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0.1. Counting triples

Recall that the word “triple” means a 3-tuple. Tuples are always ordered by defini-
tion.

Exercise 1. Let n ∈ N.
(a) Find the number of all triples (A, B, C) of subsets of [n] satisfying A ∪ B ∪

C = [n] and A ∩ B ∩ C = ∅.
(b) Find the number of all triples (A, B, C) of subsets of [n] satisfying B ∩ C =

C ∩ A = A ∩ B.
(c) Find the number of all triples (A, B, C) of subsets of [n] satisfying A ∩ B =

A ∩ C.

Solution to Exercise 1 (sketched). (a) The number of such triples is 6n.
Proof. Let me first give a quick but informal argument.
Clearly, a triple (A, B, C) of subsets of [n] satisfies A ∪ B ∪ C = [n] and A ∩ B ∩

C = ∅ if and only if it has the following property: Each i ∈ [n] belongs to at least
one of the three sets A, B, C, but no i ∈ [n] belongs to all three of them. Thus,
the following simple algorithm constructs every triple (A, B, C) of subsets of [n]
satisfying A ∪ B ∪ C = [n] and A ∩ B ∩ C = ∅: For each i ∈ [n], we decide whether
the element i should be contained in the set A only (i.e., in A but not in B and not
in C), or in the set B only, or in the set C only, or in the sets A and B only (i.e.,
in A and B but not in C), or in the sets A and C only, or in the sets B and C only.
There are clearly 6 options to choose from in this decision. Thus, in total, there
are 6n possible triples (because we are making this decision once for each of the n
elements i of [n]). This completes our informal proof.

A rigorous way to present the above argument is the following: Let A be the set
of all triples (A, B, C) of subsets of [n] satisfies A ∪ B ∪ C = [n] and A ∩ B ∩ C = ∅.
We must show that |A| = 6n. We know that the set [6][n] (that is, the set of all maps
[n] → [6]) has size

∣∣∣[6][n]∣∣∣ = |[6]||[n]| = 6n; thus, it will suffice to exhibit a bijection

A → [6][n].
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We define such a bijection Ξ : A → [6][n] as follows: It should send any triple
(A, B, C) ∈ A to the map f : [n] → [6] that sends each i ∈ [n] to

1, if i ∈ A but i /∈ B and i /∈ C;
2, if i ∈ B but i /∈ C and i /∈ A;
3, if i ∈ C but i /∈ A and i /∈ B;
4, if i ∈ A and i ∈ B but i /∈ C;
5, if i ∈ A and i ∈ C but i /∈ B;
6, if i ∈ B and i ∈ C but i /∈ A

(1)

1. (As I said, this is merely a translation of our above informal argument into
rigorous language; in particular, the 6 possible values in (1) are our “6 options”,
and we are defining a map f : [n] → [6] because we are choosing among these 6
options for each element of [n].)

We are not yet done. We must prove, first of all, that the expression in (1) is
well-defined, i.e., that each i ∈ [n] will satisfy exactly one of the conditions “i ∈ A
but i /∈ B and i /∈ C” and “i ∈ B but i /∈ C and i /∈ A” and “i ∈ C but i /∈ A and
i /∈ B” and “i ∈ A and i ∈ B but i /∈ C” and “i ∈ A and i ∈ C but i /∈ B” and
“i ∈ B and i ∈ C but i /∈ A”. This is easy2. This shows that the map f : [n] → [6]
is well-defined for each (A, B, C) ∈ A, and therefore the map Ξ : A → [6][n] is
well-defined. In order to prove that this Ξ is a bijection, it is most reasonable to
construct an inverse for Ξ.

I claim that such an inverse is the map [6][n] → A that sends each f : [n] → [6] to
the triple (A, B, C), where

A = {i ∈ [n] | f (i) ∈ {1, 4, 5}} ;
B = {i ∈ [n] | f (i) ∈ {2, 4, 6}} ;
C = {i ∈ [n] | f (i) ∈ {3, 5, 6}} .

Indeed, it is straightforward to check that this map is well-defined, and actually
inverse to Ξ. (How did I come up with this map? Well, I wanted an inverse to Ξ,
so I was looking for a map that reconstructs any triple (A, B, C) ∈ A from the map
f : [n] → [6] that sends each i ∈ [n] to (1). This is a rather simple reconstruction
problem: For example, the first entry A of this triple (A, B, C) can be reconstructed
from f as the set {i ∈ [n] | f (i) ∈ {1, 4, 5}}, because the elements of A are exactly

1From the point of view of logic, the word “but” is merely a synonym for “and”. But in this
definition, it is meant to reinforce the intuition: We say "if i ∈ A but i /∈ B and i /∈ C” because
we clearly want to contrast the sets to which i belongs on one side against the sets to which i
does not belong on the other.

2It is clear enough that i cannot satisfy more than one of these conditions. In order to see that i has
to satisfy at least one of them, we must rule out the possibilities that (i ∈ A and i ∈ B and i ∈ C)
and (i /∈ A and i /∈ B and i /∈ C). But this is easy: The first of these possibilities is ruled out by
A ∩ B ∩ C = ∅, while the second is ruled out by A ∪ B ∪ C = [n].
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those elements i ∈ [n] whose image under f is 1, 4 or 5.) This completes the
rigorous proof of (a).

