
Math 4707 Fall 2017 (Darij Grinberg): homework set 3 page 1

Math 4707 Fall 2017 (Darij Grinberg): homework set 3 [corrected 23 Oct 2017]
due date: Wednesday 25 Oct 2017 at the beginning of class, or before that by email

or moodle
Please solve at most 4 of the 7 exercises!

Two integers a and b are said to be coprime if their greatest common divisor is 1.
(Note that gcd (a, 0) = |a| for any integer a.)

The Euler totient function φ : {1, 2, 3, . . .} →N is defined by

φ (n) = (the number of all m ∈ [n] that are coprime to n)
= |{m ∈ [n] | m is coprime to n}| .

More about greatest common divisors and about this function can be found in
Lehman/Leighton/Meyer (Chapter 9). That said, you won’t need anything but the
definitions in this homework set.

Exercise 1. Let n be a positive integer.
(a) Prove that if m is an integer coprime to n, then n − m is also an integer

coprime to n.
(b) Prove that φ (n) is even if n > 2.
[Hint: If you haven’t used the n > 2 requirement, then you must have missed

something. φ (2) = 1, which is not even!]

Exercise 2. A preprint recently posted on the arXiv says (in a proof) that “

1−
d

∑
i=2

(i− 1)
(

d
i

)(
1

d− 1

)i
= 0,

the final equality being verified by the computer algebra system Maple (which
itself employs an algorithm of Zeilberger)”. Here, d is assumed to be an integer
≥ 2.

Prove this equality by hand (but feel free to use a computer to write up your
proof...). More generally, find and prove a sum-less expression for

d

∑
i=2

(i− 1)
(

d
i

)
qi

where q is an arbitrary rational number (and d is still an integer ≥ 2).

Exercise 3. Let n ∈N. Consider n people standing in a circle. Each of them looks
down at someone else’s feet (i.e., at the feet of one of the other n− 1 persons).
A bell sounds, and every person (simultaneously) looks up at the eyes of the
person whose feet they have been ogling. If two people make eye contact, they
scream. Show that the probability that no one screams is

n

∑
k=0

(−1)k n (n− 1) · · · (n− 2k + 1)

(n− 1)2k · 2k · k!
.

https://courses.csail.mit.edu/6.042/fall17/mcs.pdf
https://www.math.upenn.edu/~wilf/AeqB.html
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Combinatorial restatement (feel free to solve this instead): A pair (i, j) of ele-
ments of [n] is said to scream at a map f : [n] → [n] if it satisfies f (i) = j and
f (j) = i. A map f : [n] → [n] is silent if no pair (i, j) ∈ [n]× [n] screams at f .
Prove that the number of all silent maps f : [n]→ [n] is

n

∑
k=0

(−1)k n (n− 1) · · · (n− 2k + 1)
2k · k!

(n− 1)n−2k .

Exercise 4. Let i and j be positive integers. Prove that

i+j

∑
k=max{i,j}

(−1)k (k− 1)!
(k− i)! (k− j)! (i + j− k)!

= 0.

[Hint: Assume that i ≥ j, and rewrite
(k− 1)!

(k− i)! (k− j)! (i + j− k)!
as a constant

(independent of k) times a product of two binomial coefficients, one of which is(
i

k− j

)
.]

Exercise 5. Let N ∈ N. Let (a0, a1, . . . , aN) be a list of rational numbers. Define
a second list (b0, b1, . . . , bN) of rational numbers by setting

bn =
n

∑
i=0

(−1)i
(

n
i

)
ai for each n ∈ {0, 1, . . . , N} .

Prove that

an =
n

∑
i=0

(−1)i
(

n
i

)
bi for each n ∈ {0, 1, . . . , N} .

Now, recall some of the notations for finite differences:
Per se, the words “map”, “mapping”, “function”, “transformation” and “opera-

tor” are synonyms in mathematics (they all mean assignments of values from one
set to the elements of another set). But it is common to use some of these words
selectively for certain kinds of maps. We shall follow the following rules:

• The word “map” can mean any kind of map.

• The word “function” shall mean a map from Q to Q. Thus, the set of all
functions is QQ.

