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0.1. On the Euler totient function

Let us first recall some basic facts from elementary number theory.

A common divisor of two integers a and b is an integer that divides both 4 and
b. If a and b are two integers satisfying (a,b) # (0,0), then ged (a,b) is defined to
be the greatest of all common divisors of 2 and b. For the sake of completeness,
we also define ged (0,0) = 0 (so that ged (a,b) is defined whenever a and b are
two integers). For any two integers a and b, we call gcd (a,b) the greatest common
divisor of a and b (even though, in the case when (a,b) = (0,0), it is not literally the
greatest among all common divisors of 2 and b). For example,

ged (2,3) =1, ged (5,10) =5, ged (4,6) =2,
ged (—1,4) =1, ged (—2,—-6) =2, ged (0,8) =8,
ged (6,15) =3, ged (—6,15) =3, ged (0,0) = 0.

Two integers a and b are said to be coprime if their greatest common divisor is 1.
We say that an integer a is coprime to an integer b if a and b are coprime.

(Note that gcd (a,0) = |a] for any integer a. Hence, the only integers coprime to
Oare1and —1.)

The Euler totient function ¢ : {1,2,3,...} — N is defined by

¢ (n) = (the number of all m € [n] that are coprime to n)
= |{m € [n] | mis coprime ton}|. (1)

More about greatest common divisors and about this function can be found in
[LeLeMel7, Chapter 9] That said, you won’t need anything but the definitions in
this homework set.

IThe probably most important fact is the following:
The greatest common divisor ged (a,b) of two integers a and b can be characterized by the
following property: It is the unique nonnegative common divisor g of a and b such that every
common divisor of 2 and b must divide g.
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Exercise 1. Let 1 be a positive integer.

(@) Prove that if m is an integer coprime to 1, then n — m is also an integer
coprime to .

(b) Prove that ¢ (n) is even if n > 2.

[Hint: If you haven’t used the n > 2 requirement, then you must have missed
something. ¢ (2) = 1, which is not even!]

Before we solve this exercise, let us state a basic fact about the greatest common
divisor of integers:

Lemma 0.1. Let n be a nonzero integer. Let m be an integer. Let ¢ € Z. Then,
ged (gn —m,n) = ged (m,n) .
Proof of Lemma Each common divisor of m and # is also a common divisor of
gn—mandn [ In other words, we have

(the set of all common divisors of m and n)
C (the set of all common divisors of gn —m and n). @)

But we can apply the same reasoning to gn — m instead of m. We thus obtain

(the set of all common divisors of gn — m and n)
C (the set of all common divisors of gn — (gn —m) and n)
= (the set of all common divisors of m and n)

(since gn — (gn — m) = m). Combining this inclusion with (2), we obtain

(the set of all common divisors of m and n)
= (the set of all common divisors of gn —m and n). 3)

But n is nonzero. Hence, n # 0; thus, (m,n) # (0,0). Thus, gcd (m,n) is the
greatest of all common divisors of m and n (by the definition of ged (m,n)). In
other words,

ged (m, n) = max (the set of all common divisors of m and n).

2Proof. Let d be a common divisor of m and n. We must show that d is also a common divisor of
gn —m and n.

We know that d divides both m and 7 (since d is a common divisor of m and n). Thus, there
exists some m’ € Z such that m = dm’ (since d divides m), and there exists some n’ € Z such
that n = dn’ (since d divides n). Consider these m’ and n’. Wehaveg n — m = gdn' —dm' =

—
=dn’  =dm’
d (gn’ —m'). Hence, d divides gn — m.

Now, the integer d divides both gn —m and n. In other words, d is a common divisor of

gn — m and n. This completes our proof.
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In view of (3), this rewrites as
ged (m, n) = max (the set of all common divisors of gn —m and n). 4)

On the other hand, (gn —m,n) # (0,0) (since n # 0). Hence, gcd (gn — m, n) is
the greatest of all common divisors of gn — m and n (by the definition of ged (gn — m, n)).
In other words,

ged (gn — m, n) = max (the set of all common divisors of gn —m and n).

Comparing this with (4), we obtain ged (¢n —m,n) = ged (m,n). This proves
Lemma [0.1] O

Solution to Exercise[ll (a) Let m be an integer coprime to n. We must prove that
n —m is also an integer coprime to 7.

Clearly, n — m is an integer. Furthermore, we know that m is coprime to n. In
other words, m and n are coprime. In other words, ged (m,n) = 1 (by the definition
of “coprime”). But n is nonzero (since 7 is positive); hence, Lemma (applied to
g = 1) yields ged (1n —m,n) = ged (m,n) = 1. In other words, 1n — m and n are
coprime (by the definition of “coprime”). In other words, 1n — m is coprime to n.
In other words, n — m is coprime to n (since 1n = n). This solves Exercise (1| (a).

(b) Assume that n > 2. Define a subset K of [n| by K = {m € [n] | m is coprime to n}.
Thus,

|K| = |{m € [n] | mis coprime to n}| = ¢ (n) )
(by (1)). Also,n ¢ K [Jand n/2 ¢ K [} Also,
n—ieKkK foreachi € K (6)

Bl

3Proof. Assume the contrary. Thus, n € K = {m € [n] | m is coprime to n}. In other words,
n € [n] and n is coprime to n. Hence, n and n are coprime (since n is coprime to n). In other
words, ged (n,n) = 1.

But n is a positive integer; hence, gcd (n,1n) = n. Therefore, n = ged (n,n) = 1 < 2; this
contradicts #n > 2. This contradiction shows that our assumption was wrong, ged.

4Proof. Assume the contrary. Thus, n/2 € K = {m € [n] | m is coprime to n}. In other words,
n/2 € [n] and n/2 is coprime to n. Hence, n/2 is a positive integer (since n/2 € [n]). Also, n/2
and n are coprime (since 71/2 is coprime to n). In other words, ged (1/2,n) = 1.

If a and b are two positive integers satisfying a | b, then gecd (a,b) = a. Applying this to a =
n/2 and b = n, we obtain ged (1n/2,n) = n/2 (since n/2 | n). Therefore, n/2 = ged (n/2,n) =1,
so that n = 2; this contradicts n > 2. This contradiction shows that our assumption was wrong,
ged.

Proof. Leti € K. Thus, i € K = {m € [n] | m is coprime to n}. In other words, i € [n], and
i is coprime to n. Hence, Exercise [1| (a) (applied to m = i) shows that n —i is an integer
coprime to n. If we had i = n, then we would have n = i € K, which would contradict
n ¢ K. Hence, we cannot have i = n. We thus have i # n. Combined with i € [n], this yields
ien\{n}={12...,n—1},sothat n—i € {1,2,...,n—1} C [n]. Therefore, n —i € [n]
and n — i is coprime to n. In other words, n —i € {m € [n] | mis coprime to n}. In view of
K= {m € [n] | mis coprime to n}, this rewrites as n — i € K. Qed.
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Now, define two subsets A and B of K by
A={meK | m<n/2} and B={meK | m>n/2}.
From A = {m € K | m < n/2}, we obtain

K\NA=K\{meK | m<n/2} ={mecK | wedonthave m <n/2

— (m>n/2)

={meK | m>n/2} =B.

But A is a subset of K; thus, |[K\ A| = |K| — |A|. Hence, |K| — |A| = |[K\ A| = |B|
(since K\ A = B), so that |K| = |A| + |B|. Comparing this with (5), we find

¢ (n) = |A[+|B]. )
Also,n—i € Bforeachic A ﬂ Hence, we can define a map a : A — B by
a(i)=n—i for each i € A.

