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0.1. lverson brackets

Definition 0.1. Let A be a logical statement. Then, an element [A] € {0,1} is

1, if Ai ;

defined as follows: We set [A] = ¢ 1 A ?s fU  This element [A] is called
0, if Ais false

the truth value of A. (For example, [1+1=2] = 1and [1+1=3] = 0.) The

notation [A] for the truth value of A is known as the Iverson bracket notation.

Exercise 1. Prove the following rules of truth values:
(@) If A and B are two equivalent logical statements, then [A] = [B].
(b) If A is any logical statement, then [not A] =1 — [A].
(c) If A and B are two logical statements, then [A A B] = [A] [B].
(d) If A and B are two logical statements, then [AV B] = [A] + [B] — [A] [B].
(e) If A, B and C are three logical statements, then

[AVBVC] = [Al +[B] +[C] = [A] [B] = [A] [C] = [B] [C] + [A] [B] [C].

Solution to Exercise[ll (a) Let A and B be two equivalent statements.
1, if Ais true;
0, if A is false
(by the definition of [B]).

But A and B are equivalent. Thus, A is true (resp. false) if and only if B is true
1, if Aistrue; {1, if B is true;

1, if Bis true;

We h Al =
e have [A] 0, if B is false

(by the definition of [A]) and [B] = {

Thus,

. false). Hence, = .
(resp. false). Hence {0, if Ais false |0, if B is false

1, if Ais true; 1, if Bis true;
A — v v — 7 7 — B
[A] {0, if A is false {O, if B is false B]

This solves Exercise [1] (a).
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(b) Let A be any logical statement. Then, (not A) is true (resp. false) if and only
if A is false (resp. true). Hence,

1, if (not A) istrue; |1, if Aisfalse; |0, if Ais true;
0, if (not.A) is false )0, if Aistrue |1, if Aisfalse’

Now, the definition of [not A] shows that

1, if (not A) istrue; |0, if Ais true;
0, if (not.A) is false

[not A] = { i )1, if Ais false

Adding this equality to
1, if Ais true;
A — 7 7 ,
Al {O, if A is false
we obtain
1, if Ais true; 0, if Ais true; 140, if Ais true;
[A] + [not A] {O, if A is false {1, if A is false {0 +1, if Ais false

_J1, if Ais true; 1
)1, if Aisfalse

Thus, [not A] =1 — [A]. This solves Exercise 1| (b).

(c) Let A and B be two logical statements. We must be in one of the following
two cases:

Case 1: The statement A is true.

Case 2: The statement A is false.

Let us consider Case 1 first. In this case, the statement A is true. Hence, the
statement A A B is equivalent to the statement B. Thus, Exercise [1| (a) (applied to
A A B instead of A) shows that [A A B] = [B]. But the definition of [A] yields

[A] = L %f A ® true; _ (since A is true). Hence, [A] [B] = [B]. Comparing
0, if A is false ——
=1
this with [A A B] = [B], we obtain [A A B] = [A] [B]. Thus, Exercise (1| (c) is solved
in Case 1.

Let us now consider Case 2. In this case, the statement A is false. Hence, the
statement A A B is false as well. Thus, the definition of [A A B] yields [AA B] =

1, if AN Bistrue;
0, if AN B is false

L Tf A %S true; = 0 (since A is false). Hence, [A] [B] = 0[B] = 0.
0, if Ais false ——
=0
Comparing this with [A A B] = 0, we obtain [A A B] = [A] [B]. Thus, Exercise 1| (c)

is solved in Case 2.

= 0 (since A A B is false). But the definition of [A] yields

[A] =
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We thus have solved Exercise [1] (c) in both Cases 1 and 2. Hence, Exercise [1] (c)
always holds.

[Remark: Tt is, of course, also possible to get a completely straightforward solution
to Exercise 1| (c) by distinguishing four cases, depending on which of the statements
A and B are true.]

(d) It is easy to solve Exercise 1| (d) by a case distinction similarly to Exercise
(c). However, since we have already solved parts (b) and (c), we can give a simpler
solution:

Let A and B be two logical statements. One of de Morgan’s laws says that the
statement (not (A V B)) is equivalent to (not .A) A (not B). Hence, Exercise [1] (a)
(applied to (not (A V B)) and (not A) A (not B) instead of A and B) shows that

[not (AV B)] = [(not A) A (not B)]

= [not A] [not B]
N—— N——
—1-[A ~1-[B

(by Exercise|I] (b)) (by Exercisel] (b),
applied to B instead of A)

by Exercise [1| (c), applied to
(not A) and (not B) instead of A and B

= (1= [A) (A =[B]) =1~ [A] = [B] + [A] [B].

But Exercise [1| (b) (applied to A Vv B instead of A) shows that [not (AV B)] =
1—[AV B]. Hence,

(AVB] =1 [not (AVB)] =1—(1—[A] - [B] +[A] B])

=1—[A]-[B]+[A][B]
= [A] + [B] — [A] [B].
This solves Exercise [1] (d).

(e) Let A, B and C be three logical statements. Then, Exercise [1| (d) (applied to
AV B and C instead of A and B) shows that

[(AvB)vCl= [AvB] +[C]— [AvB] [C]
N—— N————
=[«4]+[51*[i4] [B] =[«4]+[3]_*[«.4] [B]
(by Exercise 1| (d)) (by Exercise [1| (d))

= ([l +[B] = [A][B]) + €] = ([A] + [B] = [A] [B]) [C]
= [A] + [B] + [C] = [A] [B] = [A] [€] = [B] [C] + [A] [B] [C].

But the statement AV BV C is equivalent to (AV B) V C. Hence, Exercise [1] (a)
(applied to AV BV C and (AV B) V C instead of A and B) shows that

[AVBVC] = [(AVB)VC] = [Al+[B]+[C] - [A] [B] = [A] [€] = [B] [€] + [A] [B] [C].

This solves Exercise [1] (e). N
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0.2. Basics on binomial coefficients

Definition 0.2. We define the binomial coefficient (Z) by

(Z) n(m—1)-(n—k+1)

- k!

for every n € Q and k € IN. (Recall that N = {0,1,2,...}, and that an empty
product is defined to be 1.)
3\ _ (=3)(~4)(=5)(~6) _ N4
For example, <4 > = 10 = 15 and 1) =1 = 4 and
(4> _ (empty product) 1 1

0 0! 1

Exercise 2. Prove the following;:

(a) We have (Z) = (—1)k (k_ Z B 1) forany n € Q and k € IN.

(b) We have k <Z) =n <Z : i) for any n € Q and any positive integer k.

(c) If n € Q and if 4 and b are two integers such that a > b > 0, then
n\(a\ (n\[(n-—>b
aJ\b) \b/\a—-0b)

v
[Caveat: You may have seen the formula (Z)

B n!
k' (n—k)!
only makes sense when n and k are nonnegative integers and n > k. Thus it is
not general enough to be used in this exercise.]

. But this formula

Before we solve this exercise, let us show a well-known formula:

Proposition 0.3. Let 2 and b be two integers such that a > b > 0. Then, (Z) =

al
b!'(a—b)!

Proof of Proposition We have

al=a(@a—-1)---1=(a(a—1)---(a—b+1))-((a=b)(a—b—-1)---1)
—(a—b)!

(sincea > b >0)
—(@a(@—1)---(a—b+1))-(a—b).
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Dividing this equality by (a — b)!, we obtain

(a_b)!:a(a—l)---(a—b—l—l). (1)

Now, the definition of (Z) yields

(Z) :a(a—l)..é!(a—anl) :%'g(ll—l)"'(ll—b—l—lz

!
“(a—Db)!
(by (@)
1 al al

:E'(a—.b)! T b a—b) @

This proves Proposition

k—n—1
Solution to Exercisel2l (a) Let n € Q and k € IN. The definition of ( " )

k
yields
k=n—-1\ _ (k—n—-1)(k—n—-2)---(k—n—-1-k+1)
k k!
:%(k—n—l)(k—n—2)---(k—n—1—k—|—1)
. k=1 e
—TT (k—n—1—i)
i=0
1 k=1 1 k=1
= ](k—n—-1-i)= —H k—n—1-((k—1)—1))
ko klio™ T g
=i—n=—(n—i)
(here, we have substituted (k —1) —i for i in the product)
1 k=1 ) —
=4 (—(n—1)) H n—i
L i=0 i=0
(1" T (1-)
k1 k-l . k1
= (0 [T =D gnn=1) (n—k+1)
© =0

:(_1)k n(n—l)--k-!(n—kﬁ—l) :(_1)k <Z)

N J/
-~

n

k

(by the definition of binomial coefficients)
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Multiplying this equality by (—1), we find

o) e 96
=((-1*) =1

(since (—1)k is either —1 or 1)

This solves Exercise 2] (a).
(b) Let n € Q. Let k be a positive integer. Thus, k —1 € IN. The definition of

n—1\ .
(k— 1> yields

(n—l) _(m=1)(n-2)---(n-1)—-(k-1)+1) m—-1)n—-2)---(n—k+1)
k—1

(k—1)! (k—1)!