(b) The number of such triples is 5n.
Proof. I shall give an informal proof only, trusting that you can translate it into a

rigorous bijective argument as I’ve done above for part (a).
Clearly, a triple (A, B, C) of subsets of [n] satisfies B ∩ C = C ∩ A = A ∩ B if and

only if it has the following property: Each i ∈ [n] either belongs to at most one of
the three sets A, B, C, or belongs to all three of them. Thus, the following simple
algorithm constructs every triple (A, B, C) of subsets of [n] satisfying B ∩ C = C ∩
A = A ∩ B: For each i ∈ [n], we decide whether the element i should be contained
in none of the sets A, B and C, or in the set A only (i.e., in A but not in B and
not in C), or in the set B only, or in the set C only, or in all three sets A, B and
C. There are clearly 5 options to choose from in this decision. Thus, in total, there
are 5n possible triples (because we are making this decision once for each of the n
elements i of [n]). This completes our informal proof.

(c) The number of such triples is 6n.
Proof. I shall give an informal proof only, trusting that you can translate it into a

rigorous bijective argument as I’ve done above for part (a).
Clearly, a triple (A, B, C) of subsets of [n] satisfies A ∩ B = A ∩ C if and only if it

has the following property: Each i ∈ [n] either belongs to at most one of the three
sets A, B, C, or belongs to B and C only, or belongs to all three of them. Thus,
the following simple algorithm constructs every triple (A, B, C) of subsets of [n]
satisfying A ∩ B = A ∩ C: For each i ∈ [n], we decide whether the element i should
be contained in none of the sets A, B and C, or in the set A only (i.e., in A but not in
B and not in C), or in the set B only, or in the set C only, or in the sets B and C only
(i.e., in B and in C but not in A), or in all three sets A, B and C. There are clearly 6
options to choose from in this decision. Thus, in total, there are 6n possible triples
(because we are making this decision once for each of the n elements i of [n]). This
completes our informal proof.

0.2. Stirling numbers of the 2nd kind, again

Recall that if n ∈ N and k ∈ N, then sur (n, k) denotes the number of surjec-

tions [n] → [k], and
{

n
k

}
denotes the Stirling number of the 2nd kind (defined as

sur (n, k) /k!).

Recall furthermore that we are using the convention that
(

a
b

)
= 0 when b /∈ N.

Exercise 2. Let n be a positive integer. Let k ∈ N.
(a) Prove that

sur (n, k) = k
k

∑
i=0

(−1)k−i
(

k − 1
i − 1

)
in−1.
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(b) Prove that {
n
k

}
=

k

∑
i=0

(−1)k−i in

i! (k − i)!
.

Solution to Exercise 2. Exercise 4 on Math 4990 homework set #2 showed that

sur (n, k) =
k

∑
i=0

(−1)k−i
(

k
i

)
in. (2)

But Exercise 2 (b) on Math 4990 homework set #1 showed that

K
(

N
K

)
= N

(
N − 1
K − 1

)
(3)

for any N ∈ Q and any positive integer K. (The variables N and K in this equal-
ity have been called n and k in the exercise we have cited, but we are using the
notations n and k for different purposes here.) Furthermore, we know that(

N
K

)
=

N!
K! (N − K)!

(4)

for each N ∈ N and each K ∈ {0, 1, . . . , N}.
(a) From (2), we obtain

sur (n, k) =
k

∑
i=0

(−1)k−i
(

k
i

)
in = (−1)k−0

(
k
0

)
0n︸︷︷︸
=0

(since n is positive)

+
k

∑
i=1

(−1)k−i
(

k
i

)
in

= (−1)k−0
(

k
0

)
0︸ ︷︷ ︸

=0

+
k

∑
i=1

(−1)k−i
(

k
i

)
in =

k

∑
i=1

(−1)k−i
(

k
i

)
in︸︷︷︸

=iin−1

(since n is positive)

=
k

∑
i=1

(−1)k−i
(

k
i

)
i︸ ︷︷ ︸

=i

(
k
i

) in−1 =
k

∑
i=1

(−1)k−i i
(

k
i

)
︸ ︷︷ ︸

=k

(
k − 1
i − 1

)
(by (3), applied

to N=k and K=i)

in−1

=
k

∑
i=1

(−1)k−i k
(

k − 1
i − 1

)
in−1 = k

k

∑
i=1

(−1)k−i
(

k − 1
i − 1

)
in−1.

http://www.cip.ifi.lmu.de/~grinberg/t/17f/hw2s.pdf
http://www.cip.ifi.lmu.de/~grinberg/t/17f/hw1s.pdf
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Comparing this with

k
k

∑
i=0

(−1)k−i
(

k − 1
i − 1

)
in−1

︸ ︷︷ ︸
=(−1)k−0

(
k − 1
0 − 1

)
0n−1+

k
∑

i=1
(−1)k−i

(
k − 1
i − 1

)
in−1

= k

(−1)k−0
(

k − 1
0 − 1

)
︸ ︷︷ ︸

=0
(since 0−1<0)

0n−1 +
k

∑
i=1

(−1)k−i
(

k − 1
i − 1

)
in−1


= k

(−1)k−0 0 · 0n−1︸ ︷︷ ︸
=0

+
k

∑
i=1

(−1)k−i
(

k − 1
i − 1

)
in−1


= k

k

∑
i=1

(−1)k−i
(

k − 1
i − 1

)
in−1,

we obtain

sur (n, k) = k
k

∑
i=0

(−1)k−i
(

k − 1
i − 1

)
in−1.

This solves Exercise 2 (a).
(b) We know from class that{

n
k

}
=

sur (n, k)
k!

=
1
k!

sur (n, k)︸ ︷︷ ︸
=

k
∑

i=0
(−1)k−i

(
k
i

)
in

(by (2))

=
1
k!

·
k

∑
i=0

(−1)k−i
(

k
i

)
︸︷︷︸

=
k!

i! (k − i)!
(by (4), applied

to N=k and K=i)

in

=
1
k!