Consider this map «.
Furthermore, n —i € A foreachi € B ﬂ Thus, we can defineamap p: B —+ A
by
B(i)=n—i for each i € B.
Consider this map B.
We have « o = id (since each i € B satisfies

(woB)(i)=a(B(i) =n— é\@ (by the definition of )

=n—i

(by the definition of )
=n—(n—i)=i=1id (i)

) and similarly foa = id. Hence, the maps a and B are mutually inverse. Thus,

the map « is invertible, i.e., a bijection. We thus have found a bijection from A to

B (namely, «); we conclude that |A| = |B|. But (7) becomes ¢ (n) = |A| +|B| =
~—

=Bl
|B| + |B| = 2 |B|. Hence, ¢ (n) is even. This solves Exercise (1| (b). O

®Proof. Leti € A. We must show that n —i € B.
We havei € A = {m € K | m <n/2}. In other words, i € K and i < n/2. Now, (6) shows
that n —i € K. Also, n —\i’J >n—n/2 =n/2,so that n —i > n/2. Thus, we have shown
<n/2
that n —i € Kand n—i > n/2. In other words, n —i € {m € K | m>n/2}. In view of
B={meK | m>n/2}, this rewrites as n — i € B. Qed.
7Proof. Let i € B. We must show that n —i € A.

We have i € B = {m € K | m > n/2}. In other words, i € K and i > /2. Now, (6) shows
that n —i € K. If we had i = n/2, then we would have n/2 = i € K, which would contradict
n/2 ¢ K. Hence, we cannot have i = n/2. We thus have i # n/2, and therefore i > n/2
(since i > n/2). Hence, n — \z/_/ < n—mn/2 = n/2. Thus, we have shown that n —i € K and

>n/2
n—i<n/2 Inotherwords,n—ie {meK | m<n/2}. Inviewof A={meK | m<n/2},
this rewrites as 1 —i € A. Qed.
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0.2. Variations on the binomial formula

Exercise 2. A preprint recently posted on the arXiv says (in a proof) that “

1—2(1'—1) (f) (dlj)léo,

the final equality being verified by the computer algebra system Maple (which
itself employs an algorithm of Zeilberger)”. Here, d is assumed to be an integer
> 2.

Prove this equality by hand (but feel free to use a computer to write up your
proof...). More generally, find and prove a sum-less expression for

30 ()

where g is an arbitrary rational number (and 4 is still an integer > 2).

Before we solve Exercise [2, let us recall an identity about binomial coefficients:

-1
Proposition 0.2. We have k(Z) =n <Z _ 1) for any n € Q and any positive
integer k.
Proof of Proposition Proposition [0.2]is Exercise 2 (b) on homework set #1, so we
don’t need to prove it again. O

Let us again recall the binomial formula:
Proposition 0.3. Let n € IN. Let x € Q and y € Q. Then,
n_ oy~ (7 k ok
(x+y)" = Z (k)x YR
k=0
Next, let us show a lemma:
Lemma 0.4. Let d be a positive integer. Let g € Q. Then,
d

Zi(f) q'=dq(q+1)""

i=1

Proof of Lemma We have d — 1 € IN (since d is a positive integer). Thus, Propo-
sition [0.3] (applied ton =d — 1, x = g and y = 1) yields

d-1 4 (d—1\ ;
R (e (e R (0)e o

k=0 i=1



https://www.math.upenn.edu/~wilf/AeqB.html
http://www.cip.ifi.lmu.de/~grinberg/t/17f/hw1s.pdf
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(here, we have substituted i — 1 for k in the sum). But

o) won)we ib)”

e d :qq171 " /
T —(g+1)"-
i—1 ha

(by Proposition
applied to n=d and k=i)

d—1
=dq(q+1)
This proves Lemma O

Solution to Exercise2l Let d be an integer > 2. Let g be an arbitrary rational number.
Proposition [0.3] (applied to n = d, x = g and y = 1) yields

g1 = (d)q &L" > (Z)qk -y (?)qi

k=0 k=0 i=0

(here, we have renamed the summation index k as i)

- (@=L ()

Hence,

4 rd\ d

(. )a =@+ -1 9)
We have d > 2, so that

Fon()r-a (@ fe (e

=2

:@+é(i—1> (f)cfzi_zzu—l) (§)d
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Hence,

=dg(q+1)" 1 =(g+1)'1
(by Lemma [0.4) (by ©))

—dg(g+1)" =] g+ -1

=(dg—(q+1)(g+1)" " +1.

Applying this to g = ﬁ, we find
d i d—1
) d 1 1 1 1
Y1) (D) (727) = (52— (525 +1)) (325 +1) +1=1
-0
d 'AYARTRY
In other words, 1 — ) (i —1) (1) <m> = 0. This solves Exercise [2 O
i=2 -

0.3. Screaming at feet

Exercise 3. Let n > 1 be an integer. Consider n people standing in a circle. Each
of them looks down at someone else’s feet (i.e., at the feet of one of the other
n — 1 persons). A bell sounds, and every person (simultaneously) looks up at
the eyes of the person whose feet they have been ogling. If two people make eye
contact, they scream. Show that the probability that no one screams is

= nm=1)---(n—2k+1)
k;)( 2 (n—1)%.2k.kt

Combinatorial restatement (feel free to solve this instead): A pair (i,]) of ele-
ments of [n] is said to scream at a map f : [n] — [n] if it satisfies f (i) = j and
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f(j) =1i. Amap f : [n] — [n] is silent if no pair (i,j) € [n] X [n] screams at f.
Prove that the number of all silent maps f : [n] — [n] is

kio (_1)k n (ﬂ — 1) Zk(:' — 2k + 1) (1’1 B 1)n—2k .

Exercise |3| is [Camero16, Exercise 7.9]; a solution outline can be found in that ref-
erences (make sure to check the errata). The solution we give below is essentially
that solution from [Camero16, Exercise 7.9], with more details included.

We notice that the “staring game” described in Exercise [3|is known as the “Zen
stare”. See Sequence A134362 in the OEIS.

Our solution to Exercise 3| will rely on the Principle of Inclusion and Exclusion
(see, e.g., [Galvinl7, Theorem 16.1 and (12)]):

Theorem 0.5. Let n € IN. Let Ay, As, ..., A, be finite sets.

(a) We have
Uail= ). (- (Al
i=1 IC[n]; icl
I#£2

(b) Let S be a finite set. Assume that each of A, Ap,..., A, is a subset of S.
Then,

=L 0"

I1C[n]

A

iel

n
S\ U A
i=1

Here, the “empty” intersection | A; is understood to mean the set S.
i€eg

Let us restate Theorem in a way that doesn’t require the finite sets to be
indexed by 1,2, ..., n, but rather indexes them by any arbitrary finite set R:

Theorem 0.6. Let R be a finite set. For each r € R, let A, be a finite set.
(a) We have

=3 ("

ICR;
I#£2

(b) Let S be a finite set. Assume that A, is a subset of S for each r € R. Then,

=Y -vhNa,

ICR rel

U

reR

N4

rel

F\Um

réeR

Here, the “empty” intersection (1 A, is understood to mean the set S.
red



https://oeis.org/A134362
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(Theorem (0.6 also appears in [Grinbel6b]: Namely, parts (a) and (b) of Theorem
are [Grinbel6b, Theorem 3.42] and [Grinbel6b, Theorem 3.43], respectively.)
Next, let us recall a basic formula, which was Exercise 1 (a) on homework set #2:

Proposition 0.7. Let n € IN. Then,

2n—1)-2n—3)----- 1 (

(The left hand side is understood to be the product of all odd integers from 1 to
2n —1.)

Solution to Exercise 3| (sketched). In the following, an edge will mean a 2-element sub-
set of [n]. For example, {1,3} and {2,6} are edges (if n > 6). Note that {1,3} =
{3,1}. Note also that {1,1} is not an edge (since it is not a 2-element set). Let R be
the set of all edges.

Let S be the set of all maps f : [n] — [n] that have no fixed point§’} If r = {i,}
is an edge, then a map f : [n] — [n] is said to coscream at r if and only if it satisfies
f (i) =jand f (j) = i. (Clearly, this condition does not depend on how the edge r is
written as {7, j}, because switching i with j merely interchanges the two conditions
f (i) =jand f (j) =1i.) Thus, amap f : [n] = [n] coscreams at an edge {i,j} if and
only if the pair (i, ) screams at f. The following fact is now easy:

Observation 1: Let f : [n] — [n] be a map. Then, f is silent if and only if
f has no fixed point and coscreams at no edges.