(since (n —1) — (k—1) +1 = n — k+ 1). Multiplying this equality by n, we find

n(n—l) _  m=1)m=2)---(n—k+1) nm-1)(n-2)---(n—k+1)
k—1 (k—1)! (k—1)!

o nn—=1)---(n—k+1)

- (k—1)!

Comparing this with

. <n> =1 (n—k+1)

k k!
N~
nn—1)---(n—k+1)

k!

nn—1)---(n—k+1)

=k- PR Y (since k! =k - (k—1)!)
o nn=1)---(n—k+1)
(k—1)! ’

-1
we obtain k Z) =n (Z 1) This solves Exercise (b).

(c) Let n € Q. Let a and b be two integers such that a > b > 0. Thus,a —b € N,
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so that the binomial coefficient (Z : Z) is well-defined. Now,
n n—>b
b a—>b
N~ ——
n(n=1)---(n=b+1) (n=-b)(n-b-1)---(n—b)—(a—>b)+1)
; b! - (a—1D)!
(by the definition of (TZ)) (by the definition of n-b )
b a—>b
nmn-1)---(n=b+1) (n-b)(n—b—-1)---((n—b)—(a—b)+1)
B b! (a—1D)!
1
=n—a+1
1

:m-\(ﬂ(ﬂ—l)---(ﬂ—b—i—l))-((n—b)(n—b_l)...(n_a+1))

J

:n(n—l)f(n—a—i—l)
1
—mn(fl—l)(fl—ﬂ‘f‘l)

Comparing this with
n a _n(n—=1)---(n—a+1) Al
a b = .
——~
nm—1)---(n—a+1) _—‘*g
a! "0 (a—D)!
P ition 0.3
(by the definition of (Z) ) (by Proposition

:m-n(n—l)---(n—a-i—l),

we obtain VY= (M) (" b . This solves Exercise 2| (c). O]
a/\b b/\a—-">b

0.3. Counting basics

Exercise 3. Let k be a positive integer.
(a) How many k-digit numbers are there? (A “k-digit number” means a non-
negative integer that has k digits without leading zeroes. For example, 3902 is

a 4-digit number, not a 5-digit number. Note that 0 counts as a 0-digit number,
not as a 1-digit number.)

(b) How many k-digit numbers are there that have no two equal digits?
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(c) How many k-digit numbers have an even sum of digits?

(d) How many k-digit numbers are palindromes? (A “palindrome” is a number
such that reading its digits from right to left yields the same number. For exam-
ple, 5 and 1331 and 49094 are palindromes. Your answer may well depend on
the parity of k.)

Solution to Exercise3l (a) The answer is 9 - 10F1.
There are several ways to prove this. One is simply to observe that the k-digit
numbers are all numbers from 10¢~1 to 10¥ — 1 (inclusive), and thus there are

(10k _ 1) _10k141= 10 —10F1 =10-101 — 105!
——
—=10-10k—1

= (10-1) 101 =9.10%!
=9
of these. This is a valid proof, but it won't help us solve the other parts of this
exercise, so let us give a new one as a warm-up for those other parts.

Namely, let us treat a k-digit number as a sequence of k digits. How many
ways are there to construct such a sequence? We can just choose each of its digits
separately. There are 9 choices for the first digit (we cannot choose 0 because we
don’t allow leading zeroes; but any other digit is fine), and there are 10 choices for
each other digit. Thus, in total, there are

9.10-10-- - - - 10 =9-10!

-

k—1 factors

possibilities. Each of these possibilities leads to a distinct k-digit number. Thus, the
number of k-digit numbers is 9 - 10-~1. This solves Exercise [3| (a) again.

(b) Let us again treat a k-digit number as a sequence of k digits. How many ways
are there to construct such a sequence that has no two equal digits? We can try to
construct such a sequence “from left to right” (i.e., we choose the first digit first,
then the second digit, and so on). There are 9 choices for the first digit (again, we
cannot choose 0, but any other digit is fine), then there are 9 choices for the second
digit (we cannot choose the first digit, since we want no two equal digits, but any
other digit is fine), then there are 8 choices for the third digit (we cannot choose
any of the first two digits, which are distinct, so this leaves us 10 — 2 = 8 choices),
then there are 7 choices for the fourth digit (we cannot choose any of the first three
digits, which are distinct, so this leaves us 10 — 3 = 7 choices), and so on. Thus, in
total, there are

k—1 factors

possibilities. Each of these possibilities leads to a distinct k-digit number that has
no two equal digits. Thus, the number of k-digit numbers that have no two equal
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digits is9-9-8-7----- (11 — k). (You can rewrite this as 9 - (k —1)! <k 2 1) if you

J/

-~

k—1 factors
like binomial coefficients. Note that the answer is 0 when k > 11; this should not

come as a surprise.) This solves Exercise 3| (b).

[Note: You might also try to construct the sequence of digits from right to left —
i.e., starting with the last digit, then moving left. But this doesn’t lead to an easy
proof like the above, because the number of choices for the first digit at the end
of the process will depend on the choices made before (indeed, it will be 11 — k if
the digit 0 has already been used, and 10 — k if not), and thus we won't be able to
express the total number of possibilities as a product as we did above. But there
are ways to make such an argument work: instead of counting k-digit numbers,
count numbers with at most k digits (this is easier because you can view them as
k-digit numbers where leading zeroes are allowed), and then subtract the answer
for k — 1 from the answer to k to get a count of k-digit numbers only.]

(c) For k = 1, the answer is clearly 4. Thus, let us WLOG assume that k > 1 from
now on (since the k = 1 case is somewhat an exception).

Let us again treat a k-digit number as a sequence of k digits. How many ways
are there to construct such a sequence that has an even sum of digits? We can try
to construct such a sequence “from left to right” (i.e., we choose the first digit first,
then the second digit, and so on). We want to meet the requirement that the sum
of all digits will be even. Fortunately, we can forget about this requirement until
we are choosing the last digit; in fact, whatever digits we have chosen beforehand,
there will be exactly 5 choices for the last digit that meet this requiremen Thus,
there are 9 choices for the first digit (we cannot choose 0, but any other digit is
fine), then there are 10 choices for each other digit until the last one, and finally
there are 5 choices for the last digiﬂ Thus, in total, there are

9.10-10--- - - 10-5=9-102.5

k—2 factors

possibilities. Each of these possibilities leads to a distinct k-digit number. Thus, the
number of k-digit numbers with an even sum of digits is 9 - 1052 - 5.

This is the answer for k > 1. As we recall, the answer for k = 1 is 4. Thus, the
answer in the general case is

4, ifk=1;
9.10k2.5, ifk>1"

This solves Exercise [3] (c).

Indeed, if the first k — 1 digits have an even sum, then the last digit will have to be chosen from
the 5 options 0, 2,4, 6, 8; whereas, if the first k — 1 digits have an odd sum, then the last digit will
have to be chosen from the 5 options 1,3,5,7,9.

2We are tacitly using the fact that the first digit and the last digit are two separate entities. This is
true because k > 1.
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(d) Let us first consider the case when k is odd. Thus, k = 2m — 1 for some
positive integer m. Consider this m. From k = 2m — 1, we obtaink —1 =2m — 2 =
2(m—1),sothatm—1=(k—1) /2.