·
k

∑
i=0

(−1)k−i k!
i! (k − i)!

in =
1
k!

· k!︸ ︷︷ ︸
=1

k

∑
i=0

(−1)k−i 1
i! (k − i)!

in

=
k

∑
i=0

(−1)k−i 1
i! (k − i)!

in =
k

∑
i=0

(−1)k−i in

i! (k − i)!
.

This solves Exercise 2 (b).

0.3. Counting 2-lacunar subsets
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Exercise 3. A set S of integers is said to be 2-lacunar if every i ∈ S satisfies
i + 1 /∈ S and i + 2 /∈ S. (That is, any two distinct elements of S are at least
a distance of 3 apart on the real axis.) For example, {1, 5, 8} is 2-lacunar, but
{1, 5, 7} is not.

For any n ∈ N, we let h (n) denote the number of all 2-lacunar subsets of [n].
(a) Prove that h (n) = h (n − 1) + h (n − 3) for each n ≥ 3.

(b) Prove that h (n) = ∑
k∈N;

2k≤n+2

(
n + 2 − 2k

k

)
for each n ∈ N.

Solution to Exercise 3 (sketched). Most of the arguments used in this exercise are straight-
forward adaptations of arguments used in Exercise 4 (b) on Math 4990 homework
set #1 and in Exercise 3 on Math 4990 homework set #2. Thus, we shall be very
brief this time, pointing out only the differences.

(a) Exercise 3 is solved in the same way as Exercise 4 (b) on Math 4990 home-
work set #1 was solved. This time, of course, instead of finding a bijection from
{S ⊆ [n] | S is lacunar and n ∈ S} to {S ⊆ [n − 2] | S is lacunar}, we need to find
a a bijection from {S ⊆ [n] | S is 2-lacunar and n ∈ S} to {S ⊆ [n − 3] | S is 2-lacunar}.
The bijection is defined in exactly the same way as before: It sends each T to T \ {n}.

(b) We begin with the following fact:

Observation 0: Let S be a 2-lacunar subset of [n]. Then,

|S| ≤ n + 2
3

.

[Proof of Observation 0: Let S′ be the subset {s + 1 | s ∈ S} of [n + 1]. Let S′′

be the subset {s + 2 | s ∈ S} of [n + 2]. Both subsets S′ and S′′ are just copies of
S, shifted by 1 and by 2, respectively; thus, their sizes are the same as the size
of S: that is, we have |S| = |S′| = |S′′|. Also, it is easy to see that the three
sets S, S′, S′′ are disjoint3. Hence, |S ∪ S′ ∪ S′′| = |S| + |S′| + |S′′| = 3 |S| (since
|S| = |S′| = |S′′|). But S, S′ and S′′ are subsets of [n + 2]; therefore, so is S ∪ S′ ∪ S′′.
Hence, |S ∪ S′ ∪ S′′| ≤ |[n + 2]| = n + 2. In view of |S ∪ S′ ∪ S′′| = 3 |S|, this

rewrites as 3 |S| ≤ n + 2, so that |S| ≤ n + 2
3

. This proves Observation 0.]
Next, we need to prove the following statement:

Observation 1: Let n ∈ N. For any k ∈ N satisfying 2k ≤ n + 2, the

number of all 2-lacunar k-element subsets of [n] is
(

n − 2k + 2
k

)
.

3Proof. Let us just check that S and S′′ are disjoint. (The other two statements are proven similarly.)
Indeed, let j ∈ S ∩ S′′. Then, j ∈ S and j ∈ S′′. From j ∈ S′′, it follows that j = s + 2 for some

s ∈ S (by the definition of S′′). Consider this s. Now, recall that every i ∈ S satisfies i + 2 /∈ S
(since S is 2-lacunar). Applying this to i = s, we obtain s + 2 /∈ S. This contradicts s + 2 = j ∈ S.

Now, forget that we fixed j. We thus have obtained a contradiction for each j ∈ S ∩ S′′. Hence,
there exists no j ∈ S ∩ S′′. In other words, the sets S and S′′ are disjoint.

http://www.cip.ifi.lmu.de/~grinberg/t/17f/hw1s.pdf
http://www.cip.ifi.lmu.de/~grinberg/t/17f/hw1s.pdf
http://www.cip.ifi.lmu.de/~grinberg/t/17f/hw2s.pdf
http://www.cip.ifi.lmu.de/~grinberg/t/17f/hw1s.pdf
http://www.cip.ifi.lmu.de/~grinberg/t/17f/hw1s.pdf
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[Proof of Observation 1: One way to prove this is analogous to the first solution of
Exercise 3 (a) on Math 4990 homework set #2. The main differences are:

• The set Lack (n) of all lacunar k-element subsets of [n] is replaced by the set
Lack,2 (n) of all 2-lacunar k-element subsets of [n].

• The maps Φ : Lack (n) → Pk ([n − k + 1]) and Ψ : Pk ([n − k + 1]) → Lack (n)
are replaced by maps Φ̃ : Lack,2 (n) → Pk ([n − 2k + 2]) and Ψ̃ : Pk ([n − 2k + 2]) →
Lack,2 (n) defined as follows: Φ̃ sends any S = {s1 < s2 < · · · < sk} ∈ Lack,2 (n)
to

{s1 − 0 < s2 − 2 < s3 − 4 < · · · < sk − 2 (k − 1)} = {si − 2 (i − 1) | i ∈ [k]} ,

whereas Ψ̃ sends any T = {t1 < t2 < · · · < tk} ∈ Pk ([n − 2k + 2]) to

{t1 + 0 < t2 + 2 < t3 + 4 < · · · < tk + 2 (k − 1)} = {ti + 2 (i − 1) | i ∈ [k]} .