[Proof of Observation 1: =: Assume that f is silent. In other words, no pair
(i,j) € [n] x [n] screams at f. Hence, f has no fixed point (because if x was a
fixed point of f, then the pair (x, x) would scream at f), and coscreams at no edges
(because if f would coscream at an edge {7, j}, then the pair (i, j) would scream at
f). This proves the “=-" direction (i.e., the “only if” direction) of Observation 1.

<=: Assume that f has no fixed point and coscreams at no edges. Then, no pair
(i,j) € [n] x [n] screams at f: In fact, if any pair (i,j) € [n] x [n] would scream
at f, then either i would be a fixed point of f (when i = j), or f would coscream
at the edge {i,j} (if i # j); but both of these possibilities are impossible by our
assumption. Hence, the map f is silent. This proves the “<=" direction (i.e., the
“if” direction) of Observation 1.]

Next, we shall study subsets I of R such that all edges in I are disjoint. For ex-
ample, {{1,5},{2,8},{3,4}} is such a subset (if n > 8), but {{1,5},{2,5},{3,4}}
is not (since {1,5} and {2,5} are not disjoint). If you have seen graph theory, you
will recognize that such subsets are the matchings of the complete graph K. (This
is also the reason why we called our edges “edges”.)

8A fixed point of a map f : X — X (where X is any set) means an element x € X satisfying

f(x)=nx.



http://www.cip.ifi.lmu.de/~grinberg/t/17f/hw2s.pdf
https://en.wikipedia.org/wiki/Matching_(graph_theory)
https://en.wikipedia.org/wiki/Complete_graph
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Observation 2: Let k € IN. Then, the number of k-element subsets I of R

k
such that all edges in I are disjoint is (2nk> -T1 (27 —1).
j=1

[Proof of Observation 2: We first introduce a notation: If I is a subset of R such that
all edges in I are disjoint, and if x is an element of one of the edges in I, then the
I-partner of x shall mean the other element of this edge (i.e., the element of e that is
distinct from x, where e is the unique edge in I that contains x). This [-partner is
uniquely determined because there is only one edge in I that contains x (since all
edges in I are disjoint).

It is clear that if ] is a k-element subset of R such that all edges in I are disjoint,
then the union of the edges in I must have size 2k; in other words, altogether 2k
elements of [n] belong to the edges of I. Thus, the following is a way to construct
any k-element subset I of R such that all edges in I are disjoint:

e First, choose which 2k elements of [1] should belong to the edges of I. This
choice can be made in ( 2nk> ways.

e Having chosen these 2k elements, we let Z denote their set. We must now
choose I. This I has to be a decomposition of the set Z into k disjoint edges
(i.e., two-element subsets). We choose I via the following k-step process:

— In step 1, we choose the I-partner of the smallest element of Z. There
are 2k — 1 choices for it (since any element of Z other than the smallest
element is fine). We then remove both the smallest element of Z and its
[-partner from Z; thus, Z becomes a 2k — 2-element set.

- In step 2, we choose the I-partner of the smallest element of Z (keeping
in mind that Z is now a 2k — 2-element set). There are 2k — 3 choices for
it (since any element of Z other than the smallest element is fine). We
then remove both the smallest element of Z and its [-partner from Z;
thus, Z becomes a 2k — 4-element set.

— In step 3, we choose the I-partner of the smallest element of Z (keeping
in mind that Z is now a 2k — 4-element set). There are 2k — 5 choices for
it (since any element of Z other than the smallest element is fine). We
then remove both the smallest element of Z and its [-partner from Z;
thus, Z becomes a 2k — 6-element set.

- And so on, until in step k the set Z has become empty.

k
Altogether, we thus have (2k —1) (2k—3)---1 = [] (2j — 1) options in this

j=1
process.
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n
The total number of possibilities how this construction can be made is < Zk) -

k
[T (2j —1). This yields Observation 2.]
j=1

Next, we ask ourselves the following question: Given a subset I of R, how many
maps f € S have the property that f coscreams at each r € I (and perhaps at some
other edges as well — we are neither forbidding nor requiring this)? It turns out
that the answer to this question depends on whether all edges in I are disjoint or
not. We shall consider these two cases in Observations 3 and 4.

Observation 3: Let I be a subset of R. Assume that not all edges in [ are
disjoint. Then,

(the number of all f € S such that f coscreams at each r € I)
= 0.

[Proof of Observation 3: We must simply prove that there exists no f € S such that
f coscreams at each r € I.

Indeed, consider such an f. We shall derive a contradiction.

Not all edges in I are disjoint. Thus, there exist two edges in I having the forms
{a,b} and {a,c} for distinct a,b,c € [n]. Consider two such edges. The map f
coscreams at the edge {a,b} (since f coscreams at each r € I). In other words,
f(a) =band f(b) = a. Similarly, f(a) = cand f(c) =a. Butb = f(a) =c¢
contradicts the distinctness of a4, b, c.

Now, forget that we fixed f. We thus have found a contradiction for each f € S
such that f coscreams at each r € I. Hence, there exist no such f. This proves
Observation 3.]

Observation 4: Let I be a subset of R. Assume that all edges in I are
disjoint. Then,

(the number of all f € S such that f coscreams at each r € I)
= (n—1)"210,

[Proof of Observation 4: How do we construct a map f € S such that f coscreams
at each v € I ? Clearly, if a map f : [n] — [n] coscreams at an edge 7, then this
uniquely determines the values of f on both elements of this edge r (namely, f has
to send the first element to the second and vice versa). Thus, if we want to construct
amap f € S such that f coscreams at each r € I, then we immediately know the
values of f on each element of each of the edges r € I. These are 2|I| elements
in total (since all edges in I are disjoint, and each of them has 2 elements). Hence,
in order to construct a map f € S such that f coscreams at each r € I, we only
need to choose the values of f on the remaining n — 2 |I| elements of [n]. There are

(n— 1)"_2‘1| options to do that, because for each of the remaining n — 2 |I| elements
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of [n] we can choose the value of f at this element in exactly n — 1 waysﬂ Hence,
the number of all f € S such that f coscreams at each r € [ is (n — 1)”72”'. This
proves Observation 4.]

For each r € R, let A, be the set of all maps f € S that coscream at the edge r.
Clearly, A, is a subset of S for each r € R.

Now, we are ready for the grand computation. From Observation 1, we conclude

Why n — 1 and not n ? Well, we want f to belong to S, so we want f to have no fixed points.
Thus, f cannot send our element to itself.
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that

(the number of all silent maps f : [n] — [n])

= | the number of all maps f : [n] — [n] such that f has no fixed point

<~ (f€S)
(by the definition of S)

and f coscreams at no edges

<= ((f does not cosc;gam at r) for each reR)
= (the number of all maps f : [n] — [n] such that f € S
and ((f does not coscream at r) for each r € R))

= | the number of all f € S such that | (f does not coscream at r) for each r € R

(. J/
-~

— (f¢Ar)
(by the definition of Ay)

= | the number of all f € S such that (f ¢ A, for each r € R)

-~

= (reu ar)

reR

= <the number of all f € S such that f & U Ar)

rerR

=) "

ICR

s\ A

reR

N4

rel

= (the number of all f€S such that fe Ar)

rel
(by Theorem [0.6] (b))

=) (—1)“| the number of all f € S such that fe()A
ICR rel
——
<= (feA, forall rel)
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=) (—1)“| the number of all f € S such that feA forallr €1
N e’

<= (f coscreams at r)
(by the definition of A;)

= Z (—1)“| the number of all f € S such that (f coscreams at r for all r € I)

(. /

ICR o
<= (f coscreams at each rel)