Let us treat a k-digit number as a sequence of k digits. How many ways are there
to construct such a sequence if it is to be a palindrome? We can choose the first
m digits separately, but then the remaining m — 1 digits are uniquely determined
(because for the number to be a palindrome, these remaining m — 1 digits have to
repeat the first m — 1 digits, which have already been chosen, in reverse order).
There are 9 choices for the first digit (we cannot choose 0 because we don’t allow
leading zeroes; but any other digit is fine), and there are 10 choices for each other
digit we choose. Thus, in total, there are

9.10-10---- - 10=9-10""1=9.10k"1/2 (sincem —1 = (k—1) /2)

-~

m—1 factors

possibilities. Each of these possibilities leads to a distinct k-digit palindrome. Thus,
the number of k-digit palindromes is 9 - 10—1)/2,

This handles the case when k is odd. When k is even, a similar argument shows
that the number of k-digit palindromes is 9 - 10¢/2~1. Hence, the answer in the
general case is

9.10=1/2 if k is odd;
9.10K/2-1  ifkis even

(It is possible to simplify this answer to 9 - 10L¢~1)/2) where we are using the floor
k—1)/2, ifkisodd;

function. Indeed, it is easy to see that |(k—1) /2] = ( ) /2 1 %S o,
k/2—1, if k is even

This solves Exercise [3] (d).

0.4. The Fibonacci sequence and its likes

For each n € N, we set [n] = {1,2,...,n}.

Definition 0.4. The Fibonacci sequence is the sequence (fo, f1, f2,...) of integers
which is defined recursively by fo = 0, f = 1, and f, = f,_1 + fu,—2 for all
n > 2. Its first terms are

f0:0/ f1:1/ f2:1/ f3:2/ f4:3/ f5:5/
fe =38, f7 =13, fs =21, fo =34, f10 = 55,
f11 =289, f12 = 144, f13 = 233.

(Some authors prefer to start the sequence at f; rather than fy; of course, the

recursive definition then needs to be modified to require f, = 1 instead of fy =
0.)



https://en.wikipedia.org/wiki/Floor_and_ceiling_functions
https://en.wikipedia.org/wiki/Floor_and_ceiling_functions
https://en.wikipedia.org/wiki/Fibonacci_number
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Exercise 4. A set S of integers is said to be lacunar if no two consecutive integers
occur in S (that is, there exists no i € Z such that both i and i 4 1 belong to
S). For example, {1,3,6} is lacunar, but {2,4,5} is not. (The empty set and any
1-element set are lacunar, of course.)

For a nonnegative integer n, let g (1) denote the number of all lacunar subsets
of [n].

(a) Compute g (n) foralln € {1,2,3,4,5}.

(b) Find and prove a recursive formula for g (n) in terms of ¢ (n —1) and
g (n—2).

(c) Prove that g (n) = f,4 for each n € IN.

Solution to Exerciseldl I will do this in much detail; you don’t need to spell out every
trivial step like I do here (nor will I do that myself in future solutions).

(a) We have ¢ (1) = 2, since the set [1] has exactly 2 lacunar subsets (namely, &
and {1}).

We have g (2) = 3, since the set [2] has exactly 3 lacunar subsets (namely, &, {1}
and {2}).

We have g (3) = 5, since the set [3] has exactly 5 lacunar subsets (namely, &, {1},
{2}, {3} and {1, 3}).

We have g (4) = 8 and g (5) = 13, for similar reasons.

One of the easiest way to compute these values is with Python:

# Python 2

from itertools import combinations

# ‘‘combinations (S, k) ‘¢ returns an iterator over all ‘k‘-element
# subsets of a set ‘S‘, each of which is encoded as an increasing
# tuple.

def is_lacunar(I):
# Check whether a set ‘I‘ of integers (provided as a
# tuple) is lacunar.
return all( e + 1 not in I for e in I )

def lacunar_subsets(n):
# Return an iterator over all lacunar subsets of ‘[n]°‘.
N = range(1l, n+1) # This is ‘[n] = \{1, 2, ..., n\}°.
for k in range(n+1): # for all ‘k‘ from ‘0¢ to ‘n‘ inclusive
for I in combinations (N, k):
if is_lacunar (I):
yield I

The above code (while not very efficient) defines an iterator over the lacunar
subsets of [n] for any n. In order to list all the lacunar subsets of [5], for example,
all we have to dois add a 1ist(lacunar_subsets(5)) at the end. Or, if we just want
to compute g (5), we can use len(list(lacunar_subsets(5))) or sum(1 for _ in
lacunar_subsets(5)) . (The second option is slightly faster, because it doesn’t
construct the whole list but simply counts the lacunar subsets. Of course, you'd
need to go to higher values of n to notice the difference in speed.)
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(b) We have
gn)=gn—-1)+g(n-2) forall n > 2. 3)
[Proof of (3): Let n > 2. The definition of g (n) yields

g (n) = (the number of lacunar subsets of [n])

=[{S C[n] | Sislacunar}|. 4)
Similarly,
gn—1)=|{SC[n—1] | Sislacunar}| (5)
and
g(n—2)=|{SC[n—2] | Sislacunar}|. (6)

Now, the lacunar subsets of [n] that don’t contain n are precisely the lacunar
subsets of [n — 1] (because a subset of [n] that doesn’t contain # is nothing other
than a subset of [n — 1]). In other words,

{S C[n] | Sislacunarand n ¢ S}
={SC[n—1] | Sislacunar}.

Therefore,

|{S C [n] | Sislacunar and n ¢ S}|
=[{SC[n—1] | Sislacunar}| =g (n—1) (7)

(by @)

On the other hand, consider the lacunar subsets of [n] that do contain n. If T is
such a subset, then T \ {n} is a lacunar subset of [n — 2] ﬂ Hence, we can define
a map

a:{SC[n] | Sislacunarand n € S} — {S C [n—2] | Sislacunar},
Tw— T\{n}.

3Proof. Let T be a lacunar subset of [n] that contains n. We must prove that T\ {n} is a lacunar
subset of [n — 2].

Clearly, any subset of a lacunar set is lacunar. Thus, the set T \ {n} is lacunar (since it is a
subset of the lacunar set T).

Recall that the set T is lacunar. In other words, there exists no i € Z such that bothiand i +1
belong to T. Applying this to i = n — 1, we conclude that n — 1 and (n —1) + 1 cannot both
belong to T. In other words, n — 1 and n cannot both belong to T. Since n does belong to T
(by definition of T), we thus conclude that n — 1 cannot belong to T. In other words, n —1 & T.
Hence, n —1¢ T\ {n}.

Now we know that T\ {n} is a subset of [n] (since T\ {n} C T C [n]) that contains neither
n—1norn (sincen—1¢ T\{n}and n ¢ T\ {n}). In other words, T\ {n} is a subset of
[\ {n—1,n} = [n—2]. Thus, T\ {n} is a lacunar subset of [n — 2] (since we already know
that T'\ {n} is lacunar).
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On the other hand, if R is any lacunar subset of [n — 2], then RU {n} is a lacunar
subset of [n] [fand satisfies n € RU {n}. Hence, we can define a map

B:{SC[n—-2] | Sislacunar} — {S C [n] | Sislacunar and n € S},
R— RU{n}.

The two maps a and B we have just defined are mutually invers and thus are
bijections. Hence, we have found a bijection from {S C [n] | Sislacunar and n € S}
to {S C [n—2] | Sislacunar}. Thus,

I{S C [n] | Sislacunar and n € S}|
=[{SC[n—2] | Sislacunar}| =g (n—2) (8)

(by (o))
Now, (@) becomes

g(n)=|{S C[n] | Sislacunar}|
=[{SC[n] | Sislacunarand n ¢ S}|+ |{S C [n] | Sislacunar and n € S}

~\~

=g(n—1) =g(n—2)
(by () (by @)
since each S C [n] satisfies eithern ¢ Sorn € S
(but not both)

=g(n—-1)+gn-2).
This proves (3).]

4Proof. Let R be a lacunar subset of [ — 2]. We must prove that R U {n} is a lacunar subset of [n].
Clearly, R C [n—2] C [n] and {n} C [n]. Thus, R U {n} C [n]U [n] = [n]. Hence, RU {n}
~

Sl cln
is a subset of [n]. It remains to prove that R is lacunar.

Indeed, let i € Z be such that both i and 7 + 1 belong to R U {n}. We shall derive a contradic-
tion.

We have i +1 € RU{n} C [n], so thati+1 < n, hence i < n—1 and therefore i # n.
Combining this with i € RU {n}, we obtain i € (RU {n})\ {n} C R. In other words, i belongs
to R.