(In other words, instead of increasing/decreasing gaps between neighboring
elements of the subset by 1, we are now increasing/decreasing them by 2.)

Alternatively, Observation 1 can also be proven similarly to the second solution of
Exercise 3 (a) on Math 4990 homework set #2. The analogue of Claim 1 should now
state that gk (n) = gk (n − 1) + gk−1 (n − 3) for all n ≥ 1 and k ∈ Z (where gk (n)
denotes the number of all 2-lacunar k-element subsets of [n]); and the analogue
of Claim 2 should now state that each n ∈ {−2,−1, 0, 1, 2, . . .} and k ∈ N with

2k ≤ n + 2 satisfy gk (n) =

(
n − 2k + 2

k

)
. (In the proof of Claim 2, the case of

2k = m + 2 needs to be treated separately, in the same way as we had to treat the
case k = m + 1 separately back in homework set #2. This is slightly harder this
time, however. Observation 0 shows that a k-element 2-lacunar subset of [m] must

have size k ≤ m + 2
3

<
m + 2

2
, whence it cannot satisfy 2k = m + 2 unless m = −2.)

Either way, Observation 1 is eventually proven.]
Now, we proceed similarly to the solution of Exercise 3 on Math 4990 homework

set #2: Fix n ∈ N. The size of any 2-lacunar subset of [n] is a k ∈ N satisfying

http://www.cip.ifi.lmu.de/~grinberg/t/17f/hw2s.pdf
http://www.cip.ifi.lmu.de/~grinberg/t/17f/hw2s.pdf
http://www.cip.ifi.lmu.de/~grinberg/t/17f/hw2s.pdf
http://www.cip.ifi.lmu.de/~grinberg/t/17f/hw2s.pdf
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2k ≤ n + 2 (because Observation 0 yields that it is ≤ n + 2
3

≤ n + 2
2

). Now,

h (n) = (the number of all 2-lacunar subsets of [n])
(by the definition of h (n))

= ∑
k∈N;

2k≤n+2

(the number of all 2-lacunar subsets of [n] having size k)︸ ︷︷ ︸
=(the number of all 2-lacunar k-element subsets of [n])

=

(
n − 2k + 2

k

)
(by Observation 1)(

because the size of any 2-lacunar subset of [n]
is a k ∈ N satisfying 2k ≤ n + 2

)
= ∑

k∈N;
2k≤n+2

(
n − 2k + 2

k

)
= ∑

k∈N;
2k≤n+2

(
n + 2 − 2k

k

)
.

This solves Exercise 3 (b).

0.4. Counting shadowed subsets

Exercise 4. A set S of integers is said to be shadowed if it has the following
property: Whenever an odd integer i belongs to S, the next integer i + 1 must
also belong to S. (For example, ∅, {2, 4} and {1, 2, 5, 6, 8} are shadowed, but
{1, 5, 6} is not, since 1 belongs to {1, 5, 6} but 2 does not.)

(a) Let n ∈ N be even. How many shadowed subsets of [n] exist?
(b) Let n ∈ N be odd. How many shadowed subsets of [n] exist?

Solution to Exercise 4 (sketched). (a) The number of shadowed subsets of [n] is 3n/2.
Proof. Here is an informal argument:
The definition of a “shadowed” set can be rewritten as follows: A set S of integers

is shadowed if and only if, for each integer i, it either contains none of the two
integers 2i − 1 and 2i, or it contains 2i but not 2i − 1, or it contains both 2i − 1 and
2i. (What it cannot do is contain 2i − 1 but not 2i.) When we are studying subsets
of [n], we can restrict ourselves to only considering the integers i ∈ [n/2], because
each of the elements of [n] can be uniquely represented in the form 2i − 1 or in
the form 2i for some i ∈ [n/2]. Thus, a subset S of [n] is shadowed if and only
if, for each i ∈ [n/2], it either contains none of the two integers 2i − 1 and 2i, or
it contains 2i but not 2i − 1, or it contains both 2i − 1 and 2i. Furthermore, if we
know for each i ∈ [n/2] which of these three options it satisfies, then we know the
whole subset S.

Thus, the following simple algorithm constructs every shadowed subset of [n]:
For each i ∈ [n/2], we decide whether our subset should contain none of the two
integers 2i − 1 and 2i, or it should contain 2i but not 2i − 1, or it should contain
both 2i− 1 and 2i. There are clearly 3 options to choose from in this decision. Thus,
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in total, there are 3n/2 possible shadowed subsets of [n] (because we are making
this decision once for each of the n/2 elements i of [n/2]). This completes our
informal proof.

This argument can be translated into a formal proof (by bijection) in the same
way as this was done in our solution to Exercise 1 (a) above. Let me be very brief:
Let A be the set of all shadowed subsets of [n]. We must show that |A| = 3n/2. It
will suffice to exhibit a bijection A → [3][n/2].

We define such a bijection Ξ : A → [3][n/2] as follows: It should send any shad-
owed subset S of [n] to the map f : [n/2] → [3] that sends each i ∈ [n/2] to

1, if S contains none of 2i − 1 and 2i;
2, if S contains 2i but not 2i − 1;
3, if S contains both 2i − 1 and 2i

.

The reader can easily check that this Ξ is well-defined and has an inverse, and that
completes the proof.

(b) The number of shadowed subsets of [n] is 3(n−1)/2.
Proof. We know that n ̸= 0 (since n is odd); thus, n is a positive integer (since

n ∈ N). Hence, n− 1 ∈ N. Moreover, n− 1 is even (since n is odd). Hence, Exercise
4 (a) (applied to n − 1 instead of n) shows that the number of shadowed subsets of
[n − 1] is 3(n−1)/2.

