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Math 4707 Fall 2017 (Darij Grinberg): homework set 1 [corrected 24 Sep 2017]
due date: Wednesday 27 Sep 2017 at the beginning of class, or before that by email

or moodle
Please solve at most 5 of the 7 exercises!

Definition 0.1. Let A be a logical statement. Then, an element [A] ∈ {0, 1} is

defined as follows: We set [A] =
{

1, if A is true;
0, if A is false

. This element [A] is called

the truth value of A. (For example, [1 + 1 = 2] = 1 and [1 + 1 = 3] = 0.) The
notation [A] for the truth value of A is known as the Iverson bracket notation.

Exercise 1. Prove the following rules of truth values:
(a) If A and B are two equivalent logical statements, then [A] = [B].
(b) If A is any logical statement, then [not A] = 1− [A].
(c) If A and B are two logical statements, then [A∧ B] = [A] [B].
(d) If A and B are two logical statements, then [A∨ B] = [A] + [B]− [A] [B].
(e) If A, B and C are three logical statements, then

[A∨ B ∨ C] = [A] + [B] + [C]− [A] [B]− [A] [C]− [B] [C] + [A] [B] [C] .

Definition 0.2. We define the binomial coefficient
(

n
k

)
by

(
n
k

)
=

n (n− 1) · · · (n− k + 1)
k!

for every n ∈ Q and k ∈ N. (Recall that N = {0, 1, 2, . . .}, and that an empty
product is defined to be 1.)

For example,
(
−3
4

)
=

(−3) (−4) (−5) (−6)
4!

= 15 and
(

4
1

)
=

4
1!

= 4 and(
4
0

)
=

(empty product)
0!

=
1
1
= 1.

Exercise 2. Prove the following:

(a) We have
(

n
k

)
= (−1)k

(
k− n− 1

k

)
for any n ∈ Q and k ∈N.

(b) We have k
(

n
k

)
= n

(
n− 1
k− 1

)
for any n ∈ Q and any positive integer k.

(c) If n ∈ Q and if a and b are two integers such that a ≥ b ≥ 0, then(
n
a

)(
a
b

)
=

(
n
b

)(
n− b
a− b

)
.
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[Caveat: You may have seen the formula
(

n
k

)
=

n!
k! (n− k)!

. But this formula

only makes sense when n and k are nonnegative integers and n ≥ k. Thus it is
not general enough to be used in this exercise.]

Exercise 3. Let k be a positive integer.
(a) How many k-digit numbers are there? (A “k-digit number” means a non-

negative integer that has k digits without leading zeroes. For example, 3902 is
a 4-digit number, not a 5-digit number. Note that 0 counts as a 0-digit number,
not as a 1-digit number.)

(b) How many k-digit numbers are there that have no two equal digits?
(c) How many k-digit numbers have an even sum of digits?
(d) How many k-digit numbers are palindromes? (A “palindrome” is a number

such that reading its digits from right to left yields the same number. For exam-
ple, 5 and 1331 and 49094 are palindromes. Your answer may well depend on
the parity of k.)

For each n ∈N, we set [n] = {1, 2, . . . , n}.

Definition 0.3. The Fibonacci sequence is the sequence ( f0, f1, f2, . . .) of integers
which is defined recursively by f0 = 0, f1 = 1, and fn = fn−1 + fn−2 for all
n ≥ 2. Its first terms are

f0 = 0, f1 = 1, f2 = 1, f3 = 2, f4 = 3, f5 = 5,
f6 = 8, f7 = 13, f8 = 21, f9 = 34, f10 = 55,

f11 = 89, f12 = 144, f13 = 233.

(Some authors prefer to start the sequence at f1 rather than f0; of course, the
recursive definition then needs to be modified to require f2 = 1 instead of f0 =
0.)

Exercise 4. A set S of integers is said to be lacunar if no two consecutive integers
occur in S (that is, there exists no i ∈ Z such that both i and i + 1 belong to
S). For example, {1, 3, 6} is lacunar, but {2, 4, 5} is not. (The empty set and any
1-element set are lacunar, of course.)

For a positive integer n, let g (n) denote the number of all lacunar subsets of
[n].

(a) Compute g (n) for all n ∈ {1, 2, 3, 4, 5}.
(b) Find and prove a recursive formula for g (n) in terms of g (n− 1) and

g (n− 2).
(c) Prove that g (n) = fn+2 for each n ∈N.

Recall that if a, b and m are three integers (with m > 0), then we write a ≡ b
mod m if and only if a− b is divisible by m. Thus, in particular, a ≡ b mod 2 if
and only if a and b have the same parity (i.e., are either both even or both odd).

https://en.wikipedia.org/wiki/Fibonacci_number
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Exercise 5. A set S of integers is said to be O<E<O<E<... (this is an adjective) if
it can be written in the form S = {s1, s2, . . . , sk} where

• s1 < s2 < · · · < sk;

• the integer si is even whenever i is even;

• the integer si is odd whenever i is odd.

(For example, {1, 4, 5, 8, 11} is an O<E<O<E<... set, while {2, 3} and {1, 4, 6}
are not. Note that k is allowed to be 0, whence ∅ is an O<E<O<E<... set.)

For each n ∈ N, we let a (n) denote the number of all O<E<O<E<... subsets
of [n], and let b (n) denote the number of all O<E<O<E<... subsets of [n] that
contain n.

(a) Show that a (n) = a (n− 1) + b (n) for each n > 0.

(b) Show that a (n) = 1 +
n
∑

k=0
b (k) for each n ∈N.

(c) Show that b (n) = ∑
k∈{0,1,...,n−1};
k≡n−1 mod 2

b (k) + [n is odd] for each n ∈N.

