n}$.

(Note that this composition can be empty – in which case it is understood to be id –, and it can contain any given transposition multiple times.)

You are allowed to use the well-known fact ([Grinbe16, Exercise 5.1 (b)]) that each permutation in S_n can be written as a composition of some of the transpositions $s_1, s_2, \ldots, s_{n-1}$, where s_i is defined to be $t_{i,i+1}$.

0.4. V-permutations as products of cycles

Recall the following notation:

Definition 0.2. Let X be a set. Let k be a positive integer. Let i_1, i_2, \ldots, i_k be k distinct elements of X. We define $\text{cyc}_{i_1,i_2,\dots,i_k}$ to be the permutation of X that sends i_1, i_2, \ldots, i_k to $i_2, i_3, \ldots, i_k, i_1$, respectively, while leaving all other elements of *X* fixed. In other words, we define $\text{cyc}_{i_1,i_2,...,i_k}$ to be the permutation of *X* given

$$\operatorname{cyc}_{i_1,i_2,\ldots,i_k}(p) = \begin{cases} i_{j+1}, & \text{if } p = i_j \text{ for some } j \in \{1,2,\ldots,k\}; \\ p, & \text{otherwise} \end{cases}$$
 for every $p \in X$, where i_{k+1} means i_1 .

Exercise 4. Let $n \in \mathbb{N}$. For each $r \in [n]$, let c_r denote the permutation $cyc_{r,r-1,...,2,1} \in S_n$. (Thus, $c_1 = cyc_1 = id$ and $c_2 = cyc_{2,1} = s_1$.)

Let $G = \{g_1 < g_2 < \dots < g_p\}$ be a subset of [n]. Let $\sigma \in S_n$ be the permutation $c_{g_1} \circ c_{g_2} \circ \cdots \circ c_{g_v}$.

Prove the following:

- (a) We have $\sigma(1) > \sigma(2) > \cdots > \sigma(p)$.
- **(b)** We have $\sigma([p]) = G$.
- **(c)** We have $\sigma(p+1) < \sigma(p+2) < \cdots < \sigma(n)$.

(Note that a chain of inequalities that involves less than two numbers is considered to be vacuously true. For example, Exercise 4 (c) is vacuously true when p = n - 1 and also when p = n.)

Permutations $\sigma \in S_n$ satisfying the inequalities $\sigma(1) > \sigma(2) > \cdots > \sigma(p)$ and $\sigma(p+1) < \sigma(p+2) < \cdots < \sigma(n)$ for some $p \in \{0,1,\ldots,n\}$ are known as "Vpermutations" (as their plot looks somewhat like the letter "V": first decreasing for a while, then increasing). Can you guess how permutations $\sigma \in S_n$ satisfying $\sigma(1) < \sigma(2) < \cdots < \sigma(p)$ and $\sigma(p+1) > \sigma(p+2) > \cdots > \sigma(n)$ are called?

0.5. Lexicographic comparison of permutations

Definition 0.3. Let $n \in \mathbb{N}$. Let $\sigma \in S_n$ be a permutation. For any $i \in [n]$, we let $\ell_i(\sigma)$ denote the number of $j \in \{i+1, i+2, \ldots, n\}$ such that $\sigma(i) > \sigma(j)$.

For example, if σ is the permutation of [5] written in one-line notation as [4, 1, 5, 2, 3], then $\ell_1(\sigma) = 3$, $\ell_2(\sigma) = 0$, $\ell_3(\sigma) = 2$, $\ell_4(\sigma) = 0$ and $\ell_5(\sigma) = 0$.

Definition 0.4. Let $n \in \mathbb{N}$. Let (a_1, a_2, \ldots, a_n) and (b_1, b_2, \ldots, b_n) be two n-tuples of integers. We say that $(a_1, a_2, \ldots, a_n) <_{\text{lex}} (b_1, b_2, \ldots, b_n)$ if and only if there exists some $k \in [n]$ such that $a_k \neq b_k$, and the **smallest** such k satisfies $a_k < b_k$.

For example, $(4,1,2,5) <_{\text{lex}} (4,1,3,0)$ and $(1,1,0,1) <_{\text{lex}} (2,0,0,0)$. The relation $<_{\text{lex}}$ is usually pronounced "is lexicographically smaller than"; the word "lexicographic" comes from the idea that if numbers were letters, then a "word" $a_1 a_2 \cdots a_n$ would appear earlier in a dictionary than $b_1 b_2 \cdots b_n$ if and only if $(a_1, a_2, \ldots, a_n) <_{\text{lex}} (b_1, b_2, \ldots, b_n)$.