But any shadowed subset of [n] must be a subset of [n − 1] 4. Hence, the shad-
owed subsets of [n] are precisely the shadowed subsets of [n − 1]; consequently,
their number is 3(n−1)/2 (because we have just shown that the number of shad-
owed subsets of [n − 1] is 3(n−1)/2). This completes the proof.

0.5. Counting smords (Smirnov words, or Carlitz words)

Exercise 5. Let n and k be positive integers. A k-smord will mean a k-tuple
(a1, a2, . . . , ak) ∈ [n]k such that no two consecutive entries of the k-tuple are equal
(i.e., we have ai ̸= ai+1 for all i ∈ [k − 1]). For example, (3, 1, 3, 2) is a 4-smord
(when n ≥ 3), but (1, 3, 3, 2) is not.

(a) Compute the number of all k-smords.
(b) A k-smord (a1, a2, . . . , ak) is said to be rounded if it furthermore satisfies

ak ̸= a1. Compute the number of all rounded k-smords.

4Proof. Let S be a shadowed subset of [n]. We must show that S is a subset of [n − 1].
We know that S is shadowed. In other words, whenever an odd integer i belongs to S, the

next integer i + 1 must also belong to S. Applying this to i = n, we conclude that if n belongs to
S, then n + 1 must also belong to S (since n is an odd integer). Therefore, n cannot belong to S
(since n + 1 cannot belong to S (because S is a subset of [n], and n + 1 does not belong to [n])).
Therefore, S is a subset of [n] \ {n} = [n − 1]. Qed.
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Before I come to the solution of this exercise, let me quickly comment on where it
comes from. What I call “k-smords” in Exercise 5 is usually called “Smirnov words”5

or “Carlitz words” (of length k, over the alphabet [n]). Generally, combinatorialists
often use the word “word of length k over an alphabet A” as a synonym for “k-tuple
of elements of A”, with no linguistic or semantic connotations in mind.

The exercise, however, has a deeper significance in combinatorics: It provides
two simple examples for the computation of a chromatic polynomial. I hope we will
come to see the general case in class.

Solution to Exercise 5 (sketched). (a) The number of all k-smords is n (n − 1)k−1.
Proof. A k-smord is simply a k-tuple of elements of [n] such that each entry (apart

from the first) is distinct from the previous entry. Thus, the following algorithm
constructs each k-smord:

• First, choose the first entry of the k-smord. There are n choices here.

• Then, choose the second entry of the k-smord. There are n − 1 choices for
this, because it has to be distinct from the previous entry.

• Then, choose the third entry of the k-smord. There are n − 1 choices for this,
because it has to be distinct from the previous entry.

• And so on, until all entries have been chosen.

Thus, in total, there are

n (n − 1) (n − 1) · · · (n − 1)︸ ︷︷ ︸
k−1 times

= n (n − 1)k−1

ways to perform this algorithm. Hence, the number of all k-smords is n (n − 1)k−1.
(b) The number of all rounded k-smords is (n − 1)k + (−1)k (n − 1).
Proof. Let rk (n) denote the number of all rounded k-smords. We must prove that

rk (n) = (n − 1)k + (−1)k (n − 1) . (5)

Let us forget that we fixed k. We shall now prove (5) by induction over k:
Induction base: A 1-smord (a) is rounded if and only if it satisfies a ̸= a (by the

definition of “rounded”); thus, there exist no rounded 1-smords (because a ̸= a
never holds). Hence, the number of all rounded 1-smords is 0. In other words,
r1 (n) = 0 (since r1 (n) was defined to be the number of all rounded 1-smords).
Comparing this with (n − 1)1 + (−1)1 (n − 1) = 0, we obtain r1 (n) = (n − 1)1 +

(−1)1 (n − 1). In other words, (5) holds for k = 1. This completes the induction
base.

5I have abbreviated this to “smords” in the exercise to make it harder to google. The definition of
“smord” in Urban Dictionary is an (unintended) red herring.
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Induction step: You have seen lots of induction steps by now, so let me take away
one piece of railing for the sake of brevity. Namely, instead of stepping “from
k = m to k = m + 1”, I shall simply “step from k to k + 1”. This is just a matter of
notation, which at this point should not be too confusing any longer.

So let k be a positive integer, and assume (as our induction hypothesis) that (5)
holds “for this particular k” (that is, we have rk (n) = (n − 1)k + (−1)k (n − 1)).
Then, we must show that (5) holds “for k + 1 as well” (that is, we must show that
rk+1 (n) = (n − 1)k+1 + (−1)k+1 (n − 1)).

We say that a (k + 1)-smord is non-rounded if it is not rounded. (Duh.)
Exercise 5 (a) (applied to k + 1 instead of k) shows that the number of all (k + 1)-

smords is n (n − 1)(k+1)−1 = n (n − 1)k. Hence,

n (n − 1)k = (the number of all (k + 1) -smords)
= (the number of all rounded (k + 1) -smords)

+ (the number of all non-rounded (k + 1) -smords) . (6)

We shall now find the number of all non-rounded (k + 1)-smords.
A (k + 1)-smord (a1, a2, . . . , ak+1) is rounded if and only if it satisfies ak+1 ̸= a1

(by the definition of “rounded”). Hence, a (k + 1)-smord (a1, a2, . . . , ak+1) is non-
rounded if and only if it satisfies ak+1 = a1. Thus, a non-rounded (k + 1)-smord
(a1, a2, . . . , ak+1) is uniquely determined by its first k entries a1, a2, . . . , ak. Moreover,
these first k entries must themselves form a k-smord (since ai ̸= ai+1 holds for all
i ∈ [k] and therefore also for all i ∈ [k − 1]), and this k-smord (a1, a2, . . . , ak) is
rounded (because ai ̸= ai+1 for all i ∈ [k], whence ak ̸= ak+1 = a1, but this says
precisely that the k-smord (a1, a2, . . . , ak) is rounded). Hence, we can define a map

ϕ : {non-rounded (k + 1) -smords} → {rounded k-smords} ,
(a1, a2, . . . , ak+1) 7→ (a1, a2, . . . , ak) .