It is impossible that both i and i 4 1 belong to R (because R is lacunar). Hence, at least one of
i and i + 1 does not belong to R. Since we know that i belongs to R, we thus conclude that i + 1
does not belong to R. Combining this with i+1 € RU {n}, we obtaini+1 € (RU{n})\R C
{n}, sothati+1 = n. Hence,i =n—1. Buti € R C [n—2],sothati < n—2 < n—1. This
contradicts i = n — 1.

Now, forget that we fixed i. We thus have obtained a contradiction for each i € Z such that
both i and 7 + 1 belong to R U {n}. Hence, there exists no i € Z such that both i and i + 1 belong
to RU {n}. In other words, the set RU {n} is lacunar. Thus, R U {n} is a lacunar subset of [n].

5This is easy to check: For example, each T € {S C [n] | S is lacunar and n € S} is easily seen to
satisfy (Bow) (T) = (T\ {n})U{n} = T, because of n € T; therefore, foa = id. Also, each
R € {S§C[n—2] | Sislacunar} is easily seen to satisfy (xoB) (R) = (RU{n})\ {n} =R,
because of n ¢ R (which in turn is a consequence of R C [n — 2]); thus, a o B = id.
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(c) This is a completely straightforward argument. In a nutshell: The sequences
(f2, f3, fa,...) and (g(0),g(1),g(2),...) satisfy the same recurrence equation (in
fact, (3) is exactly the recurrence equation of the Fibonacci sequence) and have the
same initial values (f, =1 = ¢ (0) and f3 = 2 = g (1)); thus, they are identical.

But let me spell the proof out, this one time, in order to give an example of how
strong induction works. We claim that

g(n) = fusa for each n € IN. )

We shall prove (9) by strong induction over 7.

Let me do the induction step: Fix any m € IN. Assume (as the induction hypoth-
esis) that @) holds whenever n < m. (Not just for n = m — 1, but for all n < m,
because we are doing a strong induction.) We must prove that (9) holds for n = m.
In other words, we must prove that g (m) = fy,42.

We are in one of the following two cases:

Case 1: We have m < 2.

Case 2: We have m > 2.

Let us first consider Case 1. In this case, we have m < 2. Since m € IN, we thus
have either m = 0 or m = 1. Hence, we need to prove that g (m) = f;;42 form =0
and for m = 1. In other words, we need to prove that g (0) = fop and g (1) = f142.
But this is easy: Since the set [0] has exactly one lacunar subset (namely, @), we
have g (0) =1 = f, = fo42. Similarly, ¢ (1) =2 = f3 = f142. Thus, g (m) = f42 is
proven in Case 1.

Let us now consider Case 2. In this case, we have m > 2. Thus, both m — 1
and m — 2 are elements of IN. In particular m — 1 is an element of IN satisfying
m —1 < m; thus, (9) holds for n = m — 1 (by our induction hypothesis). In other
words, & (m —1) = fu-1)+42-

Also, m — 2 is an element of IN satisfying m —2 < m; thus, (9) holds for n = m —2
(by our induction hypothesis). In other words, g (m —2) = f(,,_) 12

Now, (3) (applied to n = m) yields

gm)= gm—-1) + gm—2) = fou2)-1+ fims2)—2-
— N—
:f(n1—1)+2 :f(m—2)+2
=fm+1=fm+2)-1  =fm=fn+2)-2

Comparing this with fy412 = fu42)-1 + f(ms2)—2 (Which follows from the defini-
tion of the Fibonacci sequence), we obtain g (m) = f,,1». Hence, we have proven
g (m) = fy+2 in Case 2.

Having thus established g (m) = f,,42 in both Cases 1 and 2, we conclude that
g (m) = fyu42 always holds. In other words, (9) holds for n = m. This completes
the induction step. Thus, (9) is proven by strong induction.

[Remark: What about the base case? It turns out that we don’t need an explicit
base case, because we are doing a strong induction. In general, if you are prov-
ing by strong induction that some statement A () holds for all n € N, then the
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induction step requires showing, for each m € N, that
(A (n) holds for all n < m) = A (m). (10)

But immediately yields that .A (0) holds (because applying to m = 0 shows
that (A (n) holds for all n < 0) = A (0), but since (A (n) holds for all n < 0) is
vacuously trueﬂ this simply means that A (0) holds). So, rather than requiring an
extra “base case” argument, A (0) follows from the induction step.

Of course, this doesn’t mean that a strong induction is a way to “cheat” yourself
past the base case; what it means is simply that in a strong induction, the base case
is included in the induction step. In our above proof of (9), it isn’t even hidden very
well, because we had to distinguish between two cases in our induction step, and
one of them (Case 1) is clearly “a sort of base case”, as it concerns the two smallest
possible values of n. We just didn’t present it as a base case but rather included
it in the induction step. It was nevertheless necessary to treat this case separately,
because the recursive equation (3) holds only for m > 2.]

Now that (9) is proven, the solution of Exercise [ (c) is complete. O

Recall that if a, b and m are three integers (with m > 0), then we write a = b
mod m if and only if a — b is divisible by m. Thus, in particular, 2 = b mod 2 if
and only if 4 and b have the same parity (i.e., are either both even or both odd).

Exercise 5. A set S of integers is said to be O<E<O<E<... (this is an adjective) if
it can be written in the form S = {s1,s,,...,sx} where

® 51 IS5y < v < Sy
¢ the integer s; is even whenever i is even;

¢ the integer s; is odd whenever i is odd.

(For example, {1,4,5,8,11} is an O<E<O<E<... set, while {2,3} and {1,4,6}
are not. Note that k is allowed to be 0, whence @ is an O<E<O<E<... set.)

For each n € IN, we let a (n) denote the number of all O<E<O<E<... subsets
of [n], and let b (n) denote the number of all O<E<O<E<... subsets of [n] that
contain n.

(@) Show thata (n) =a(n—1)+b(n) for each n > 0.

(b) Show thata (n) =1+ i b (k) for each n € IN.

k=0
(c) Show that b (n) = )3 b (k) + [n is odd] for each n € IN.
ke{01,..n—1};
k=n—1 mod 2

—1
(d) Show that b (1) +b(n—1) =1+ ¥ b (k) for each 1 > 0.
k=0

®Look up the concept of “vacuously true”. In our situation, (A (1) holds for all n < 0) is vacu-
ously true because there exist no n € IN satisfying n < 0.



https://en.wikipedia.org/wiki/Vacuous_truth
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(e) Show that b (n) =1+ nz b (k) for each n > 0.
k=0

(f) Show that b (n) = a (n —2) for each n > 2.

(g) Show that a (n) = f,,1 for each n € IN.

[Hint: You may skip parts (b)—(e) if you can prove part (f) without using any
of them.]

Solution to Exercise[l (a) Let n > 0. Then, the definition of a (n) shows that
a (n) = (the number of all O<E<O<E<... subsets of [n]).
Similarly,
a(n —1) = (the number of all O<E<O<E<... subsets of [n]).
Furthermore, the definition of b (1) shows that
b (n) = (the number of all O<E<O<E<... subsets of [n] that contain 7).
Now,

a (n) = (the number of all O<E<O<E<... subsets of [n])
(the number of all O<E<O<EX<... subsets of [n] that contain )

N

-

=b(n)
+ (the number of all O<E<O<E<... subsets of [n]| that do not contain n)

=(the number of all O<E<O<EX<... subsets of [n—1])
(since the subsets of [1] that do not contain n
are precisely the subsets of [n—1])

= b (n) + (the number of all O<E<O<E<... subsets of [n —1])

N J/

-

=a(n—1)
=b(n)+an—1)=a(n—-1)+b(n).

This solves Exercise [f] (a).
(b) Let n € IN. Every nonempty subset of [1] has a unique largest element; this
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element is called its maximum. Thus,

(the number of all nonempty O<E<O<E<... subsets of [n])

= ) (the number of all nonempty O<E<O<E<... subsets of [1n] whose maximum is k)
ke[n] h d

=(the number of all O<E<O<E<... subsets of [k] that contain k)
(because the nonempty subsets of [n] whose maximum is k are
precisely the subsets of [k] that contain k)

= Y (the number of all O<E<O<E<... subsets of [k] that contain k)
keln)

=b(k)
(since b(k) was defined as the number of all
O<E<O<EX... subsets of [k] that contain k)

n

eI
ken| k=1
~—~—

n
k=1

But recall that the set @ is O<E<O<E<...; thus, @ is an empty O<E<O<E<...
subset of [n]. Of course, it is the only empty O<E<O<E<... subset of [n]. Hence,
there exists exactly one empty O<E<O<E<... subset of [n], namely, @. Now, the
definition of a (n) yields

a (n) = (the number of all O<E<O<E<... subsets of [n])
= (the number of all empty O<E<O<E<... subsets of [n])

N J/

(since there exists exactly one en?pty O<E<O<EX... subset of [n])

+ (the number of all nonempty O<E<O<E<... subsets of [n])

. J/

k

 b(k)

1

This solves Exercise [ (b).