=) (—1)“| (the number of all f € S such that f coscreams at each r € I)
ICR
= Y. (—1)'1‘ (the number of all f € S such that f coscreams at each r € I)
ICR; ~ N~ g
CR; ~
notaiil gi?;;in I (by Observation 3)

+ ) (—1)“| (the number of all f € S such that f coscreams at each r € I)

S

ICR; T
all edges in I =(n—1)"21
are disjoint (by Observation 4)
I I =2|I
= Y o+ ¥ ()@
ICR; ICR;
not all edges in I all edges in I
are disjoint are disjoint
-0
_ 1 n-2[1| _ 1 n-2]1]
- Y (oY Yy () oy
ICR; keIN ICR; e
all edges in I all edges in I :(—1)k(n—1)”72k
are disjoint are disjoint; (since |I|=k)
|I|=k
— 2 Z (_1)k (n_l)l’lfzk
keIN ICR;

all edges in I
are disjoint;
|I|=k

7

-~

=(the number of all ICR such that all edges in I are disjoint, and |I|:k)o(fl)k(nfl)"_2k




Math 4990 Fall 2017 (Darij Grinberg): homework set 4 page 15

= ) (the number of all I C R such that all edges in I are disjoint, and |I| = k)

keEN N
=(the number of k-element subsets I of R such that all edges in I are disjoint)

k

= " 2j—1
- \2k ']1;11( /=1
(by Observation 2)

n (n—1)---(n—2k+1) (2k—1)-(2k—3)-----1

(2K)! (2K)!
(by the definition of = ok
binomial coefficients) (by Propositfon

applied to k instead of n)

B Z nn-—1) -(-z.k()y:—ZkJrl) ' (22152,! . (—1)k(n—1)”_2k

kelN . _
nn-—1 n—2k+1
M D)
B rn(n—1)---(n—2k+1) ok
=% -1 — (n—1)"
nn—1)---(n—2k+1 n—
keN; :
NS
=X
k=0
nn—-1)---(n—2k+1 _
by MU E D e
e ) T .

=0
(since the product n(n—1)---(n—2k+1) contains
the factor n—n (because n<k<2k) and thus
equals 0 (since n—n=0))

(since each k € IN satisfies either k < n or k > n (but not both))

L ) =2k 41 B
fr 2% . k! kE]N
J>n

J/

_ i (_1)k 71(1’1— 1) -2.k..(;:!—2k+1) (n_ 1),1,2]{.

This proves the “Combinatorial restatement”. To prove the first claim, about the
probability that no one screams, we have to divide this number by (n — 1)", because
(n —1)" is the total number of ways that everyone can look down at someone else’s




Math 4990 Fall 2017 (Darij Grinberg): homework set 4 page 16

feet. Thus, Exercise [3]is solved. ]

0.4. An alternating identity

Exercise 4. Let i and j be positive integers. Prove that

e (k—1)! B
kzmg{i,j}( D (k=i (k=j)ti+j—Fk!

I have learnt Exercise 4 from a post by Peter Scholze on Art of Problem Solving
[Scholz04] (who stated it in the case when i > j only, but the general case can be
easily reduced to this). Three solutions have been suggested on this thread; feel
free to add yours!

Before we solve Exercise 4 let us recall some more properties of binomial coeffi-
cients:

Proposition 0.8. Let 2 and b be two integers such that a > b > 0. Then,

(o) = s

Proposition 0.9. For every x € Q and y € Q and n € IN, we have
X+y\ _ X y
() =505,

Proposition 0.10. We have

n\ _ . \k k—n-—1
(5= ()
forany n € Q and k € IN.

Proposition 0.11. We have

(5)-s

for every m € IN and n € IN satisfying m < n.

Proposition [0.§ was proven in the solutions to homework set 1. Proposition
is the Vandermonde convolution identity, and is proven in multiple placeﬂ Propo-
sition is Exercise 2 (a) in homework set 1 (and also appears as [Grinbel6b,

OFor an elementary proof, see, e.g., [Grinbel6b), first proof of Theorem 3.29].



https://en.wikipedia.org/wiki/Peter_Scholze
http://www.cip.ifi.lmu.de/~grinberg/t/17f/hw1s.pdf
http://www.cip.ifi.lmu.de/~grinberg/t/17f/hw1s.pdf
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Proposition 3.16]). Proposition is fundamental and easy to prove (see, e.g.,
[Grinbel6b| Proposition 3.6]).
As a consequence, we obtain the following:

Proposition 0.12. Let i and j be two positive integers. Then,

L (L)) e

Proof of Proposition We have 0 < j (since j is positive). Hence, Proposition [0.17]

(applied to m = 0 and n = j) yields ((J)) = 0.
Proposition [0.9] (applied to x = —i, y = i and n = j) yields

-5 6 (mzer (257 (4

= (i) i
k—(—i)—1 k+i—1
Lk _
~(-1) . ) ( .

(by Proposition [0.10} (since k—(—i)—1=k+i—1)

applied to n=—1)

:,é)(—l)k )G :kio(_l)k G

Thus,
i(—Uk( i )(k+i—1> _ ((—i)+i) _ <0> 0
P i-k)\ & j i)
This proves Proposition [0.12] [

Let us now solve Exercise (4

Solution to Exerciseld We can WLOG assume that i > j (since otherwise, we can
simply interchange with i and j). Assume this.

Also, i! =i- (i —1)! (since i is a positive integer).

For every k € {i,i+1,...,i+j}, we have

<k—i>!<k(l:>?<!i+f—k>! B %(ﬂr;—k) C:l) (10)

[Proof of {10): Letk € {i,i+1,...,i+j}. Then, i <k <i+j. Fromk < i+ j, we
obtain i +j —k > 0. Also, from i < k, we obtain k > i > j. Hence,i+j— _k <
>j




Math 4990 Fall 2017 (Darij Grinberg): homework set 4 page 18

i+j—j =i Therefore, i > i+ j—k > 0. Thus, Proposition [0.§] (applied to a = i
and b =i+ j— k) yields

1 i! i!
(i+j—k> (iR G—= G+ k) G+ k) (k—)!
(sincei— (i+j—k)=k—j)

_i(i—) o
SRy Sneft=rEmh Ay

On the other hand, k > i, so that k —7i > 0. Also, i > 1 (since i is a positive
integer), so that k —1 > k —i > 0. Thus, Proposition (applied to a = k — 1 and
b =k — i) yields

k=1y _ (k—1)! (k=)
) e (= il T s B

(since (k—1) — (k —i) =i — 1). Multiplying the equalities and (12), we find
( i )(k—l)_ i-(i—1)! (k—1)!

i+j—k)\k—i)  (i+j-k!Ik=j! (k—i)!(i-1)!

(k—-1)!

k=D k=T j— R

=1.-
Dividing this equality by i, we find

%(w;—k) (II:D ~ ki) (k(k—;)%)(i'ntj—k)!'

This proves (10).]
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But max {7, j} =i (since i > j). Hence,

g (k—1)!
Lgiﬁf A P T ) Ty gy
| (k—1)!

_._k
=)L (-1 k=Dl (k—PLi+j—K)!

k=i R
NV

‘%<i+;—k) (I’{‘j)

(by (10))
i+ 1 ' k—1 14 j k—1
=Y (-0 =(. — Y (—)f (L
~ i\i+j—k)\k-i)  iZ i+j—k)\k—i

:1i(4yﬁ( i )(hu—w
i = ~—— \itj—(k+i) k+i—i
ki ~~ 7\ -
Seve C(kti—1
\j—k - k
(since i+j— (k+i)=j—k) (since k+i—i=k)

(here, we have substituted k + i for k in the sum)

R e (L))
v p et () () = fevio=e

J

~"

=0
(by Proposition
This solves Exercise 4 O

0.5. The binomial transform

Exercise 5. Let N € IN. Let (ag,a1,...,an) be a list of rational numbers. Define
a second list (bg, by, ..., by) of rational numbers by setting

n .
by =) (—1) <:,l)ai foreachn € {0,1,...,N}.
i=0

Prove that

n .
an =Y (—1) (T.Z)bi foreachn € {0,1,...,N}.
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Before we solve this exercise, let us recall two more basic facts:

Proposition 0.13. If n € Q and if a and b are two integers such thata > b > 0,
then

n\ (a\ (n\(n-—>b

a)\b) \bJ\a—b)
Proposition 0.14. We have (Z) =1 for every m € IN.