Exercise 5. Let $n \in \mathbb{N}$. Let $\sigma \in S_n$ and $\tau \in S_n$. Prove the following:

(a) If

$$(\sigma(1), \sigma(2), \ldots, \sigma(n)) <_{\text{lex}} (\tau(1), \tau(2), \ldots, \tau(n)),$$

then

$$(\ell_1(\sigma), \ell_2(\sigma), \dots, \ell_n(\sigma)) <_{\text{lex}} (\ell_1(\tau), \ell_2(\tau), \dots, \ell_n(\tau)).$$

(b) If
$$(\ell_1(\sigma), \ell_2(\sigma), \dots, \ell_n(\sigma)) = (\ell_1(\tau), \ell_2(\tau), \dots, \ell_n(\tau))$$
, then $\sigma = \tau$.

0.6. Comparing subsets of [n]

If *I* and *J* are two finite sets of integers, then we write $I \leq_{\#} J$ if and only if the following two properties hold:

- We have $|I| \ge |J|$.
- For every $r \in \{1, 2, ..., |J|\}$, the r-th smallest element of I is \leq to the r-th smallest element of J.

For example, $\{2,4\} \le_\# \{2,5\}$ and $\{1,3\} \le_\# \{2,4\}$ and $\{1,3,5\} \le_\# \{2,4\}$. (But not $\{1,3\} \le_\# \{2,4,5\}$.)

Exercise 6. Let $n \in \mathbb{N}$. Let I and J be two subsets of [n].

- (a) For every subset S of [n] and every $\ell \in [n]$, let $\alpha_S(\ell)$ denote the number of all elements of S that are $\leq \ell$. Prove that $I \leq_\# J$ holds if and only if every $\ell \in [n]$ satisfies $\alpha_I(\ell) \geq \alpha_I(\ell)$.
 - **(b)** Prove that $I \leq_{\#} J$ if and only if $[n] \setminus J \leq_{\#} [n] \setminus I$.

Remark 0.5. Recall that we have defined a *Dyck word* as a list w of 2n numbers, exactly n of which are 0's while the other n are 1's, and having the property that for each $k \in [2n]$, the number of 0's among the first k entries of k is k to the number of 1's among the first k entries of k.

It is not hard to see the connection between the relation $\leq_{\#}$ and Dyck words: Let $w = (w_1, w_2, ..., w_{2n}) \in \{0, 1\}^{2n}$ be a list of 2n numbers, exactly n of which are 0's while the other n are 1's. Then, w is a Dyck word if and only if

$$\{i \in [2n] \mid w_i = 1\} \le \# \{i \in [2n] \mid w_i = 0\}$$

(in other words, for every $r \in [n]$, the r-th appearance of 1 in w precedes the r-th appearance of 0 in w).

0.7. A rigorous approach to the existence of a cycle decomposition

The purpose of the following exercise is to give a rigorous proof of the fact that any permutation can be decomposed into disjoint cycles.

Exercise 7. Let X be a finite set. Let σ be a permutation of X.

Define a binary relation \sim on the set X as follows: For two elements $x \in X$ and $y \in X$, we set $x \sim y$ if and only if there exists some $k \in \mathbb{N}$ such that $y = \sigma^k(x)$.

(a) Prove that \sim is an equivalence relation.

For any $x \in X$, we let $[x]_{\sim}$ denote the \sim -equivalence class of x.

- **(b)** For any $x \in X$, prove that $[x]_{\sim} = \{ \sigma^0(x), \sigma^1(x), ..., \sigma^{k-1}(x) \}$, where $k = |[x]_{\sim}|$.
 - (c) For any \sim -equivalence class E, let us define c_E to be the map

$$X \to X$$
, $x \mapsto \begin{cases} \sigma(x), & \text{if } x \in E; \\ x, & \text{if } x \notin E \end{cases}$.

Prove that c_E is a permutation of X.

- (d) Prove that if $E = [x]_{\sim}$ for some $x \in X$, then c_E can be written as $\operatorname{cyc}_{\sigma^0(x),\sigma^1(x),\ldots,\sigma^{k-1}(x)}$, where $k = |[x]_{\sim}|$. (Don't forget to show that $\sigma^0(x),\sigma^1(x),\ldots,\sigma^{k-1}(x)$ are distinct, so that $\operatorname{cyc}_{\sigma^0(x),\sigma^1(x),\ldots,\sigma^{k-1}(x)}$ is well-defined.)
- (e) Let $E_1, E_2, ..., E_m$ be all \sim -equivalence classes (listed without repetitions that is, $E_i \neq E_j$ whenever $i \neq j$). Prove that

$$\sigma = c_{E_1} \circ c_{E_2} \circ \cdots \circ c_{E_m}.$$

References

[Galvin17] David Galvin, Basic discrete mathematics, 5 November 2017. http://www.cip.ifi.lmu.de/~grinberg/t/17f/60610lectures2017-Galvin.pdf

[Grinbe16] Darij Grinberg, Notes on the combinatorial fundamentals of algebra, 10 January 2019.

http://www.cip.ifi.lmu.de/~grinberg/primes2015/sols.pdf
The numbering of theorems and formulas in this link might shift

when the project gets updated; for a "frozen" version whose numbering is guaranteed to match that in the citations above, see https://github.com/darijgr/detnotes/releases/tag/2019-01-10.