(c) Let us first notice that b (0) =0

For each n € IN, we let B (1) be the set of all O<E<O<E<... subsets of [n] that
contain n. Then, for each n € IN, we have

b (n) = (the number of all O<E<O<E<... subsets of [n] that contain n)
= |B (n)] (11)

7Proof. We know (from the definition of b (0)) that b (0) is the number of all O<E<O<E<... subsets
of [0] that contain 0. But no subsets of [0] contain 0 (because [0] = @ does not contain 0); thus,
in particular, no O<E<O<E<... subsets of [0] contain 0. In other words, the number of all
O<E<O<EX... subsets of [0] that contain 0 is 0. Since this number is b (0), we have thus shown
that b (0) = 0.
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(since B (n) is the set of all O<E<O<E<... subsets of [n] that contain 7).

Now, fix n € IN. We must prove that b (n) = Y. b (k) + [nis odd]. If
ke{01,...n—1};
k=n—1 mod 2

n = 0, then this is clealﬂ Thus, for the rest of this proof, we WLOG assume that
n # 0. Hence, n > 1.

Recall that B (n) is the set of all O<E<O<E<... subsets of [n] that contain n. We
subdivide the set B (n) into two subsets:

e The subset B’ () shall consist of all O<E<O<E<... subsets of [n] that contain
n and at least one other element.

e The subset B” (n) shall consist of all O<E<O<E<... subsets of [n] that con-
tain only n.

Clearly,
[B(n)| = |B' (n)| +[B" (n)] (12)

(since each element of B (n) belongs to either B’ (n) or B” (n), but never to both).
Furthermore, the definition of B” (1) shows that

B" (n) = (the set of all O<E<O<E<... subsets of [n] that contain only 7)
_ J{n}, if {n} isa O<E<O<E<... subset of [n];
N a, otherwise
(since the only set that contains only n is {n})
_ J{n}, if {n} is O<E<O<E<..;
N a, otherwise
(since {n} is always a subset of [n] (thanks ton > 1))
_ J{n}, ifnisodd; since the set {n} is O<E<O<E<...
] g, otherwise if and only if n is odd '
Hence,
1B (n)] = {n}, ifnisodd; _ {n}|, if nisodd; _ J1, ifnisodd;
oz, otherwise @], otherwise 0, otherwise
= [n is odd] (by the definition of the truth value [n is odd]). (13)
8Proof. Assume that n = 0. Then, n is not odd; hence, [nisodd] = 0. Also, the sum
Y b (k) is an empty sum (since {0,1,...,n —1} = @ for n = 0) and thus equals 0.
ke{0,1,.n—1};
k=n—1 mod 2
Finally, from n = 0, we obtain b (n) = b (0) = 0. Hence, the equality b (n) = v b(k)+
ke{01,.n—1};
k=n—1 mod 2

[n is odd] reduces to 0 = 0+ 0, which is obviously true.
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On the other hand, the definition of B’ (n) yields

B (n)
= (the set of all O<E<O<E<... subsets of [n] that contain 7 and at least
one other element)
={S5C[n] | Sis O<E<O<E<... and contains n and at least one other element}
={SC[n] | Sis O<E<O<E<... and contains n and satisfies S\ {n} # o}.

Thus, if S € B/ (n), then S\ {n} # @. Thus, for each S € B’ (n), the number
max (S \ {n}) is well-defined’| and belongs to [n] (since S\ {n} € S C [n]). Now,
for each k € [n], we can define a subset By (1) of B’ (n) as follows:

By (n) = {S € B (n) | max(S\ {n}) =k}.

Then, each S € B’ (n) belongs to exactly one of the n subsets By (1), By (n), ..., By (n)
(because it satisfies max (S \ {n}) = k for exactly one k € [n]). Thus,

|B"(n)| = [B1 ()| + [Ba(n)| + -+ [Bu(n)| =} [Be(n)].  (14)
ke{1,2,...n}

We claim the following:

Claim 1: If k is an element of {1,2,...,n} satisfying k = nmod 2, then
Bk (Tl) = .

Claim 2: If k is an element of {1,2,...,n} satisfying k # nmod2, then
|Bx ()| = b (k).

[Proof of Claim 1: Let k be an element of {1,2,...,n} satisfying k = nmod 2. Let
T € By (n). We shall derive a contradiction.

We have T € By (n) = {S € B (n) | max(S\ {n}) = k}. In other words, T is an
element of B’ (n) satisfying max (T \ {n}) = k.

We know that T is an element of B’ (n). In other words, T is an O<E<O<E<...
subset of [n] that contains 1 and at least one other element.

The highest element of T is n (since T is a subset of [n] that contains 7). Therefore,
the second-highest element of T is max (T \ {n}) = k.

But T is an O<E<O<E<... subset of [n] (since T is an element of B’ (n)). Hence,
the highest element of T and the second-highest element of T must have different
parity (by the definition of “O<E<O<E<...”). In other words, n and k must have
different parity (since the highest element of T is n, whereas the second-highest
element of T is k). In other words, k # nmod 2. This contradicts k = nmod 2.

Now, forget that we fixed T. We thus have obtained a contradiction for each
T € By (n). Hence, there exists no T € By (n). In other words, we have By (n) = @.
This proves Claim 1.]

9Whenever T is a finite nonempty set of integers, max T denotes the largest element of T.




Math 4707 Fall 2017 (Darij Grinberg): homework set 1 page 20

[Proof of Claim 2: Let k be an element of {1,2,...,n} satisfying k # nmod 2.
Applying (11) to k instead of 1, we obtain b (k) = |B (k)|. Also, k # nmod 2, so that
k # n and therefore k < n (since k € {1,2,...,n}). Therefore, n ¢ [k|. But the two

maps

and

B (k) = B (n),
S— Su{n}

By (n) — B(k),
T~ T\ {n}

are well—definedm and mutually inverseEl Hence, they are bijections. Thus, there
exists a bijection B (k) — By (n). Therefore, |By (n)| = |B (k)| = b (k) (since b (k) =
|B (k)|). This proves Claim 2.]

19Proving this is fairly straightforward. Here is an outline:

e In order to prove that the first of these maps is well-defined, we must show that SU {n} €

By (n) for each S € B (k). So let us fix S € B (k). Thus, S is a O<E<O<E<... subset
of [k] that contains k (by the definition of B (k)). We now must show that SU {n} €
Bk (n). In other words, we must show that SU {n} is an element of B’ (n) and satisfies
max ((SU{n})\ {n}) = k.

First of all, maxS = k (since S is a subset of [k] that contains k). Furthermore, n ¢ [k],
and therefore n ¢ S (because S is a subset of [k]). Hence, (SU{n})\ {n} = S. Thus,
max ((SU{n})\ {n}) =maxS =k

Furthermore, SU {n} is clearly a subset of [n] (since S C [k] C [n] and {n} C [n]). It
contains n and at least one other element (since (SU {n}) \ {n} = S contains k and thus
is nonempty).

Now, we shall prove that the set S U {n} is OKE<O<E<.... Observe that n is the highest
element of SU {n} (since SU {n} is a subset of [n] that contains n), and therefore the
second-highest element of SU {n} is max ((SU{n}) \ {n}) = k. Hence, the highest ele-
ment of SU {n} and the second-highest element of S U {n} have different parity (because
n and k have different parity (since k # nmod 2)). Also, the set SU {n} with its highest
element removed is (SU {n})\ {n} = S, and thus is an O<E<O<E<... set. We thus have
shown the following two facts:

- The set SU {n} with its highest element removed is O<E<O<E<....
— The highest element of SU {n} and the second-highest element of SU {n} have
different parity.