Proposition is Exercise 2 (c¢) in homework set 1. Proposition is easy to
check.

On the other hand, an easy consequence of the binomial formula is the following
fact:

Proposition 0.15. Let m € IN. Then,

Proof of Proposition Proposition (applied ton = m, x = -1 and y = 1)
yields

(-v+1"=3 (V) SRt L (3) 0= L e (y)

k=0 k=0 k=0
Hence
m

" 1, ifm=0;
Z<—1>"(m)= e R TR S
k=0 k \—1/0—/ 0, ifm>0

B ifm=0; since the condition (m > 0) is

o ifm#0 equivalent to (m # 0) (because m € IN)

[(m = 0]

This proves Proposition [0.15, O

Corollary 0.16. Let n € IN. Leti € {0,1,...,n}. Then,

£ ()] 1o



http://www.cip.ifi.lmu.de/~grinberg/t/17f/hw1s.pdf
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Proof of Corollary[0.16f We have i € {0,1,...,n}, so thati < n and i € IN. From
i <n,weobtainn—i>0. Thus,n —i € N.

Letje {i,i+1,...,n}. Then,i < j. Hence, j > i > 0. Therefore, Proposition [0.13]
(applied to a = j and b = i) yields

()0 =)0 &

Also, j+i = j—imod2 (since (j+i) — (j—i) = 2i is even). Thus, (—1)/*" =
(—1)7". Multiplying this equality by , we obtain

rOR-er ()

Now, forget that we fixed j. We thus have proven foreachje {i,i+1,...,n}.

Hence,
oo (5)(0)

J

(n\ (n—i
i

)
(by (14))

Lo ()(-) - (')

(here, we have substituted k for j — i in the sum)

OREECY

J/

j—i

=[n—i=0]
(by Proposition [0.15] (applied to m=n—i))

— (’:) n—i=0]. (15)

But it is easy to see that
(’:) n—i=0]=[i=n] (16)
E Thus, becomes

jé(_l)Hi C) (D - (?) n—i=0]=[i=n].

This proves Corollary O

1 Proof of : We are in one of the following two cases:
Case 1: We have i # n.
Case 2: We have i = n.

Let us consider Case 1 first. In this case, we have i # n. In other words, n # i. Hence,
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Solution to Exercise[bl We have assumed that
n 1 n
by =Y. (<1) (i)ai (17)

foreachn € {0,1,...,N}.

n—1i# 0. Thus, [n—i=0] =0, so that (;:) [n—i=0] = 0. Comparing this with [i = n] = 0

(since i # n), we obtain ;: [n —i=0] = [i = n]. Hence, is proven in Case 1.

Now, let us consider Case 2. In this case, we have i = n. In.other words, n = i. Thus, n —i = 0.
Thus, [n —i = 0] = 1. Also, from n = i, we obtain (?) = C) =1 (by Proposition 0.14} applied

to m = i). Hence, <n> [n —i=0] = 1. Comparing this with [i = n] = 1 (since i = 1), we obtain
1) ~—_——
=1
=1

[n —i = 0] = [i = n]. Hence, (16) is proven in Case 2.

i
We thus have proven (16) in each of the two Cases 1 and 2. Thus, always holds.
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Now, let n € {0,1,...,N}. Then,

n . n .
Z (—1)’ (Tl) b, — Z (—1) (Tl) by ( here, we h'ave .renamed the )
= i = j summation index i as j
)
=) (-1 (> a
i=0 1
(by ([17), applied to j

instead of n)

j=0 i=0
> 2 =0/ (5) v (o
]:0 1=0 N e’
b e = (j)
i€{0,1,...n};
i<j

(since the elements of {0,1,...,j}
are precisely the elements i€{0,1,...,n}
satisfying i<j (because j<n))

. - In ]
- v ey (h)()s
je{01,..n} ie{01,..n};,———~——\]/ \I
i<j =(-1y*

= X L
i€{01,..n} je{0,1,...n};

i<
- v (0= x rev () ()
i€{0,1,...n} je{01,..n}; TV i€{0,L,...n} j=i ]/ \1
i<
<j
=X
j=i
- ¥ (”(—1)]’“(7)(1))@
ic{0,1,.n} \j=i ]/ \1
(byc;gu:az]y

= Y li=nla=[n=nla+ Y i =n] a
i€{0,1,...n} ‘Zl—’ i€{0,1,...n}; T
(since n=n) i7#n (since i#n)

here, we have split off the addend for i = n
from the sum

=a, + 2 Oa; = ay.
i€{0,1,...n};
i#n
_\,_/
=0
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n .
In other words, a, = Y (—1)’ <7> b;. This solves Exercise O
i=0

0.6. The Leibniz identity for the difference operator

Now, recall some of the notations for finite differences:

Per se, the words “map”, “mapping”, “function”, “transformation” and “opera-
tor” are synonyms in mathematics (they all mean assignments of values from one
set to the elements of another set). But it is common to use some of these words

selectively for certain kinds of maps. We shall follow the following rules:

e The word “map” can mean any kind of map.

e The word “function” shall mean a map from Q to Q. Thus, the set of all
functions is QQ.

e The word “operator” shall mean a map from Q® to Q®. Thus, an operator is
a map sending functions to functions.

For example, the map
Q—Q, X x?

is a function, whereas the map
Q% - QY frrfof

(“apply a function twice”) is an operator.

If f and g are functions, then f + ¢ denotes the pointwise sum of f and g (that
is, the function Q — Q, x — f (x) + g(x)), and fg denotes the pointwise product
of f and g (that is, the function Q — Q, x — f (x) g (x)). We can also write f - g
for fg.

If f is a function and A € Q, then Af denotes the pointwise product of A with
f (that is, the function Q — Q, x +— Af (x)). Thus, the functions form a Q-vector
space (and better yet, a commutative Q-algebra, because of the multiplication).

The following three operators are particularly important:

e The identity operator id : Q¥ — Q. It sends each function f to f itself.

e The shift operator S : QR — Q®. It sends each function f to the function
S (f) defined by (S (f)) (x) = f(x+1) for all x € Q. Speaking in terms of
function plots, the operator S shifts a function by 1 to the left.

e The difference operator A : QR — QQ. 1t sends each function f to the function
A (f) defined by (A(f)) (x) = f(x+1) — f(x) for all x € Q. Speaking in
terms of function plots, the operator A shifts a function by 1 to the left and
subtracts the original function back from it. Note that A (f) = S(f) — f for
each f € Q.




Math 4990 Fall 2017 (Darij Grinberg): homework set 4 page 25

Here are some examples of what the difference operator A does to certain func-

tlons[g
(

1) =
= x) =
<x — x2>

o(= ()

A (x —2Y)

—=1-1)=(x—0);
(x+1)—x)=(x—1);

(x
(x —
(x x+1 ) (x+—2x+1);

(o (1) () =0

(x s 2%+ —2X> = (x > 2%).

(The last example is not completely kosher, since the function Q — Q, x — 2* does
not actually exist: 2 isn’t always rational. To make sense of it, imagine that we
are talking about maps from Z to Q, or from R to R, instead.) Actually, for every
n € IN, we have

Alx = x") = (x> (x+1)" —x") = (xHZZZ(Z)xk)
2(e= ()= (= () -G) = (= 70)

d
If our functions were C*-functions R — R instead of maps Q — Q, then P

would be another operator (sending each function f to its derivative).