• The word “operator” shall mean a map from QQ to QQ. Thus, an operator is
a map sending functions to functions.
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For example, the map
Q→ Q, x 7→ x2

is a function, whereas the map

QQ → QQ, f 7→ f ◦ f

(“apply a function twice”) is an operator.
If f and g are functions, then f + g denotes the pointwise sum of f and g (that

is, the function Q → Q, x 7→ f (x) + g (x)), and f g denotes the pointwise product
of f and g (that is, the function Q → Q, x 7→ f (x) g (x)). We can also write f · g
for f g.

If f is a function and λ ∈ Q, then λ f denotes the pointwise product of λ with
f (that is, the function Q → Q, x 7→ λ f (x)). Thus, the functions form a Q-vector
space (and better yet, a commutative Q-algebra, because of the multiplication).

The following three operators are particularly important:

• The identity operator id : QQ → QQ. It sends each function f to f itself.

• The shift operator S : QQ → QQ. It sends each function f to the function
S ( f ) defined by (S ( f )) (x) = f (x + 1) for all x ∈ Q. Speaking in terms of
function plots, the operator S shifts a function by 1 to the left.

• The difference operator ∆ : QQ → QQ. It sends each function f to the function
∆ ( f ) defined by (∆ ( f )) (x) = f (x + 1) − f (x) for all x ∈ Q. Speaking in
terms of function plots, the operator ∆ shifts a function by 1 to the left and
subtracts the original function back from it. Note that ∆ ( f ) = S ( f )− f for
each f ∈ QQ.

If our functions were C∞-functions R → R instead of maps Q → Q, then
d

dx
would be another operator (sending each function f to its derivative).

Exercise 6. (a) Prove that S ( f g) = S ( f ) · S (g) for any two functions f and g.
(b) Prove that ∆ ( f g) = S ( f )∆ (g) + ∆ ( f ) g for any two functions f and g.
(c) Prove that ∆ ( f g) = f ∆ (g) + ∆ ( f ) S (g) for any two functions f and g.
(d) Prove that ∆ ◦ S = S ◦ ∆.

And finally, let’s take our tale of periodic tuples and necklaces to its (temporary)
conclusion:1

Exercise 7. This exercise is a continuation of Exercise 7 on homework set #2 and
of Exercise 6 on midterm #1.

Let p be a prime number. Let X be a set.
(a) Let x ∈ Xp be a p-tuple. Prove that:

1To remind: You are allowed to use the exercises from previous problem sets even if you did not
solve them.

http://www.cip.ifi.lmu.de/~grinberg/t/17f/hw2s.pdf
http://www.cip.ifi.lmu.de/~grinberg/t/17f/mt1.pdf
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• if all entries of x are equal (that is, if x has the form

x, x, . . . , x︸ ︷︷ ︸
p times

 for some

x ∈ X), then |[x]∼| = 1;

• otherwise, we have |[x]∼| = p.

[Example: If p = 3, then the 3-tuple x = (5, 5, 5) satisfies |[x]∼| = 1, while the
3-tuple x = (1, 3, 1) satisfies |[x]∼| = 3.]

A p-necklace [x]∼ is said to be aperiodic if |[x]∼| = p.
(b) Assume that the set X is finite. Prove that the number of all aperiodic

p-necklaces (over X) is
|X|p − |X|

p
.

[Example: If p = 3 and X = {1, 2, 3}, then the aperiodic p-necklaces over X are

[(1, 1, 2)]∼ , [(1, 1, 3)]∼ , [(1, 2, 2)]∼ , [(1, 2, 3)]∼ ,
[(1, 3, 2)]∼ , [(1, 3, 3)]∼ , [(2, 2, 3)]∼ , [(2, 3, 3)]∼ .

You can, of course, write them differently: e.g., [(1, 2, 3)]∼ is also known as
[(2, 3, 1)]∼ (but [(1, 3, 2)]∼ is different). The p-necklaces that are not aperiodic
are [(1, 1, 1)]∼, [(2, 2, 2)]∼ and [(3, 3, 3)]∼.]

(c) Prove Fermat’s Little Theorem, which states that p | ap − a for every integer
a. [Note: a might be negative.]

(d) Assume that the set X is finite. Prove that the number of all p-necklaces

(over X) is
|X|p + (p− 1) |X|

p
.

We have thus counted p-necklaces for a prime number p. Counting n-necklaces
for n composite is harder; we will learn about this later.