(d) Show that b (n) + b (n− 1) = 1 +
n−1
∑

k=0
b (k) for each n > 0.

(e) Show that b (n) = 1 +
n−2
∑

k=0
b (k) for each n > 0.

(f) Show that b (n) = a (n− 2) for each n ≥ 2.
(g) Show that a (n) = fn+2 for each n ∈N.
[Hint: You may skip parts (b)–(e) if you can prove part (f) without using any

of them.]

Remark 0.4. Comparing Exercise 4 (c) with Exercise 5 (g) tells us that there are
precisely as many lacunar subsets of [n] as there are O<E<O<E<... subsets of
[n]. Is there a bijection between the former and the latter? I don’t know.

Exercise 6. For each n ∈ N, we let c (n) denote the number of all subsets of [n]
that are simultaneously lacunar and O<E<O<E<....

Prove that c (n) = c (n− 2) + c (n− 3) for all n ≥ 3.

Remark 0.5. The sequence (c (0) , c (1) , c (2) , c (3) , . . .) from Exercise 6 is the
Padovan sequence (starting with 1, 2, 2, 3, 4, 5, 7, 9, 12, 16, 21, 28, 37, 49).

Exercise 7. Extend the “twelvefold way” by a new column: counting only the
bijective maps f : N → K. Fill in this column (all of its four boxes).

https://oeis.org/A000931
https://oeis.org/A000931
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Appendix

Here is a sample exercise (no points for this one...) with a solution. This should
give you some idea of what level of detail I expect in your solutions.

Exercise 8. A set S of integers is said to be self-counting if the size |S| is an element
of S. (For example, {1, 3, 5} is self-counting, since |{1, 3, 5}| = 3 ∈ {1, 3, 5}; but
{1, 2, 5} is not self-counting.)

Let n be a positive integer.
(a) For each k ∈ [n], show that the number of self-counting subsets of [n]

having size k is
(

n− 1
k− 1

)
.

(b) Conclude that the number of self-counting subsets of [n] is
n−1
∑

k=0

(
n− 1

k

)
.

(c) Find and prove a simpler expression for this number.

Solution to Exercise 8. (a) Fix k ∈ [n]. Then, the self-counting subsets of [n] having
size k are exactly the subsets of [n] having size k and containing k. Thus, the maps

{self-counting subsets of [n] having size k} → {subsets of [n] \ {k} having size k− 1} ,
S 7→ S \ {k}

and

{subsets of [n] \ {k} having size k− 1} → {self-counting subsets of [n] having size k} ,
S 7→ S ∪ {k}
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are well-defined1, mutually inverse2, and thus are bijections. Hence,

|{self-counting subsets of [n] having size k}|
= |{subsets of [n] \ {k} having size k− 1}|

=

(
|[n] \ {k}|

k− 1

)
 because for any finite set Q and any m ∈N, we have

|{subsets of Q having size m}| =
(
|Q|
m

) 
=

(
n− 1
k− 1

)
(since |[n] \ {k}| = n− 1) .

This proves part (a).
(b) Any self-counting subset of [n] must have at least one element (namely, its

size); thus, its size must be one of the integers 1, 2, . . . , n. Hence,

|{self-counting subsets of [n]}| =
n

∑
k=1
|{self-counting subsets of [n] having size k}|︸ ︷︷ ︸

=

(
n− 1
k− 1

)
(by part (a))

=
n

∑
k=1

(
n− 1
k− 1

)
=

n−1

∑
k=0

(
n− 1

k

)
(here, we have substituted k for k− 1 in the sum). This proves part (b).

1This means the following:

• If S is a self-counting subset of [n] having size k, then S \ {k} is a subset of [n] \ {k} having
size k− 1.

• If S is a subset of [n] \ {k} having size k− 1, then S ∪ {k} is a self-counting subset of [n]
having size k.

Checking this is straightforward; you can do it in your head, but don’t forget to do this! If
you don’t check well-definedness, then it may happen that one of your “maps” does not exist;
for example, convince yourself that there is no map

{subsets of [n]} → {subsets of [n]} ,
S 7→ S ∪ {|S|+ 1} ,

because the set S∪ {|S|+ 1} is not always a subset of [n] (namely, it fails to be so when |S| = n).
2For this, you need to show that

• If S is a self-counting subset of [n] having size k, then (S \ {k}) ∪ {k} = S.

• If S is a subset of [n] \ {k} having size k− 1, then (S ∪ {k}) \ {k} = S.

This is again entirely straightforward, and it is perfectly fine to do this in your head, but you
should do it.
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(c) This number is 2n−1.
Proof. In light of part (b), it suffices to show that

n−1

∑
k=0

(
n− 1

k

)
= 2n−1. (1)

In order to do so, it suffices to prove the identity

m

∑
k=0

(
m
k

)
= 2m for all m ∈N (2)

(because we can then apply (2) to m = n− 1, and obtain (1)).
The identity (2) is well-known (it says that the sum of all entries in the m-th row of

Pascal’s triangle is 2m), but let us sketch a quick combinatorial proof: The number
of all subsets of [m] is 2m (because to choose such a subset means to decide, for
each element of [m], whether it goes into the subset or not; thus, we have 2 choices
for each element, and m elements, whence there is a total of 2m possibilities). On
the other hand, this number equals

m

∑
k=0

(the number of all k-element subsets of [m])︸ ︷︷ ︸
=

(
m
k

) =
m

∑
k=0

(
m
k

)
.

Comparing the two results, we obtain
m
∑

k=0

(
m
k

)
= 2m (because both results are the

same number – viz., the number of all subsets of [m]). Thus, (2) is proven, and the
proof of part (c) is thus complete.