Combining these two facts, we conclude that the set SU {n} is O<E<O<E<.... Thus,
SU{n} € B (n) (since SU {n} is an O<KE<O<E<... subset of [n] that contains n and at
least one other element), so that SU {n} € By (n) (since max ((SU {n}) \ {n}) = k). This
completes the proof that the first map is well-defined.

In order to prove that the second of these maps is well-defined, we must show that T\
{n} € B (k) for each T € By (n). This is left to the reader.

This is easy to check. (It relies on the facts that each T € By (n) satisfies n € T, and that each
S € B (k) satisfies n ¢ S. The first of these facts is clear because By (n) C B’ (n) C B (n). The
second follows by observing that each S € B (k) satisfies S C [k], whence n ¢ S (since n ¢ [k]).)
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Now, becomes

B'(m)|= ), [Be(n)= ) Be(n) [+ ),  [Bk(n)]
ke{12,...n} ke{12,..n};| T ke{12,.n};

k=nmod?2 S k#£n mod 2 :b(({)
(by Claim 1) (by Claim 2)

here, we have subdivided the sum into the addends
with k = nmod 2 and the addends with k #Z nmod 2

= Y Jgl+ Y bvk= Y o+ Y bk

ke{1,2,...n}; 7"0 ke{1,2,...n}; ke{1,2,...n}; ke{1,2,...n};
k=nmod2 k#nmod 2 k=nmod 2 k#nmod 2
— ——
=0
= ), b= ) bk (15)
ke{1,2,...n}; ke{1,2,...n};
k#£nmod 2 k=n—1mod 2

(here, we have replaced the condition “k # nmod2” by the equivalent condition
“k =n—1mod?2").
The two sums Y b (k) and Y b (k) differ either in their k = 0
ke{0,1,...n}; ke{1,2,...n};
k=n—1mod2 k=n—1mod2
addend (which the first sum may have but the second does not) or not at all. In

either case, the two sums are equal, because this k = 0 addend is b (0) = 0. In other

words,
Y, b=} bk,
ke{01,...n}; ke{1,2,..n};
k=n—1mod 2 k=n—1mod 2
Comparing this with (I5), we obtain
IB'(n)|= ). bk). (16)
ke{01,...n};
k=n—1mod 2
Now, becomes
b(n)=|B(n)|=  [B'(n)| + |B"(n)| (by (12))
—— ——
= Y b(k) =[nisodd]
ke{01,...n}; (by (13))
k=n—1mod 2
(by (16))
= Y. b (k) + [nis odd].
ke{01,..n—1};

k=n—1 mod 2

This solves Exercise [ (c).
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(d) Let n > 0 be an integer. Then, both n and n — 1 belong to IN. Hence, Exercise
(c) (applied to n — 1 instead of n) yields

b(n—1) = Y. b (k) + [n — 1is odd]
ke{01,...,(n—1)—1};
k=(n—-1)—1 mod 2
= ) b (k)4 [n—11is odd]. 17)

ke{01,...n—2};
k=n—2 mod 2

Also, Exercise [5] (c) yields

b(n) = Y., b(k)+[nisodd]. (18)
ke{01,...n—1};
k=n—1 mod 2

One of the two numbers n — 1 and 7 is odd, whereas the other is even. Thus, one
of the two truth values [n —1is odd] and [n is odd]| equals 1, whereas the other
equals 0. Thus, the sum of these two truth values is 1 + 0 = 1. In other words,

[n—1is odd] + [n is odd] = 1. (19)

But we don’t have n —1 # n — 1mod2. Therefore, the sum Y b (k)
ke{01,...n—1};
k#£n—1mod 2

has no addend for k = n — 1. Hence, this sum does not change if we replace
“k € {0,1,...,n—1}" by “k € {0,1,...,n—2}"” under the summation sign. In
other words, we have

Y. b(k)= Y. b(k).
ke{0,1,...,.n—1}; ke{0,1,....n—2};
k#n—1mod 2 k#n—1mod 2

Therefore,

Y b= Y b= Y bk
ke{0,1,...n—1}; ke{0,1,...n—2}; ke{0,1,...n—2};
k#n—1mod 2 k#n—1mod 2 k=n—2mod 2

(here, we have replaced the condition “k # n — 1 mod 2” under the summation sign
by the equivalent condition “k = n — 2mod 2”).
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Now,
n—1
Yb(k)y= Y b= Y b+ Y. bk
k=0 ke{0,1,..,n—1} ke{0,1,..,n—1}; ke{0,1,..,n—1};
\kEn—1m0d2 | \k%n—lmodZ )
—b(n)-[nisodd] - ¥ b
(by (I8)) ke{0,1,...n—2};
k=n—2mod 2
=b(n—1)—[n—11is odd]
(by [@7))

here, we have subdivided the sum into the addends
with k = n — 1mod 2 and the addends with k # n — 1 mod 2
(n)—[nisodd]+b(n—1)—[n—11is odd]
(n)+b(n—1)—([n—1is odd] + [n is odd])

. J/
-

(by (19)

b
b

=b(n)+bn—-1)-1

n—1
In other words, b (n) +b(n—1) =1+ Y b(k). This solves Exercise |5 (d).
k=0
(e) Let n > 0 be an integer. Exercise 5| (d) yields

b(n)+b(n—-1)=1+ Eb(k) :1+b(n—1)+nzzb(k).
k=0 k=0

:b(n71)+:i2b(k)
=0
(since n>0)
n—2
Subtracting b (n — 1) from both sides of this equality, we obtain b (n) = 1+ Y b (k).

k=0
This solves Exercise 7] (e).
(f) First solution to Exercise 5| (f): Let n > 2 be an integer. Then, n —2 € IN.

)
Hence, Exercise 5| (b) (applied to n — 2 instead of n) yieldsa (n —2) =1+ nZ b (k).
k=0
-2
But Exercise |5| (e) yields b (n) = 1+ n2 b (k) (since n > 2 > 0). Hence, b(n) =
k=0

-2
1+ nz b (k) = a (n — 2). This solves Exercise 5| (f).
k=0

Second solution to Exercise 5| (f) (sketched): Here is a different way to solve Exercise
(f), avoiding any use of the parts (b), (c), (d) and (e).

Let n > 2 be an integer.

Let B (n) be the set of all O<E<O<E<... subsets of [n] that contain n. Then,
b(n) = |B(n)| (by the definition of b (n)).

Let A (n — 2) be the set of all O<E<O<E<... subsets of [n — 2|. Then, a (n —2) =
|A (n —2)| (by the definition of a (n — 2)).
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If we can construct a bijection A (n —2) — B (n), then we will be able to conclude
that |[A (n —2)| = |B (n)|; this will yield a (n —2) = |A(n —2)| = |B(n)| = b (n),
and thus Exercise 5| (f) will be solved. Thus, it remains to construct a bijection
A(n—2)— B(n).

We define a map @ : A(n—2) — B(n) as follows: For each S € A (n—2), we
set

q)(s):{su{n}, if max (SU{0}) #nmod2;

Su{n—1,n}, otherwise

(The idea is that @ adds the element n to the set S, but if the set then no longer
is O<E<O<E<..,, then it also adds n — 1.) It is easy to check that this map @ is
well-defined.

Conversely, we define amap ¥ : B(n) - A (n —2) by

Y(T)=T\{n—1,n} foreach T € B (n).

This map is clearly well-defined.

It is not hard to check that the maps ® and ¥ are mutually inverse, and thus
bijective. Hence, we have constructed a bijection A (n —2) — B (n) (namely, the
map P). As we said, this solves Exercise 5| (f).

(g) For each n > 2, we have

a(n)=a(n—-1)+ b(n) (by Exercise | (a))
~—~—

=a(n—2)
(by Exercise 5] (f))

=a(n—1)+a(n-2).

Also, itis easy to check thata (0) = 1and a (1) = 2. Thus, the sequence (a (0) ,a(1),a(2),...)
can be computed through the recursion a (n) = a (n —1) +a (n — 2) and the initial
values 2 (0) =1land a (1) = 2.

Now consider the sequence (f, f3, fa,...) of Fibonacci numbers shifted by two
positions to the left (so it starts with f,, not with fy). This sequence can be com-
puted through the recursion fy12 = f(;,_1)42 + f(n—2)12 (indeed, this is just a way
to rewrite f,.2 = fy,4+1 + fu, which follows from the recursive definition of the
Fibonacci numbers) and the initial values f, =1 and f3 = 2.