Exercise 6. (a) Prove that S (fg) = S (f) - S(g) for any two functions f and g.
(b) Prove that A (fg) = S(f)A(g) + A (f) g for any two functions f and g.
(c) Prove that A (fg) = fA () + A(f) S (g) for any two functions f and g.
(d) Prove that AoS = SoA.

Solution to Exercise[6l (a) Let f and g be two functions. Let x € Q. Then,

(S(fQ)) (x) =(fg) (x+1) (by the definition of S)
=f(x+1)-g(x+1) (by the definition of fg)

and

(S(f)-s@) )= SU)NE) - (@) H)
=f(x+1) =g(x+1)
(by the definition of S) (by the definition of S)

(by the definition of S (f) - S(g))
=f(x+1)-g(x+1).

12We use the shorthand notation ”(x — xz) ” for the function Q — Q, x — x2, because all of our
functions are from Q to Q2 anyway.
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Comparing these two equalities yields (S (fg)) (x) = (S(f)-S(g)) (x).

Now, forget that we fixed x. We thus have shown that (S (fg)) (x) = (S(f) - S(g)) (x)
for each x € Q. In other words, S(fg) = S(f)-S(g) (since both S(fg) and
S (f) - S(g) are functions from Q to Q). This solves Exercise [f] (a).

(b) Let f and g be two functions. Let x € Q. Then,

(A(fg) (x)=  (fg)(x+1) — (fg) (xl (by the definition of A)
=f(x+1)-g(x+1) =f(x)-g(x)

(by the definition of fg)  (by the definition of fg)
=fla+1l)-glx+1)—f(x)-g(x)
and

(S(f)a(g)+A(f)g)(x)
= SHa)E  + (B H)
)

=(5(f))(x)-(A(g))(x) =(A(f))(x)-g(x)
(by the definition of S(f)A(g))  (by the definition of A(f)g)

(by the definition of S (f)A(g) +A(f)g)

= S - AE)E  + (A)Kx)  -gk)
—_— ——— —_—
=f(x+1) =g(x+1)—g(x) =f(x+1)—f(x)

(by the definition of S) (by the definition of A)  (by the definition of A)
=fx+1)-(gx+1)—g(®)+(f(x+1) = f(x))-g(x)
=f+1)-g(x+1)—flx+1)-g(x)+f(x+1)-8(x) - f(x)-g(x)
=fx+1)-gx+1) - f(x)-g(x).

Comparing these two equalities yields (A (fg)) (x) = (S(f)A () +A(f) g) (x).
Now, forget that we fixed x. We thus have shown that

(A(fg)) (x) =(S(f)A(g) +A(f)g) (x) for each x € Q. In other words, A (fg) =
S (f)A(g) + A(f)g. This solves Exercise [f] (b).
(c) Let f and g be two functions. Let x € Q. Then,

(A(fg) (x)=  (fg)(x+1) — (fg) (xl (by the definition of A)
=f(x+1)-g(x+1) =f(x)-g(x)

(by the definition of fg)  (by the definition of fg)

=fle+1)-gx+1) = f(x)-g(x)
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and

(fA(g) +A(f)S(8) (%)
= (Al +  (A(f)SE) ()
~— ~

(
=f(x)-(A(g))(x) =(A(f))(x)-(5(8)) (x)
(by the definition of fA(g))  (by the definition of A(f)S(g))

8

(by the definition of fA (g) + A (f)S(g))
=f)- (M) +  (A())(x) (S(8)) (x)
——— N—_—— N—_——

=g(x+1)—g(x) =f(x+1)—f(x) =g(x+1)
(by the definition of A)  (by the definition of A) (by the definition of S)

=f(0)-(gx+1) —g(x) +(f(x+1) = f(x))-g(x+1)
=fx)-gx+1) = f(x)-g)+fx+1)-g(x+1) = f(x)-g(x+1)
=f+1)-gx+1) = f(x)-g(x).

Comparing these two equalities yields (A (fg)) (x) = (fA(g) +A(f)S(g)) (x).
Now, forget that we fixed x. We thus have shown that

(A(fg)) (x) = (fA(Q) +A(f)S(Q)) (x) for each x € Q. In other words, A (fg) =
fA(g) +A(f)S(g). This solves Exercise[f] (c).
(d) Let f be any function. Let x € Q. Then,

(AESO)E = SE)E+D) - () @) (by the definition of A)
—F((x+1)+1) —f(x+1)

(by the definition of S)  (by the definition of S)
=f((x+1)+1)—f(x+1).

Comparing this with

(S(A(f)))(x) =(A(f)) (x+1) (by the definition of S)
=f((x+1)+1)—f(x+1) (by the definition of A),
we obtain (A (S (f))) (x) = (S (A(f))) (x).

Now, forget that we fixed x. We thus have shown that (A (S (f))) (x) = (S(A(f))) (x)
for each x € Q. In other words, A(S(f)) = S(A(f)). Thus, (AoS)(f) =
A(S(f) = S(A(f) = (S0 ) (f).

Now, forget that we fixed f. We thus have proven that (Ao S) (f) = (SoA) (f)
for each function f. In other words, Ao S = S o A. This solves Exercise [6] (d). O

0.7. Necklaces 3: Fermat’'s Little Theorem

And finally, let’s take our tale of periodic tuples and necklaces to its (temporary)
conclusion{

13To remind: You are allowed to use the exercises from previous problem sets even if you did not
solve them.
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Exercise 7. This exercise is a continuation of Exercise 7 on homework set #2
and of Exercise 6 on homework set #3. We shall therefore use the notations
introduced in these two exercises.

Let p be a prime number. Let X be a set.

(a) Let x € X? be a p-tuple. Prove that:

e if all entries of x are equal (that is, if x has the form | x,x,...,x | for some
N——

p times

x € X), then |[x] | =1;

e otherwise, we have |[x]_| = p.

[Example: If p = 3, then the 3-tuple x = (5,5,5) satisfies |[x]_| = 1, while the
3-tuple x = (1,3,1) satisfies |[x] | = 3.]

A p-necklace N is said to be aperiodic if |[N| = p.

(b) Assume that the set X is finite. Prove that the number of all aperiodic

p_
p-necklaces (over X) is M

[Example: If p = 3 and X = {1,2,3}, then the aperiodic p-necklaces over X are

(LL2), [(LL3)]., [(1,2,2)]., [(1L23)].,
[(1,3,2)]., [(1,3,3)], [(2,2,3)]., [(2,3,3)].

You can, of course, write them differently: e.g., [(1,2,3)]_ is also known as
[(2,3,1)] . (but [(1,3,2)]. is different). The p-necklaces that are not aperiodic
are [(1,1,1)], [(2,2,2)] . and [(3,3,3)] -]

(c) Prove Fermat’s Little Theorem, which states that p | a¥ — a for every integer
a. [Note: 2 might be negative.]

(d) Assume that the set X is finite. Prove that the number of all p-necklaces
X"+ (p— 1) |X]

p

(over X) is

Solution to Exercise[/l Consider the map ¢ : X — X7, defined as in Exercise 7 on
homework set #2 (applied to n = p).

During our solution to Exercise 7 (d) on Math 4990 homework set #2, we have
proven that ¢” (x) = x for every positive integer n and every x € X". Applying this
to n = p, we conclude that

c? (x) = x for every x € XP. (18)

Notice that p > 1 (since p is prime), so that p # 1 and p > 1.
(a) We must prove the following two observations:

Observation 1: If all entries of x are equal, then |[x] | = 1.
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Observation 2: If not all entries of x are equal, then |[x]| | = p.

Before we prove these two observations, let us state two facts that follow from
previously solved exercises:

Observation 3: Let m be the smallest nonzero period of x. Then, m | p
and |[x] | = m.

Observation 4: The smallest nonzero period of x exists.

[Proof of Observation 3: Exercise 7 (d) on homework set #2 (applied to n = p)
shows that m divides p. In other words, m | p. It thus remains to show that
x| = m.