Conversely, if (a1, a2, . . . , ak) is a rounded k-smord, then (a1, a2, . . . , ak, a1) is a non-
rounded (k + 1)-smord (in fact, it is a (k + 1)-smord because the roundedness of
(a1, a2, . . . , ak) leads to ak ̸= a1; and it is non-rounded because a1 = a1). Thus, we
can define a map

ψ : {rounded k-smords} → {non-rounded (k + 1) -smords} ,
(a1, a2, . . . , ak) 7→ (a1, a2, . . . , ak, a1) .

The two maps ϕ and ψ are mutually inverse (to check this, just remember that
any non-rounded (k + 1)-smord (a1, a2, . . . , ak+1) must satisfy ak+1 = a1, so it is
identical with (a1, a2, . . . , ak, a1)), and thus are bijections. Hence, we have found a
bijection from {non-rounded (k + 1) -smords} to {rounded k-smords} (namely, ϕ).
Therefore,

(the number of all non-rounded (k + 1) -smords)
= (the number of all rounded k-smords) .
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Thus, (6) becomes

n (n − 1)k = (the number of all rounded (k + 1) -smords)︸ ︷︷ ︸
=rk+1(n)

(since rk+1(n) is defined as the number of all rounded (k+1)-smords)

+ (the number of all non-rounded (k + 1) -smords)︸ ︷︷ ︸
=(the number of all rounded k-smords)=rk(n)

(since rk(n) is defined as the number of all rounded k-smords)

= rk+1 (n) + rk (n) .

Therefore,

rk+1 (n) = n (n − 1)k − rk (n)︸ ︷︷ ︸
=(n−1)k+(−1)k(n−1)

(by the induction hypothesis)

= n (n − 1)k −
(
(n − 1)k + (−1)k (n − 1)

)

= n (n − 1)k − (n − 1)k︸ ︷︷ ︸
=(n−1)(n−1)k=(n−1)k+1

− (−1)k︸ ︷︷ ︸
=−(−1)k+1

(n − 1) = (n − 1)k+1 −
(
(−1)k+1

)
(n − 1)

= (n − 1)k+1 + (−1)k+1 (n − 1) .

In other words, (5) holds “for k + 1 as well”. This completes the induction step.
Thus, the induction proof of (5) is finished, and with it the solution of Exercise 5
(b).

0.6. Necklaces 2: rotational equivalence of tuples

Let us recall a basic property of maps (proven in Exercise 6 (a) on Math 4990
homework set #2): If S is a set, and if f : S → S a map, then

f n ◦ f m = f n+m (7)

for each n, m ∈ N.

Exercise 6. This continues Exercise 7 from Math 4990 homework set #2.
Let n be a positive integer. Let X be a set.
We define a map c : Xn → Xn by

c (x1, x2, . . . , xn) = (x2, x3, . . . , xn, x1) for all (x1, x2, . . . , xn) ∈ Xn.

(In other words, the map c transforms any n-tuple (x1, x2, . . . , xn) ∈ Xn by “ro-
tating” it one step to the left, or, equivalently, moving its first entry to the last
position.)

For two n-tuples x and y, we say that x ∼ y if there exists some k ∈ N

such that y = ck (x). (For example, (1, 5, 2, 4) ∼ (2, 4, 1, 5), because (2, 4, 1, 5) =
c2 (1, 5, 2, 4).)

http://www.cip.ifi.lmu.de/~grinberg/t/17f/hw2s.pdf
http://www.cip.ifi.lmu.de/~grinberg/t/17f/hw2s.pdf
http://www.cip.ifi.lmu.de/~grinberg/t/17f/hw2s.pdf


Math 4990 Fall 2017 (Darij Grinberg): homework set 3 page 13

(a) Prove that ∼ is an equivalence relation, i.e., is reflexive, transitive and
symmetric. (For example, symmetry boils down to showing that if there exists
some k ∈ N satisfying y = ck (x), then there exists some ℓ ∈ N satisfying
x = cℓ (y).)

(b) An n-necklace (over X) shall mean a ∼-equivalence class. We denote the
∼-equivalence class of a tuple x ∈ Xn by [x]∼.

Let x ∈ Xn be an n-tuple. Let m be the smallest nonzero period of the n-tuple
x ∈ Xn.

Prove that [x]∼ =
{

c0 (x) , c1 (x) , . . . , cm−1 (x)
}

.
(c) Show that the m tuples c0 (x) , c1 (x) , . . . , cm−1 (x) are distinct. Conclude

that |[x]∼| = m.

Solution to Exercise 6. Before we properly start solving this exercise, let us make
some basic observations:

Observation 1: We have cn (x) = x for each x ∈ Xn.

[Proof of Observation 1: Let x ∈ Xn. We have proven cn (x) = x during our solution
to Exercise 7 (d) on Math 4990 homework set #2. Thus, Observation 1 follows.]

Observation 2: Let x ∈ Xn. Let p ∈ N be such that cp (x) = x. Then,
ckp (x) = x for each k ∈ N.