Thus, the sequences (a(0),a(1),a(2),...) and (f2, f3, fa,...) can be computed
in exactly the same way (through the same recursion and the same initial values).
Hence, these two sequences must be identical, i.e., we have a (n) = f,4, for each
n € IN. (If you want a rigorous proof, imitate our above solution to Exercise 4| (c).)
Thus, Exercise 5| (g) is proven.

Remark 0.5. Let n € IN. Comparing Exercise [ (¢) with Exercise[5|(g) tells us that
there are precisely as many lacunar subsets of [n] as there are O<E<O<E<...
subsets of [n]. Is there a bijection between the former and the latter?

Yes. Here is one. I will just give its construction, and leave the (slightly
nontrivial if you want to be precise) proof to the reader.
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Let Lac (n) be the set of all lacunar subsets of [n]. Let OE (n) be the set of all
O<E<O<EX<... subsets of [n].

A subcomposition of n shall denote a finite list (a1, a, . . ., a;) of positive integers
satisfying ay +ay + - - - + a; < n. (The notion of a composition of n is defined in the
same way, but with “a; +a + - - - +a, < n” replaced by “a; +ax + - - - +a, = n”;
this should hopefully explain where the name “subcomposition” comes from.)

Let Sub (n) denote the set of all subcompositions of n. For example,
(4,1,3,1) € Sub (15), since4+1+4+3+1=9 < 15.

Let Sub,qq (1) denote the set of all subcompositions of n whose entries are all
odd. For example, (1,3,1,5) € Subygq (20), because 1 +3+1+5 =10 < 20 and
since all of the entries 1,3,1,5 are odd.

Let Sub>, (1) denote the set of all subcompositions of n whose entries are all
> 2 except for possibly the first entry. For example, (3,2,3) € Sub>; (9), since
3+ 2+ 3 =8 < 9 and since its last two entries 2,3 are > 2. For another example,
(1,5,3) € Sub>, (9), since 1 + 5+ 3 = 9 < 9 and since its last two entries 5,3 are
> 2.

Let us denote by P (X) the powerset of a set X (that is, the set of all subsets of
X). Then, the map

P :Sub (n) = P ([n])

sending each (ay,4ay,...,a;) € Sub (n) to the set

{ﬂlrﬂl+ﬂ2;€ll+az—|—ﬂ3,...,a1—|—a2+...+ak}
={m+a+-+a | ie{1,2,...k}}

is a bijection. (The inverse map sends any subset {si,sy,...,sx} of [n],
written in such a way that 51 < sp < --- < s, to the subcomposition
(s1,52 —S1,53 —S2,...,5k —Sk_1) € Sub(n).) Note that the letter P stands for
“partial sums”, honoring the definition of the map.

Restricting P to Sub>; (1) yields a bijection Sub>; (n) — Lac (n), because it is
easy to see that a subcomposition (a1, 4y, ...,ax) is in Sub>; (n) if and only if its
image P (a1, 4y, ...,a;) is a lacunar subset of [n].

Restricting P to Subygq (n) yields a bijection Sub,qq (1) — OE (n), because it
is easy to see that a subcomposition (a1, 4y, ..., ax) is in Subyqq (1) if and only if
its image P (a1, 4z, ...,a;) is a O<KE<O<E<... subset of [n].

But we can also define a bijection R : Sub>, (1) — Subygq (7). This bijection
R takes any subcomposition (a1, 4y, ...,ax) € Sub>, (1), and replaces each even
entry a; by two entries 2; — 1 and 1 (in this order). For example,

R(1,2635,243,2)=(1,1,1,51,35,1,1,3,1,3,1,1),

where the underlined entries on the left are the even entries of the subcomposi-
tion, and where the underlined entries on the right are the entries resulting from
their replacement.

Of course, we have to prove that this R is a bijection. We can describe its
inverse R™! as follows: To apply R™! to a subcomposition (ay,ay,...,a;) €
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Sub,qq (), find the rightmost entry equal to 1 in this subcomposition, and com-
bine this entry with the entry preceding it (i.e., replace these two entries by their
sum), unless it is the first entry of the subcomposition (in which case, do noth-
ing). Repeat this until no more entries equal to 1 remain in the subcomposition
(except possibly the first entry). The result will be R™! (ay, ay, ..., a;). For exam-
ple, computing R! (1,3,1,5,1,1,3,1) proceeds as follows (where at each step,
we underline the two entries we are combining):

(1,3,1,5,1,1,3,1) — (1,3,1,5,1,1,4) — (1,3,1,5,2,4) > (1,4,5,2,4),

so that we obtain R™' (1,3,1,5,1,1,3,1) = (1,4,5,2,4).

It is not hard to check that this map R! is well-defined and indeed an inverse
to R, so that R is a bijection.

We have now built the following diagram of bijections:

Lac (n) <— Sub>; (n) R, Subygq (1) — OE (n).

Inverting the first of them and then composing them, we obtain a bijection
Lac (n) — OE (n). This shows that |Lac (n)| = |OE (n)|. In other words, there
are precisely as many lacunar subsets of [n]| as there are O<E<O<E<... sub-
sets of [n]. Thus, the result of Exercise 4 (c) can be derived from the result of
Exercise || (g), and vice versa.

Exercise 6. For each n € IN, we let ¢ (1) denote the number of all subsets of [#]
that are simultaneously lacunar and O<E<O<E<....
Prove thatc(n) =c(n—2)+c(n—3) forall n > 3.
Remark 0.6. The sequence (c(0),c(1),c(2),c(3),...) from Exercise [f is the
Padovan sequence (starting with 1,2,2,3,4,5,7,9,12,16,21,28,37,49).

Solution to Exercise [6] (sketched). We shall be brief here, since we have already done
similar things in the solution to Exercise 5|in a fair amount of detail.

First solution to Exercise [o} We say that a set S of integers is superlacunar if it is
simultaneously lacunar and O<E<O<E<.... Thus, for each n € IN, the number
c (n) is the number of all superlacunar subsets of [n].

For each n € IN, we let d (1) denote the number of all superlacunar subsets of [#]
that contain # or n — 1. (This is an analogue of the number b (1) from Exercise[5])

We first claim that

c(n)=cn—-2)+d(n) for each n > 1. (20)

(This is an analogue of Exercise 5 (a).)
[Proof of (20): Let n > 1. Then, the definition of ¢ (1) shows that

¢ (n) = (the number of all superlacunar subsets of [n]).
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Similarly,
¢ (n —2) = (the number of all superlacunar subsets of [n —2]).
Furthermore, the definition of d (1) shows that
d (n) = (the number of all superlacunar subsets of [n] that contain n or n —1).

Now,

¢ (n)
= (the number of all superlacunar subsets of [n])
= (the number of all superlacunar subsets of [n] that contain n or n — 1)

J

=d(n)
+ (the number of all superlacunar subsets of [r] that contain neither n nor n — 1)

(& J/
-

=(the number of all superlacunar subsets of [n—2])
(since the subsets of [n] that contain neither n nor n—1
are precisely the subsets of [n—2])

= d (n) 4 (the number of all superlacunar subsets of [n — 2])

(. v
-~

=c(n-2)
=dn)+cn—-2)=c(n—-2)+d(n).

This proves (20).]
Next, we claim that

d(n)=c(n—23) for each n > 2. (21)

(This is an analogue of Exercise 5| (f).)

[Proof of (21I): Let n > 2. We shall creatively imitate the second solution of
Exercise 5| (f). Let D (n) be the set of all superlacunar subsets of [n] that contain n
or n — 1. Let C (n — 3) be the set of all superlacunar subsets of [n — 3]. It remains
to construct a bijection C (n —3) — D (n).

We define a map ® : C(n —3) — D (n) as follows: For each S € C(n —3), we
set

o (S) = Su{n}, if max (SU{0}) # nmod 2;
~|Su{n—1}, otherwise .

Conversely, we defineamap ¥ : D (n) — C (n —3) by
Y(T)=T\{n—1,n} foreach T € D (n).

