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Math 4707 Fall 2017 (Darij Grinberg): homework set 2
due date: Wednesday 4 Oct 2017 at the beginning of class

Please solve at most 4 of the 7 exercises!

Exercise 1. Let n ∈N.
(a) Prove that

(2n− 1) · (2n− 3) · · · · · 1 =
(2n)!
2nn!

.

(The left hand side is understood to be the product of all odd integers from 1 to
2n− 1.)

(b) Prove that (
−1/2

n

)
=

(
−1
4

)n (2n
n

)
.

(c) Prove that (
−1/3

n

)(
−2/3

n

)
=

(3n)!

(3nn!)3 .

Exercise 2. Let n ∈ Q, a ∈N and b ∈N.
(a) Prove that every integer j ≥ a satisfies(

n
j

)(
j
a

)(
n− j

b

)
=

(
n
a

)(
n− a

b

)(
n− a− b

j− a

)
.

(b) Compute the sum
n
∑

j=a

(
n
j

)(
j
a

)(
n− j

b

)
for every integer n ≥ a. (The result

should contain no summation signs.)

Recall the concept of lacunar sets, as defined in homework set 1. Recall also the
Fibonacci sequence ( f0, f1, f2, . . .) defined by f0 = 0, f1 = 1, and fn = fn−1 + fn−2
for all n ≥ 2. Exercise 4 (c) on homework set 1 told us that the number g (n) of all
lacunar subsets of [n] is fn+2. We shall now see more.

Exercise 3. Let n ∈N.
(a) For any k ∈ {0, 1, . . . , n + 1}, prove that the number of all lacunar k-element

subsets of [n] is
(

n− k + 1
k

)
.

[Notice that this equals 0 whenever 2k > n + 1. You shouldn’t need a sep-
arate argument for this case, but make sure you understand why the 0 is not
surprising.]

(b) Conclude that

fn+2 =
n

∑
k=0

(
n− k + 1

k

)
.
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Recall that if n ∈N and k ∈N, then sur (n, k) denotes the number of surjections
[n]→ [k]. In class, we have shown the following two recursive formulas:

• We have
sur (n, 0) = [n = 0] for all n ∈N,

and

sur (n, k) =
n−1

∑
j=0

(
n
j

)
sur (j, k− 1) for all n ∈N and k > 0.

• We have
sur (n, 0) = [n = 0] for all n ∈N,

sur (0, k) = [k = 0] for all k ∈N,

and

sur (n, k) = k (sur (n− 1, k) + sur (n− 1, k− 1)) for all n > 0 and k > 0.

Exercise 4. Prove that

sur (n, k) =
k

∑
i=0

(−1)k−i
(

k
i

)
in.

[Hint: Use one of the above recursions in the induction step. You are allowed
to use the binomial formula

(x + y)n =
n

∑
k=0

(
n
k

)
xkyn−k,

which holds for any x, y ∈ Q and any n ∈N.]

Exercise 5. Let n ∈ N. Let me call a permutation of [n] oddlike if it sends every
odd element of [n] to an odd element of [n]. (For example, the permutation of
[5] sending 1, 2, 3, 4, 5 to 3, 4, 5, 2, 1 is oddlike.)

(a) Prove that any oddlike permutation of [n] must also send every even ele-
ment of [n] to an even element of [n].

(b) Find a formula for the number of oddlike permutations of [n]. [Hint: The
answer may depend on the parity of n.]

Definition 0.1. Let S be a set. Let f : S → S be a map from S to S. Then, for
every k ∈N, the map f k : S→ S is defined to be

f ◦ f ◦ · · · ◦ f︸ ︷︷ ︸
k times

.



Math 4707 Fall 2017 (Darij Grinberg): homework set 2 page 3

For example, if f : Z → Z is the map x 7→ x2, then f k is the map x 7→(((
x2
)2
)
· · ·
)2

︸ ︷︷ ︸
k squarings

= x(2k).

Note that f 0 = f ◦ f ◦ · · · ◦ f︸ ︷︷ ︸
0 times

= idS, since a composition of no maps (“empty

composition”) is always understood as the identity map.

Exercise 6. Let S be a set. Let f : S→ S be a map.
(a) Prove that f n ◦ f m = f n+m for each n, m ∈ N. [Yes, this is a one-liner; you

don’t need induction.]
(b) Let g : S → S be a further map such that f ◦ g = g ◦ f . Prove that

( f ◦ g)n = f n ◦ gn for each n ∈N.
(c) Find an example in which the claim of (b) fails if we drop the assumption

that f ◦ g = g ◦ f .

Exercise 7. Let n be a positive integer. Let X be a set.
We define a map c : Xn → Xn by

c (x1, x2, . . . , xn) = (x2, x3, . . . , xn, x1) for all (x1, x2, . . . , xn) ∈ Xn.

(In other words, the map c transforms any n-tuple (x1, x2, . . . , xn) ∈ Xn by “ro-
tating” it one step to the left, or, equivalently, moving its first entry to the last
position.)

(a) Prove that

ck (x1, x2, . . . , xn) = (xk+1, xk+2, . . . , xn, x1, x2, . . . , xk)

for each k ∈ {0, 1, . . . , n} and each (x1, x2, . . . , xn) ∈ Xn. (Note that
(xk+1, xk+2, . . . , xn, x1, x2, . . . , xk) is to be understood as (x1, x2, . . . , xn) if k equals
either 0 or n.)

[Note: This might be intuitively clear – after all, if c rotates a tuple, then ck

rotates it k times, which causes its first k entries to move to the rightmost spot.
But the point is to give a rigorous proof. Induction is recommended.]

(b) Let x = (x1, x2, . . . , xn) be an n-tuple in Xn. A nonnegative integer k is said
to be a period of x if it satisfies ck (x) = x. (For example, 0 is always a period of
x. For another example, the periods of the 6-tuple (1, 4, 2, 1, 4, 2) are 0, 3, 6, 9, . . ..)

Prove that if p and q are two periods of x satisfying p ≥ q, then p− q is also a
period of x.

(c) Let m be the smallest nonzero period of the n-tuple x ∈ Xn. Prove that m
divides any period of x.

(d) Conclude that m divides n.


