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1 EXERCISE 1

1.1 PROBLEM

Let G = (V, E) be a simple graph. If &k € N, then a k-coloring of G means a map f:V —
{1,2,...,k}. If fisa k-coloring of G for some k € N, then the value f (v) of f at a vertex
v € V is called the color of v in the k-coloring f. (It is customary to visualize a k-coloring
by pretending that the numbers 1,2,... k are colors, and so a k-coloring assigns to each
vertex a color; i.e., it “colors” the vertices.)

Prove that there exists a 2-coloring of G having the following property: For each vertex

1
v €V, at most = degv among the neighbors of v have the same color as v.

Remark 1.1. This problem is often restated as follows: You are given a (finite) set of politi-
cians; some politicians are mutual enemies. (No one is their own enemy. If u is an enemy of
v, then v is an enemy of u. An enemy of an enemy is not necessarily a friend. So this is just
a simple graph.) Prove that it is possible to subdivide this set into two (disjoint) parties
such that no politician has more than half of his enemies in his own party.

1.2 SOLUTION

The idea of the solution is fairly simple, particularly using the convenient language of Remark
: We subdivide our set of politicians into two parties in some arbitrary way (e.g., by
throwing them all into one party and keeping the other party empty), and then we improve
the situation step by step by picking a politician who has more than half his enemies in his
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own party, and moving him to the opposite party. However, will this procedure necessarily

terminate, or will it result in an eternal process of politicians being kicked around back and

forth between the two parties? Fortunately, it will terminate, but this needs to be proven.
Let us first make this procedure rigorous:

Algorithm 1.2. Input: a simple graph G = (V, E).
Output: a 2-coloring of G having the following property: For each vertex v € V', at

most 3 deg v among the neighbors of v have the same color as v.

1. Define a 2-coloring f : V' — {1, 2} arbitrarily (for example, by setting f (v) =1 for
allveV).

1
2. While there exists some v € V' such that more than 3 deg v among the neighbors

of v have the same color as v, do the following;:

e Flip the color f (v) of this v (that is, change this color to 2 if it is 1, and change
it to 1 if it is 2).

3. Output the 2-coloring f.

It is clear that if step 3 of this algorithm is ever reached, then the 2-coloring f outputted
1
by the algorithm does have the property that for each vertex v € V| at most 3 deg v among

the neighbors of v have the same color as v. (Indeed, this property is saying precisely that we
have fallen out of the while-loop in step 2.) But we need to show that step 3 will eventually
be reached. This is not obvious, since step 2 contains a while-loop, and a while-loop may
go on indefinitely. We need to prove that this while-loop must eventually come to an end.

The most common way to prove such a claim is by exhibiting a loop monovariant. In
our situation, this means a nonnegative integer defined for each 2-coloring f and which has
the property that in every iteration of the while-loop, this integer decreases (strictly). If
we can define such an integer, then we can immediately conclude that the while-loop must
eventually come to an end (because a nonnegative integer cannot keep decreasing indefinitely
while remaining a nonnegative integer).

The role of this nonnegative integer (the loop monovariant) will be played by what I
call the “enmity” of a 2-coloring f:

If f is a 2-coloring of G, then I define the enmity of f to be the number of f-monochromatic
edges of G. Here, an edge e of G is said to be f-monochromatic if the two endpoints of e
have the same color in the 2-coloring f.

For each 2-coloring f of GG, the enmity of f is clearly a nonnegative integer. Now, I
claim the following:

Claim 1: Let f be a 2-coloring of G. Let v € V be a vertex such that more than

1
3 deg v among the neighbors of v have the same color as v. If we flip the color

f (v) of v, then the enmity of f decreases.

Proof of Claim 1. Let a be the number of neighbors of v that have the same color as v.
Then, a > 3 degv (since more than 3 deg v among the neighbors of v have the same color

as v). Hence, 2a > degwv, so that a > degv — a.
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Clearly, an edge e containing v is monochromatid'] if and only if the neighbor of v con-
tained in e has the same color as v. Thus, the monochromatic edges containing v are in
one-to-one correspondence with the neighbors of v that have the same color as v. Since the
number of the latter neighbors is a, we thus conclude that the number of the former edges is
also a. In other words, among the deg v edges containing v, exactly a are monochromatic. If
we flip the color f (v) of v, then these @ monochromatic edges become no longer monochro-
matic (because they now connect vertices of different color), whereas the remaining deg v —a
edges containing v become monochromatic. As for the edges that do not contain v, their
status does not change (i.e., if they are monochromatic before the flipping, then they re-
main so, and if they are not monochromatic before the flipping, then they do not become
monochromatic), because none of their vertices changes its color. Hence, by flipping the
color f (v) of v, we lose @ monochromatic edges but, at the same time, gain degv — a new
monochromatic edges. Since a > degv — a, we thus lose more monochromatic edges than
we gain. Therefore, the number of monochromatic edges of G decreases. In other words,
the enmity of f decreases (since the enmity of f is defined as the number of monochromatic
edges of ). This proves Claim 1. [

Claim 1 shows that the enmity of f decreases in each iteration of the while-loop in
Algorithm [1.2] Hence, this while-loop cannot go on indefinitely (since the enmity of f is a
nonnegative integer, and thus cannot keep decreasing forever). Thus, Algorithm must
eventually terminate (since the while-loop in step 2 is the only part in which the algorithm
might get stuck). As we already know, the 2-coloring f outputted by the algorithm does

1
have the property that for each vertex v € V, at most = deg v among the neighbors of v have

the same color as v. As a consequence, such a 2-coloring exists. This solves the exercise.

1.3 POSTSCRIPTUM

Remark 1.3. In the 5707 lecture notes, I have stated the fact that if G = (V| E) is a simple
graph that has no isolated vertices, then there exist two disjoint dominating subsets A and
B of V such that AU B = V. Do you see why this follows from the above exercise?

'We abbreviate the word “ f-monochromatic” as “monochromatic”.
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