It is easy to prove that both of these maps ® and ¥ are well-defined and mutually
inverse. Thus, ® is a bijection C (n — 3) — D (n), and thus follows.]
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Now, let n > 3 be an integer. Then,

c(n)=c(n—2)+ i(Q (by 20))
=c(n—3)
(by .)
=c(n—2)4+c(n—3).
This solves Exercise [l
Second solution to Exercise [6| (by Maja Shryer). We say that a set S of integers is
superlacunar if it is simultaneously lacunar and O<E<O<E<....
For each n € IN, we let C (n) be the set of all superlacunar subsets of [n]. Then,
for each n € IN, we have
c(n) =|C(n)] (22)
(by the definition of c (n)).
Now, let n > 3 be an integer. We let C’ (n) be the set of all superlacunar subsets
of [n] that contain 1. Then, C’ (n) is a subset of C (n); hence,

IC(n)| = |C" (n)|+|C(n)\ C" (n)]. (23)
But there is a bijection
C(n—3)—C'(n),
S—{1}U{s+3 | s S}

@ Hence, |C'(n)| = |C(n—3)| = c(n—3) (since shows that ¢ (n —3) =
|C (n=3)]).

On the other hand, C (n) \ C’ (n) is the set of all superlacunar subsets of [n] that
do not contain 1 (because of how C (n) and C’ (n) are defined). Hence, there is a
bijection

Cn—2)—=C(n)\C (n),
S—{s+2 | seS}
Therefore, |C(n)\C'(n)| = |C(n—2)| = c¢(n—2) (since shows that

c(n—2)=1C(n—2)).
Now, yields

c(m) =[C(m| = |C' (] +|C\C' )] (oy @)

—e(i-3)  =e(n-2)
=cn—-3)+c(n—2)=c(n—2)+c(n-3).
This solves Exercise |§] again. ]

12In fact, it is easy to check that this is a well-defined map and a bijection. The perhaps crucial
step is to observe that a superlacunar subset of 1] that contains 1 must contain neither 2 nor 3
(indeed, it cannot contain 2 because it is lacunar, and therefore it cannot contain 3 because it is
O<E<O<E<...), and thus its next-smallest element after 1 must be at least 4.

13n fact, it is easy to check that this is a well-defined map and a bijection. The perhaps crucial step
is to observe that a superlacunar subset of [n] that does not contain 1 cannot contain 2 either
(since it is O<E<O<EX<...), and thus its smallest element must be at least 3.
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0.5. Bijections in the twelvefold way

The following exercise refers to the treatment of the twelvefold way we did in class.
Thus:

e We consider a set N of size n € IN (whose elements are called balls) and a set
K of size k € IN (whose elements we call boxes).

e An “L — L placement N — K” is a map N — K; it is viewed as a placement
of labelled balls into labelled boxes.

e AU — L placement N — K” is an equivalence class of maps N — K
with respect to pre-composition with permutations of N; it is viewed as a
placement of unlabelled balls into labelled boxes.

* An “L — U placement N — K” is an equivalence class of maps N — K
with respect to post-composition with permutations of K; it is viewed as a
placement of labelled balls into unlabelled boxes.

¢ A”U — U placement N — K” is an equivalence class of maps N — K
with respect to composition with permutations of N on one side and with
permutations of K on the other; it is viewed as a placement of unlabelled
balls into unlabelled boxes.

In class, we have studied the numbers of placements of all four types with the
following properties:

e arbitrary;
* injective;
* surjective.

In the following exercise, we shall also analyze the property “bijective”.

Exercise 7. Extend the “twelvefold way” by a new column: counting only the
bijective maps f : N — K. Fill in this column (all of its four boxes).

Solution to Exercise[/] (sketched). (a) The number of bijective L — L placements N —
Kis [n = k| n!.

Proof: These placements are just the bijective maps N — K. These exist only
when n = k, and when we do have n = k, then there are n! of them. So the general
answer is [n = k] n! (or, equivalently, [n = k| k!).

(b) The number of bijective U — L placements N — K is [n = k|.

Proof: These can only exist when n = k (because, as we know, bijective maps
N — K exist only when n = k). When we do have n = k, then there is only
one of them: namely, the placement where each box contains exactly one ball (it
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doesn’t matter which ball, because the balls are unlabelled). So the general answer
is [n = k].

(c) The number of bijective L — U placements N — K is [n = k].

Proof: These can only exist when n = k (because, as we know, bijective maps
N — K exist only when n = k). When we do have n = k, then there is only one of
them: namely, the placement where each ball is alone in its box (it doesn’t matter
which box, because the boxes are unlabelled). So the general answer is [n = k|.

(b) The number of bijective U — U placements N — K is [n = k].

Proof: Same argument as for (b). O

Appendix

Here is a sample exercise (no points for this one...) with a solution. This should
give you some idea of what level of detail I expect in your solutions.

Exercise 8. A set S of integers is said to be self-counting if the size |S| is an element
of S. (For example, {1, 3,5} is self-counting, since |{1,3,5}| =3 € {1,3,5}; but
{1,2,5} is not self-counting.)

Let n be a positive integer.

(@) For each k € [n], show that the number of self-counting subsets of [#]

n—1
havine i . .
aving size k is (k B 1)

1 /p—
(b) Conclude that the number of self-counting subsets of [n] is nZ <n r 1).
k=0

(c) Find and prove a simpler expression for this number.
Before we solve this exercise, let us prove a useful fact:

Proposition 0.1. Let m € IN. Then,

Proposition [0.1|is well-known (it says that the sum of all entries in the m-th row
of Pascal’s triangle is 2™), but let us sketch a quick combinatorial proof:

Proof of Proposition The number of all subsets of [m] is 2™ (because to choose
such a subset means to decide, for each element of [m], whether it goes into the
subset or not; thus, we have 2 choices for each element, and m elements, whence
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there is a total of 2" possibilities). On the other hand, this number equals

m m
) (the number of all k-element subsets of [m]) = ) (m) .

k=0 k=0
m

k

(because if S is any finite set, then the number of

S
all k-element subsets of S is (| k’ )

m

Comparing the two results, we obtain ) <7;:> = 2" (because both results are the
k=0

same number — viz., the number of all subsets of [m]). Thus, Proposition is

proven. [

Solution to Exercisel8l (a) Fix k € [n]. Then, the self-counting subsets of [1] having
size k are exactly the subsets of [1] having size k and containing k. Thus, the maps

{self-counting subsets of [n] having size k} — {subsets of [n]\ {k} having size k — 1},
S S\ {k}

and

{subsets of [n]\ {k} having size k — 1} — {self-counting subsets of [n] having size k},
S — SU{k}
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are well—deﬁned@ and mutually inverseEL and thus are bijections. Hence,

|{self-counting subsets of [1] having size k}|
= [{subsets of [n]\ {k} having size k — 1}|

:(Hnl]c \_{1k}|>

because for any finite set Q and any m € IN, we have

|{subsets of Q having size m}| = <’5|)

~(32,)  (since [\ K}l =n 1),

This proves part (a).
(b) Any self-counting subset of [n] must have at least one element (namely, its
size); thus, its size must be one of the integers 1,2, ...,n. Hence,

n
| {self-counting subsets of [n]}| = )_ |{self-counting subsets of [n] having size k}|
k=1" g

-~

n—1
\k—1
(by part (a))

-E()-2 (%)

(here, we have substituted k for k — 1 in the sum). This proves part (b).

14This means the following:

e If S is a self-counting subset of [1] having size k, then S \ {k} is a subset of [1] \ {k} having
size k — 1.

e If S is a subset of [n] \ {k} having size k — 1, then SU {k} is a self-counting subset of [n]
having size k.

Checking this is straightforward; you can do it in your head, but don’t forget to do this! If
you don’t check well-definedness, then it may happen that one of your “maps” does not exist;
for example, convince yourself that there is no map

{subsets of [n]} — {subsets of [n]},
S— SU{|S|+1},

because the set SU {|S| 4 1} is not always a subset of [n] (namely, it fails to be so when |S| = n).
5For this, you need to show that

e If S is a self-counting subset of [1] having size k, then (S \ {k}) U {k} = S.
e If Sis a subset of [1] \ {k} having size k — 1, then (SU {k}) \ {k} = S.

This is again entirely straightforward, and it is perfectly fine to do this in your head, but you
should do it.
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(¢) This number is 2" 1,
Proof. In light of part (b), it suffices to show that

n—1 n—1 el
k:zo( L >_2 : (24)

But this follows from Proposition (applied to m = n —1). Hence, part (c) of
Exercise [§]is solved. O
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