[Proof of Observation 2: Observation 2 is intuitively obvious: All it says is that if
applying the map c to x a total of p times brings you back to x, then applying the
map c to x a total of kp times brings you back to x as well. This intuition can easily
be translated into a rigorous argument:

We shall prove Observation 2 by induction over k:
Induction base: We have c0p = c0 = idXn , so that c0p (x) = idXn (x) = x. Thus,

Observation 2 holds for k = 0. This completes the induction base.
Induction step: Let m ∈ N. Assume that Observation 2 holds for k = m. We must

prove that Observation 2 holds for k = m + 1.
Let x ∈ Xn. Let p ∈ N be such that cp (x) = x. Then, cmp (x) = x (since

Observation 2 holds for k = m). But (7) (applied to Xn, c, mp and p instead of S,
f , n and m) yields cmp ◦ cp = cmp+p = c(m+1)p. Hence, (cmp ◦ cp) (x) = c(m+1)p (x),
and therefore

c(m+1)p (x) = (cmp ◦ cp) (x) = cmp

cp (x)︸ ︷︷ ︸
=x

 = cmp (x) = x.

In other words, Observation 2 holds for k = m + 1. This completes the induction
step. Thus, Observation 2 is proven.]

http://www.cip.ifi.lmu.de/~grinberg/t/17f/hw2s.pdf
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Now, we must show that ∼ is an equivalence relation. Indeed, the relation ∼ is
reflexive6, symmetric7 and transitive8. In other words, the relation ∼ is an equiva-
lence relation. This solves Exercise 6 (a).

(b) The number m is the smallest nonzero period of the n-tuple x ∈ Xn. In
particular, m is a period of x. In other words, m ∈ N and cm (x) = x.

The definition of the equivalence class [x]∼ of x shows that

[x]∼ = {y ∈ Xn | y ∼ x} . (8)

Let S denote the set
{

c0 (x) , c1 (x) , . . . , cm−1 (x)
}

. Then, S ⊆ [x]∼
9.

On the other hand, we claim the following:
6Proof. Let x ∈ Xn. We shall show that x ∼ x.

Indeed, c0 = idXn , so that c0 (x) = idXn (x) = x. Hence, there exists some k ∈ N such that
x = ck (x) (namely, k = 0). In other words, x ∼ x (by the definition of the relation ∼).

Now, forget that we fixed x. We thus have shown that every x ∈ Xn satisfies x ∼ x. In other
words, the relation ∼ is reflexive.

7Proof. Let x ∈ Xn and y ∈ Xn be such that x ∼ y. We shall show that y ∼ x.
Indeed, we have x ∼ y. In other words, there exists some k ∈ N such that y = ck (x) (by

the definition of the relation ∼). Consider such a k, and denote it by u. Thus, u ∈ N satisfies
y = cu (x).

Observation 1 yields cn (x) = x. Hence, Observation 2 (applied to p = n and k = u) yields
cun (x) = x. But n is positive; hence, n ≥ 1 and thus un ≥ u1 = u. Hence, un − u ∈ N. Applying
(7) to Xn, c, un − u and u instead of S, f , n and m, we obtain cun−u ◦ cu = c(un−u)+u = cun. Thus,

(cun−u ◦ cu) (x) = cun (x) = x. Hence, x = (cun−u ◦ cu) (x) = cun−u

cu (x)︸ ︷︷ ︸
=y

 = cun−u (y). Thus,

there exists some k ∈ N such that x = ck (y) (namely, k = un − u). In other words, y ∼ x (by the
definition of the relation ∼).

Now, forget that we fixed x and y. We thus have shown that if x ∈ Xn and y ∈ Xn satisfy
x ∼ y, then y ∼ x. In other words, the relation ∼ is symmetric.

8Proof. Let x ∈ Xn, y ∈ Xn and z ∈ Xn be such that x ∼ y and y ∼ z. We shall show that x ∼ z.
Indeed, we have x ∼ y. In other words, there exists some k ∈ N such that y = ck (x) (by

the definition of the relation ∼). Consider such a k, and denote it by u. Thus, u ∈ N satisfies
y = cu (x).

Also, we have y ∼ z. In other words, there exists some k ∈ N such that z = ck (y) (by the
definition of the relation ∼). Consider such a k, and denote it by v. Thus, v ∈ N satisfies
z = cv (y).

Applying (7) to Xn, c, v and u instead of S, f , n and m, we obtain cv ◦ cu = cv+u. Thus,

(cv ◦ cu) (x) = cv+u (x). In view of (cv ◦ cu) (x) = cv

cu (x)︸ ︷︷ ︸
=y

 = cv (y) = z, this rewrites as

z = cv+u (x). Thus, there exists some k ∈ N such that z = ck (x) (namely, k = v + u). In other
words, x ∼ z (by the definition of the relation ∼).

Now, forget that we fixed x, y and z. We thus have shown that if x ∈ Xn, y ∈ Xn and z ∈ Xn

satisfy x ∼ y and y ∼ z, then x ∼ z. In other words, the relation ∼ is transitive.
9Proof. Let s ∈ S. Then, s ∈ S =

{
c0 (x) , c1 (x) , . . . , cm−1 (x)

}
. In other words, s = ci (x) for some

i ∈ {0, 1, . . . , m − 1}. Consider this i.
Hence, s ∈ Xn. Furthermore, there exists some k ∈ N such that s = ck (x) (namely, k = i). In

other words, x ∼ s (by the definition of the relation ∼). Hence, s ∼ x (since the relation ∼ is
symmetric). Therefore, s ∈ {y ∈ Xn | y ∼ x}. In light of (8), this rewrites as s ∈ [x]∼.
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Observation 3: We have ck (x) ∈ S for each k ∈ N.

