Math 4707 Fall 2017 (Darij Grinberg): homework set 2

due date: Wednesday 4 Oct 2017 at the beginning of class Please solve at most 4 of the 7 exercises!

Exercise 1. Let $n \in \mathbb{N}$.

(a) Prove that

$$(2n-1)\cdot (2n-3)\cdot \cdot \cdot \cdot 1 = \frac{(2n)!}{2^n n!}.$$

(The left hand side is understood to be the product of all odd integers from 1 to 2n - 1.)

(b) Prove that

$$\binom{-1/2}{n} = \left(\frac{-1}{4}\right)^n \binom{2n}{n}.$$

(c) Prove that

$$\binom{-1/3}{n}\binom{-2/3}{n} = \frac{(3n)!}{(3^n n!)^3}.$$

Exercise 2. Let $n \in \mathbb{Q}$, $a \in \mathbb{N}$ and $b \in \mathbb{N}$.

(a) Prove that every integer $j \ge a$ satisfies

$$\binom{n}{j}\binom{j}{a}\binom{n-j}{b} = \binom{n}{a}\binom{n-a}{b}\binom{n-a-b}{j-a}.$$

(b) Compute the sum $\sum_{j=a}^{n} \binom{n}{j} \binom{j}{a} \binom{n-j}{b}$ for every integer $n \ge a$. (The result should contain no summation signs.)

Recall the concept of lacunar sets, as defined in homework set 1. Recall also the Fibonacci sequence $(f_0, f_1, f_2,...)$ defined by $f_0 = 0$, $f_1 = 1$, and $f_n = f_{n-1} + f_{n-2}$ for all $n \ge 2$. Exercise 4 (c) on homework set 1 told us that the number g(n) of all lacunar subsets of [n] is f_{n+2} . We shall now see more.

Exercise 3. Let $n \in \mathbb{N}$.

(a) For any $k \in \{0, 1, ..., n + 1\}$, prove that the number of all lacunar k-element subsets of [n] is $\binom{n - k + 1}{k}$.

[Notice that this equals 0 whenever 2k > n + 1. You shouldn't need a separate argument for this case, but make sure you understand why the 0 is not surprising.]

(b) Conclude that

$$f_{n+2} = \sum_{k=0}^{n} {n-k+1 \choose k}.$$

Recall that if $n \in \mathbb{N}$ and $k \in \mathbb{N}$, then sur (n, k) denotes the number of surjections $[n] \to [k]$. In class, we have shown the following two recursive formulas:

• We have

$$\operatorname{sur}(n,0) = [n=0]$$
 for all $n \in \mathbb{N}$,

and

$$\operatorname{sur}(n,k) = \sum_{j=0}^{n-1} \binom{n}{j} \operatorname{sur}(j,k-1) \quad \text{for all } n \in \mathbb{N} \text{ and } k > 0.$$

We have

$$\operatorname{sur}(n,0) = [n=0]$$
 for all $n \in \mathbb{N}$,
 $\operatorname{sur}(0,k) = [k=0]$ for all $k \in \mathbb{N}$,

and

$$sur(n,k) = k(sur(n-1,k) + sur(n-1,k-1))$$
 for all $n > 0$ and $k > 0$.

Exercise 4. Prove that

$$\operatorname{sur}(n,k) = \sum_{i=0}^{k} (-1)^{k-i} {k \choose i} i^{n}.$$

[Hint: Use one of the above recursions in the induction step. You are allowed to use the binomial formula

$$(x+y)^n = \sum_{k=0}^n \binom{n}{k} x^k y^{n-k},$$

which holds for any $x, y \in \mathbb{Q}$ and any $n \in \mathbb{N}$.]

Exercise 5. Let $n \in \mathbb{N}$. Let me call a permutation of [n] *oddlike* if it sends every odd element of [n] to an odd element of [n]. (For example, the permutation of [5] sending 1,2,3,4,5 to 3,4,5,2,1 is oddlike.)

- (a) Prove that any oddlike permutation of [n] must also send every even element of [n] to an even element of [n].
- **(b)** Find a formula for the number of oddlike permutations of [n]. [Hint: The answer may depend on the parity of n.]

Definition 0.1. Let *S* be a set. Let $f: S \to S$ be a map from *S* to *S*. Then, for every $k \in \mathbb{N}$, the map $f^k: S \to S$ is defined to be

$$\underbrace{f \circ f \circ \cdots \circ f}_{k \text{ times}}.$$

For example, if $f: \mathbb{Z} \to \mathbb{Z}$ is the map $x \mapsto x^2$, then f^k is the map $x \mapsto \underbrace{\left(\left(\left(x^2\right)^2\right)\cdots\right)^2}_{} = x^{\left(2^k\right)}$.

Note that $f^0 = \underbrace{f \circ f \circ \cdots \circ f}_{0 \text{ times}} = \mathrm{id}_S$, since a composition of no maps ("empty

composition") is always understood as the identity map.

Exercise 6. Let *S* be a set. Let $f: S \rightarrow S$ be a map.

- (a) Prove that $f^n \circ f^m = f^{n+m}$ for each $n, m \in \mathbb{N}$. [Yes, this is a one-liner; you don't need induction.]
- **(b)** Let $g: S \to S$ be a further map such that $f \circ g = g \circ f$. Prove that $(f \circ g)^n = f^n \circ g^n$ for each $n \in \mathbb{N}$.
- (c) Find an example in which the claim of (b) fails if we drop the assumption that $f \circ g = g \circ f$.

Exercise 7. Let *n* be a positive integer. Let *X* be a set.

We define a map $c: X^n \to X^n$ by

$$c(x_1, x_2, ..., x_n) = (x_2, x_3, ..., x_n, x_1)$$
 for all $(x_1, x_2, ..., x_n) \in X^n$.

(In other words, the map c transforms any n-tuple $(x_1, x_2, ..., x_n) \in X^n$ by "rotating" it one step to the left, or, equivalently, moving its first entry to the last position.)

(a) Prove that

$$c^{k}(x_{1}, x_{2}, ..., x_{n}) = (x_{k+1}, x_{k+2}, ..., x_{n}, x_{1}, x_{2}, ..., x_{k})$$

for each $k \in \{0,1,\ldots,n\}$ and each $(x_1,x_2,\ldots,x_n) \in X^n$. (Note that $(x_{k+1},x_{k+2},\ldots,x_n,x_1,x_2,\ldots,x_k)$ is to be understood as (x_1,x_2,\ldots,x_n) if k equals either 0 or n.)

[Note: This might be intuitively clear – after all, if c rotates a tuple, then c^k rotates it k times, which causes its first k entries to move to the rightmost spot. But the point is to give a rigorous proof. Induction is recommended.]

(b) Let $\mathbf{x} = (x_1, x_2, ..., x_n)$ be an n-tuple in X^n . A nonnegative integer k is said to be a *period* of \mathbf{x} if it satisfies $c^k(\mathbf{x}) = \mathbf{x}$. (For example, 0 is always a period of \mathbf{x} . For another example, the periods of the 6-tuple (1, 4, 2, 1, 4, 2) are (0, 3, 6, 9, ...)

Prove that if p and q are two periods of \mathbf{x} satisfying $p \ge q$, then p - q is also a period of \mathbf{x} .

- (c) Let m be the smallest nonzero period of the n-tuple $\mathbf{x} \in X^n$. Prove that m divides any period of \mathbf{x} .
 - **(d)** Conclude that *m* divides *n*.