Exercise 6 (c¢) on homework set #3| (applied to n = p) shows that the m tuples
A (x),ct (x),...,c" 1 (x) are distinct, and that |[x] | = m. Thus, |[x]_| = m is
proven. This completes the proof of Observation 3.]

[Proof of Observation 4: The nonnegative integer p satisfies c? (x) = x (by (18)). In
other words, p is a period of x. Of course, p is nonzero. Hence, a nonzero period
of x exists (namely, p). Thus, the smallest nonzero period of x exists. This proves
Observation 4.]

[Proof of Observation 1: Assume that all entries of x are equal. We must show that
x| = 1.

We know that all entries of x are equal. In other words, x has the form | x,x,...,x
~——

p times
for some x € X. Consider this x. Thus, x = | x,x,...,x |. Hence,
~——
p times
¢ (X) =ClXX... X =|XX...,XX (by the definition of C)
N’ N’
p times p—1 times
=|xx...,x| =x
A e
p times

Thus, ¢! (x) = c(x) = x. In other words, 1 is a period of x (by the definition of

=c
a “period”). Thus, 1 is a nonzero period of x (since 1 is nonzero), but no nonzero
period of x can be smaller than 1 (since no nonzero positive integer can be smaller
than 1). Hence, 1 is the smallest nonzero period of x. Therefore, Observation 3
(applied to m = 1) shows that 1 | p and |[x]_| = 1. In particular, |[x]_| = 1. This
proves Observation 1.]
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[Proof of Observation 2: Assume that not all entries of x are equal. We must show
that |[x] | = p.

Observation 4 shows that the smallest nonzero period of x exists. Let m be this
period. Thus, Observation 3 shows that m | p and |[x] | = m.

Now, m is a nonnegative integer (since it is a period of x) and divides p (since
m | p). Hence, m is a positive divisor of p. Since the only positive divisors of p
are 1 and p (because p is prime), we thus conclude that m is either 1 or p. In other
words, either m = 1 or m = p.

Now, it is easy to see that m = 1 cannot hold@ Hence, m = p (since either m =1
or m = p). Thus, |[x] | = m = p. This proves Observation 2.]

Combining Observation 1 and Observation 2, we obtain the statement of Exercise
7] (a).

(b) The following proof is hardly a masterpiece of mathematical writing, but at
least it isn’t missing any steps...

We shall call a p-necklace N uniperiodic if |[N| = 1. Hence, each uniperiodic
p-necklace N satisfies

IN| = 1. (19)

Recall that a p-necklace N is aperiodic if and only if it satisfies |[N| = p (by the
definition of “aperiodic”). Hence, each aperiodic p-necklace N satisfies

IN| = p. (20)

Recall that the p-necklaces were defined as the ~-equivalence classes. Hence,
these p-necklaces partition the set X¥; in particular, they are disjoint, and their

14Proof. Assume the contrary. Thus, m = 1. Thus, 1 is a period of x (since m is a period of x). In
other words, ¢! (x) = x (by the definition of a “period”).
Write the p-tuple x € X? in the form x = (x1,x2,...,%p) for some x1,x,,...,x, € X. Hence,
the entries of x are the p elements x1,x,...,xp. Now,

(x1,%2,...,xp) =x= ¢! x (since cl(x) = x)

=¢ :(xl,xz,..‘,xp)
=c(x,x0,...,%p) = (¥2,X3,...,Xp_1,%p)
(by the definition of c). In other words, we have the p equalities
X1 = X2, Xy = X3, X3 = X4, ceey xp_l = Xp, Xp = X1.
The first p — 1 of these p equalities are
X1 = X2, X2 = X3, X3 = X4, ey xp,l = Xp-
We can combine these p — 1 equalities to a chain of equalities:
X1 =X =" = Xp.

In other words, all p elements x1, x3, ..., xp are equal. In other words, all entries of x are equal
(since the entries of x are the p elements x1, x2, ..., xp). This contradicts the assumption that not
all entries of x are equal. This contradiction concludes our proof.
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union is X?. Thus, the size of X7 is the sum of the sizes of all p-necklaces. Written
out as an equation, this says the following;:

XPl= ),  IN| (21)

N is a p-necklace

Next, we show some simple observations:

Observation 5: Let N be a p-necklace. Then, we have the following logical
equivalence:

(N is not aperiodic) <= (N is uniperiodic) . (22)

[Proof of Observation 5: We know that N is a p-necklace. In other words, N is
a ~-equivalence class (because the p-necklaces were defined as the ~-equivalence
classes). In other words, N = [x] _ for some x € X?. Consider this x.

Assume that N is not aperiodic. In other words, we don’t have |[N| = p (since
N is aperiodic if and only if |[N| = p (by the definition of “aperiodic”)). Hence,
IN| # p. In view of N = [x] _, this rewrites as |[x] _| # p. If not all entries of x were
equal, then we would have |[x] | = p (by Observation 2), which would contradict
|[x] .| # p. Hence, it is impossible that not all entries of x are equal. Therefore, all
entries of x are equal. Hence, Observation 1 shows that |[x] _| = 1. In other words,
IN| =1 (since N = [x]_). In other words, N is uniperiodic (since N is uniperiodic
if and only if |N| = 1 (by the definition of “uniperiodic”)).

Now, forget that we assumed that N is not aperiodic. We thus have shown that
if N is not aperiodic, then N is uniperiodic. In other words, we have proven the
implication

(N is not aperiodic) = (N is uniperiodic) .
On the other hand, it is easy to see that the implication
(N is uniperiodic) = (N is not aperiodic)

also holdﬁ Combining these two implications, we obtain the equivalence
(N is not aperiodic) <= (N is uniperiodic). This proves Observation 5.]
On the other hand, it is easy to count the uniperiodic p-necklaces:

Observation 6: The map

X — {uniperiodic p-necklaces},

X — X, X, ..., X
——

p times

~

is well-defined and bijective.

15Proof. Assume that N is uniperiodic. We must show that N is not aperiodic.
Indeed, assume the contrary. Thus, N is aperiodic. Hence, [N| = p (by 20)). But N is
uniperiodic. Thus, [N| =1 (by (19)). Hence, p = [N| = 1. But p # 1 (since p is prime). This
contradicts p = 1. This contradiction completes our proof that N is not aperiodic. Qed.
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[Proof of Observation 6: For each x € X, we have

X, X, ..., X € {uniperiodic p-necklaces}
—

p times

~

E Hence, the map

X — {uniperiodic p-necklaces},

X X,X,..., X
N——

p times

~

is well-defined. Denote this map by A.

16Proof. Let x € X. Define a p-tuple x € X by x = | x,x,...,x |. Then, all entries of x are

N’
p times

equal (indeed, they are all equal to x). Hence, |[x]_| = 1 (by Observation 1). In other words,

[x] . is uniperiodic (since [X]

~

“uniperiodic”)). In other words, x| , € {uniperiodic p-necklaces}. Since x =

rewrites as follows:

X, X, ..., X € {uniperiodic p-necklaces} .
—_——

p times

Qed.

X, X, ..., X
——

is uniperiodic if and only if |[x] | = 1 (by the definition of

, this
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The map A is injectiveiﬂ and surjectivﬂ Hence, this map A is bijective. This
proves Observation 6 (since A is precisely the map considered in Observation 6).]
Observation 6 shows that there is a bijection X — {uniperiodic p-necklaces}.

7Proof. Let x and y be two elements of X such that A (x) = A (y). We shall prove that x = y.

Define a p-tuple x € XP by x = | x,x,...,x |. Define a p-tupley € X? b = Y, ..,
p-tup Yy 1 p-tuple 'y Yy vy %

p times p times
The definition of A yields A (x) = X, X, ..., X = [x]_ (since | x,x,...,x | = x). The
———— ————
p times - p times

same argument (with x and x replaced by y and y) shows that A (y) = [y].. Thus, [x]_ =
A(x) = A(y) = [y]...

We know that A(x) € {uniperiodic p-necklaces} (since A is a map X —
{uniperiodic p-necklaces}). In other words, A (x) is a uniperiodic p-necklace. In other words,
[x] . is a uniperiodic p-necklace (since A (x) = [x]_).