[Proof of Observation 3: We proceed by strong induction over k:
Induction step: Let h ∈ N. Assume that Observation 3 holds whenever k < h. We

now must prove that Observation 3 holds for k = h. In other words, we must prove
that ch (x) ∈ S.

If h < m, then this is obvious10. Hence, for the rest of this proof (i.e., of the
induction step), we WLOG assume that we don’t have h < m. Thus, h ≥ m, so that
h − m ∈ N.

We know that m is nonzero, and therefore positive (since m ∈ N). Hence, h −
m < h. Therefore (and because of h − m ∈ N), we can apply Observation 3 to
k = h − m (since we have assumed that Observation 3 holds whenever k < h). We
thus obtain ch−m (x) ∈ S.

But (7) (applied to Xn, c, h − m and m instead of S, f , n and m) shows that
ch−m ◦ cm = c(h−m)+m = ch. Hence,

(
ch−m ◦ cm) (x) = ch (x), so that

ch (x) =
(

ch−m ◦ cm
)
(x) = ch−m

cm (x)︸ ︷︷ ︸
=x

 = ch−m (x) ∈ S.

In other words, Observation 3 holds for k = h. This completes the induction step.
Observation 3 is thus proven.]

Now, it is easy to see that [x]∼ ⊆ S 11. Combining this with S ⊆ [x]∼, we
obtain [x]∼ = S =

{
c0 (x) , c1 (x) , . . . , cm−1 (x)

}
(by the definition of S). This solves

Exercise 6 (b).
(c) We observe that m ∈ N and cm (x) = x (as we have already seen in the

solution to part (b)).
Now, we are going to show the following:

Observation 4: Let i and j be two distinct elements of {0, 1, . . . , m − 1}.
Then, ci (x) ̸= cj (x).

[Proof of Observation 4: We WLOG assume that i ≤ j (since otherwise, we can
simply switch i with j to ensure that i ≤ j). Hence, i < j (since i and j are distinct).

Now, forget that we fixed s. We thus have shown that s ∈ [x]∼ for each s ∈ S. In other words,
S ⊆ [x]∼.

10Proof. Assume that h < m. Thus, h ∈ {0, 1, . . . , m − 1} (since h ∈ N), and thus ch (x) ∈{
c0 (x) , c1 (x) , . . . , cm−1 (x)

}
= S, qed.

11Proof. Let s ∈ [x]∼. Then, s ∈ [x]∼ = {y ∈ Xn | y ∼ x} (by (8)). In other words, s ∈ Xn and
s ∼ x. From s ∼ x, we obtain x ∼ s (since the relation ∼ is symmetric). In other words, there
exists some k ∈ N such that s = ck (x) (by the definition of the relation ∼). Consider this k.
Now, Observation 3 yields ck (x) ∈ S. Hence, s = ck (x) ∈ S.

Now, forget that we fixed s. We thus have shown that s ∈ S for each s ∈ [x]∼. In other words,
[x]∼ ⊆ S.
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Assume (for the sake of contradiction) that ci (x) = cj (x). Since j ∈ {0, 1, . . . , m − 1},

we have j ≤ m − 1 < m. Hence,

m − j︸︷︷︸
<m

+ i > (m − m) + i = i ≥ 0.

Also m− j ∈ N (since j < m). Therefore, (7) (applied to Xn, c, m− j and j instead
of S, f , n and m) shows that cm−j ◦ cj = c(m−j)+j = cm. Hence,

(
cm−j ◦ cj) (x) =

cm (x) = x. Therefore,

x =
(

cm−j ◦ cj
)
(x) = cm−j

(
cj (x)

)
. (9)

On the other hand, (7) (applied to Xn, c, m − j and i instead of S, f , n and m)
shows that cm−j ◦ ci = c(m−j)+i. Hence,

(
cm−j ◦ ci) (x) = c(m−j)+i (x). Therefore,

c(m−j)+i (x) =
(

cm−j ◦ ci
)
(x) = cm−j

 ci (x)︸ ︷︷ ︸
=cj(x)

(by our assumption)

 = cm−j
(

cj (x)
)
= x

(by (9)).
Now, the integer (m − j) + i belongs to N (since (m − j) + i > 0) and satisfies

c(m−j)+i (x) = x. In other words, (m − j) + i is a period of x (by the definition of a
“period”). Moreover, this period (m − j) + i is nonzero (since (m − j) + i > 0).

Recall that m is the smallest nonzero period of the n-tuple x ∈ Xn. Hence,
every nonzero period p of x satisfies p ≥ m. Applying this to p = (m − j) + i, we
obtain (m − j) + i ≥ m (since (m − j) + i is a nonzero period of x). This contradicts
(m − j) + i︸︷︷︸

<j

< (m − j) + j = m. This contradiction shows that our assumption

(that ci (x) = cj (x)) was wrong. Hence, ci (x) ̸= cj (x). This proves Observation 4.]
Observation 4 shows that the m tuples c0 (x) , c1 (x) , . . . , cm−1 (x) are distinct.

Hence, the set
{

c0 (x) , c1 (x) , . . . , cm−1 (x)
}

contains m distinct elements. There-
fore,

∣∣{c0 (x) , c1 (x) , . . . , cm−1 (x)
}∣∣ = m. But Exercise 6 (b) shows that [x]∼ ={

c0 (x) , c1 (x) , . . . , cm−1 (x)
}

. Thus, |[x]∼| =
∣∣{c0 (x) , c1 (x) , . . . , cm−1 (x)

}∣∣ = m.
This solves Exercise 6 (c).
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