But we know that the necklace [x]_, is uniperiodic. In other words, |[x]_| = 1 (since [x]_ is
uniperiodic if and only if |[x] | = 1 (by the definition of “uniperiodic”)). In other words, [x]_, is
a l-element set.

We have x € [x]_ (by the definition of the equivalence class [x]_). Similarly, y € [y] .. In view
of [x], = [y]., this rewrites as y € [x]_.

Now, x and y are two elements of the 1-element set [x]  (since x € [x] , and y € [x]_). Thus,
x and y are equal (since any two elements of a 1-element set are equal). In other words, x =y.

But the p-tuple x has a first entry (since p > 1), and this first entry is x (since x =

X,%,...,x |). Hence, x = (the first entry of x). The same argument (with x and x replaced
—_——

p times

by y and y) shows that y = (the firstentry of y). Thus, x = (the first entry of X ) =
=y
(the first entry of y) = y.

Now, forget that we fixed x and y. We thus have shown that if x and y are two elements of X

such that A (x) = A (y), then x = y. In other words, the map A is injective.
18Proof. Let N € {uniperiodic p-necklaces}. We shall prove that N € A (X).

Clearly, N is a uniperiodic p-necklace (since N € {uniperiodic p-necklaces}). Write N in the
form N = [x]_ for some x € XP. (This is possible since N is a necklace.)

The p-necklace N is uniperiodic. Thus, [N| = 1 (by (19)). From [x] . = N, we obtain |[x] | =
IN| =1 # p. If not all entries of x were equal, then we would have |[x]_| = p (by Observation
2), which would contradict the fact that |[x]_| # p. Thus, it is impossible that not all entries
of x are equal. Therefore, all entries of x are equal. In other words, the p-tuple x has the

form x = | x,x,...,x | for some x € X. Consider this x. The definition of A yields A (x) =
\_\/_/
p times
X, X,...,X = [x]. (since | x,x,...,x | = x). Hence, A(x) = [x]_ = N, so that N =
—— ———
p times - p times

Al x | eax).
=~
eX
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Hence,
|X| = |{uniperiodic p-necklaces}|. (23)

Now, |X?| = |X|P. Comparing this with (21), we obtain
XP= )y N

N is a p-necklace

= Y. NI+ D N

N is a p-necklace; N is a p-necklace;
N is aperiodic N is not aperiodic
—_—

7N is a p-necklace;
N is uniperiodic
(by the equivalence (22))
since each p-necklace is either aperiodic
or not aperiodic (but not both)

= ) N+ ) IN|

N is a p-necklace; - N is a p-necklace;
N is aperiodic (by ) N is uniperiodic (by_)

= > v+ Y. 1

N is a p-necklace; N is a p-necklace;
N is aperiodic N is uniperiodic
=(the number of all aperiodic p-necklaces)-p ~ =(the number of all uniperiodic p-necklaces)-1

=(the number of all uniperiodic p-necklaces)
=|{uniperiodic p-necklaces}|=|X|

(by @3))
= (the number of all aperiodic p-necklaces) - p + |X|.

Solving this equation for (the number of all aperiodic p-necklaces), we obtain

X" %]

(the number of all aperiodic p-necklaces) = ;

This solves Exercise [7] (b).

(o) First solution to Exercise[7](c): Let a be an integer. We must show that p | a? —a.
If p = 2, then this is easy to provﬂ Hence, for the rest of this proof, we WLOG
assume that we don’t have p = 2. Hence, p # 2, so that p is odd (since p is a
prime). Therefore, (—1)” = —1. Now, we are in one of the following two cases:

Case 1: The integer a is nonnegative.

Case 2: The integer a is negative.

Now, forget that we fixed N. We thus have shown that N € A(X) for each N €
{uniperiodic p-necklaces}. Hence, {uniperiodic p-necklaces} C A (X). In other words, the
map A is surjective.

19Proof. Assume that p = 2. At least one of the two integers a and a — 1 is even (since their difference
a— (a—1) =1is odd). Hence, their product a (a —1) is even. In other words, 2 | a(a —1). In
other words, 2 | a%> — a (since a> —a = a (a — 1)). In other words, p | a? — a (since p = 2). Qed.
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Let us first consider Case 1. In this case, the integer a4 is nonnegative. Thus,

there exists a finite set X with |X| = a. Consider such an X. Then, Exercise
X|PF—|X
7| (b) shows that the number of all aperiodic p-necklaces (over X) is M

X|F—1X . . . i
Hence, 1X]7 = 1X] is a nonnegative integer (since the number of all aperiodic p-

X" = IX]

necklaces is clearly a nonnegative integer). In particular, € Z. Hence,

p | |X|" —|X]| = aP —a (since | X| = a). Thus, p | a” — a is proven in Case 1.

Let us now consider Case 2. In this case, the integer a is negative. Hence, the
integer —a is positive; in particular, —a is nonnegative. Thus, there exists a finite
set X with |X| = —a. Consider such an X. Then, Exercise [7] (b) shows that the

X" = IX] X = 1X]

number of all aperiodic p-necklaces (over X) is . Hence,

a nonnegative integer (since the number of all aperiodic p-necklaces is clearly a

e : X]” — [X]
nonnegative integer). In particular, — € Z. Hence,
p X" = |X| = (=a)f = (-a) (since |X| = —a)
= (=a)f 4+a=(-1Da’ +a=(-1)a’ +a=—(a’ —a)
S—— SN——

=(=1)Fapr =—1
[ (=1) (= (a" —a)) =aF —a.

Thus, p | a? — a is proven in Case 2.

We have now proven p | a? — a in both Cases 1 and 2. Thus, p | a? — a always
holds. This solves Exercise [7] (c).

Second solution to Exercise[7](c): The following proof is nicer, but it uses a little bit
of modular arithmetic: Namely, we shall use the fact that if b and c are two integers
satisfying b = cmod p, and if m € N, then

b" = " mod p. (24)

(This is easy to verify by induction over m. It does not matter here that p is a
prime.)

Let a be an integer. We must show that p | a¥ — a.

Let ¢ be the remainder upon dividing a by p. Then, ¢ € {0,1,...,p — 1} and
a = cmod p. Hence, (applied to b = a and m = p) yields a” = ¢’ mod p.
But c is a nonnegative integer (since ¢ € {0,1,...,p —1}). Hence, there exists a
finite set X with |X| = c. Consider such an X. Then, Exercise [7] (b) shows that

X" = IX] X]P = X]

the number of all aperiodic p-necklaces (over X) is . Hence,

is a nonnegative integer (since the number of all aperiodic p-necklaces is clearly a

X|F—|X
%EZ. Hence, p | |[X|P — |X| =cf —c

nonnegative integer). In particular,
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(since | X| = c). In other words, ¢ = cmod p. Thus, a? = ¥ = ¢ = amodp. In
other words, p | a” — a. This solves Exercise [7] (c) again.
(d) We have

(the number of all p-necklaces)
= (the number of all p-necklaces that are aperiodic)

N J/

=(the number of all aperiodic p-necklaces)

X)X

(by Exerc?se [7] (b))
+ (the number of all p-necklaces that are not aperiodic)

. J/

=|{N is a p-necklace | N is not aperiodic}|

since each p-necklace is either aperiodic
or not aperiodic (but not both)

X|P—|X . . .
= % + |{N is a p-necklace | N is not aperiodic}
={N is a p-necklace | N is uniperiodic}

(by the equivalence [22))

— |X|p_|X| +|{Nisa _ kl . . . .
= p-necklace | N is uniperiodic}|

=[{uniperiodic p-necklaces}|=|X|

(by 23))
XV K] XP =X IX] _ XP (-1 1X)
P P
This solves Exercise [7] (d). O

We have thus counted p-necklaces for a prime number p. Counting n-necklaces
for n composite is harder; we will learn about this later.
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