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Math 4242 Fall 2016 (Darij Grinberg): midterm 3 with solutions
Mon, 12 Dec 2016, in class (75 minutes). Proofs are NOT required.
If you write answers on this sheet, please use “T” and “F”,
and SIGN it with your name and hand it back to me!

Your name:

Recall that to diagonalize an n x n-matrix A means to find an invertible n x n-
matrix S and a diagonal 7 x n-matrix A satisfying A = SAS™!, whenever such S
and A exist. (If S and A do not exist, you should state this clearly!) Explicitly
computing S~! is not required.

Exercise 1. (a) Diagonalize the matrix A = ( g _02 ) [6 points]
(b) Diagonalize the matrix A = ( _11 ;L ) [6 points]
(c) Diagonalize the matrix A = < g g ) [6 points]

Solution to Exercise[Il Each of the three parts can be solved by following Algorithm
0.1 from homework set #8. I shall be sparing with the details here, since you have
already seen quite a few examples for this algorithm.

(a) We have

det (A — xI) = det( or ) — (5-x)(—x) - (-2)2
=x*—5x+4=(x—1)(x—4).
Hence, the eigenvalues of A are 1 and 4. Denote them by A1 =1 and A, = 4.

We now need to find bases for Ker (A — A1Lp) and Ker (A — Ay ).
Computing Ker (A — A11,): We have

Ker(A—AlIz):Ker(A—llZ):Ker<5;1 j ) :Ker(‘zL :i)

—emn((1)),
o (1))

Computing Ker (A — A1,): We have

Ker(A—)Lzlz):Ker(A—412):Ker< 5;4 —2 ) :Ker( ! _2)

=en((3)) o
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s ().

Now, the big list is (s1,52) = (( ’ ,( 1 >>, SO 51 = <;), =1, =

( % ), y2 = 4. Hence,

1 2 10
S—(21) and A—(04>.

det(A—sz):det( A ) —(1—x)(5—x)—4(-1)

—5—6x+x2+4=9—6x+x>= (x—3)?,

(b) We have

so the only eigenvalue is 3. Denote it by A1 = 3.
Computing Ker (A — A11,): We have

Ker (A — A1) = Ker (A — 31p) :Ker( 1__13 54 ) :Ker( —2 4)

(). R

Thus, the whole big list is . This list does not have enough vectors (we

2
1
have 1, but we need 2). Thus, A is not diagonalizable.

(c) We can do this using Algorithm 0.1 from homework set #8. But we can also

get the answer much cheaper: We have to diagonalize a matrix A that is already

diagonal. This is particularly easy: just take S = I and A = A. O
1000
. . . . 0010 .
Exercise 2. Diagonalize the matrix A = 0100 [10 points]
0001
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Solution to Exercise[2l Again, follow Algorithm 0.1 from homework set #8. We have

1—x O 0 0

0 —x 1 0

det (A — xly) = det 0 1 —+ o0
0 0 0 1—x

1—-x 0 0 0

o 0 0 1—x? 0

i R

0 0 0 1—x

here, we have added x times the 3-rd row to the 2-nd row;
as we know, this preserves the determinant

1-x 0 0 0
0 1 -x 0
— _ det
© 0 01-22 0
0 0 0 1-x

here, we have switched the 2-nd and 3-rd rows;
as we know, this negates the determinant

= (1-x)1 (1—x2> (1-x)
since the determinant of an upper-triangular matrix
is the product of its diagonal entries

= —(1-x)°(1+x).
Hence, the eigenvalues of A are 1 and —1. Denote them by A; =1 and Ay = —1.

We now need to find bases for Ker (A — A1) and Ker (A — A 1p).
Computing Ker (A — A11,): We have

1-1 0 0 0
Ker(A—)Lllz):Ker(A—Hz):Ker 8 —11 _11 8
0 0 0 1-1
0 0 0 0
0O -1 1 0
= Ker 0 1 -1 0
0 O 0 O
1 0 0
= Span 0 1 0
— p O 7 1 7 0
0 0 1
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1 0 0
: : 0 1 0
Hence, a basis of Ker (A — A1) is ol-1 1110
0 0 1
Computing Ker (A — A1,): We have
1—(=1) 0 0 0
B B 0 —(-1) 1 0
Ker (A — Ayp) =Ker (A — (—1) I) = Ker 0 1 (1) 0
0 0 0 1-—(-1)
2000 0
Ckee| 0110 1
=Ker| 5 1 1 o | =span 1
0 00 2 0
0
Hence, a basis of Ker (A — Ay ) is _11 .
0
1 0 0 0
e 0 1 0 1
So the big list is (s1,52,53,54) = ol 1110l | =1 , and the
0 0 1 0
corresponding eigenvalues are y; =1, yp =1, u3 = 1 and u4 = —1. Hence,
1 00 O 100 O
010 1 010 O
S=lo10 -1 and A=loo1 o
001 O 000 -1

]

As usual, P, means the vector space of all polynomials of degree < n with real
coefficients.

Exercise 3. Let v be the basis (1, x) of the vector space P;. Let w be the basis
( 1+x
1,

of the same vector space P;.
(a) Find the matrix MV,W,idpl' [5 points]
(b) Let G : P — P; be the linear map whose representing matrix is My w ¢ =

( 1 (1) > Find an explicit formula for G (a + bx), where 4,b € R.

[5 points]
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Solution to Exercise[3] (a) We want to expand idp, (1) and idp, (x) with respect to
the basis w, and pack the resulting coefficients into the columns of a 2 x 2-matrix.
We have

1
idp (1) =1=1-140- erx,
so the coefficients here are 1 and 0.
We have ,
idp (x) =x=-1-1+2- erx,

so the coefficients here are —1 and 2.

Thus,
1 -1
Mv,w,idpl - ( 0 2 ) .

(b) By the definition of My, g, the entries in the 1-st column of My y ¢ are the
coefficients when G (1) is expanded with respect to the basis w, and the entries in
the 2-nd column of My, ; are the coefficients when G (x) is expanded with respect
to the basis w. Thus, we obtain these expansions immediately:

1+x 3+ x

N=1-14+1- = :

G =1-141-— = =22%,
1+ x 1+x

G —0-1+1- — .
(x)=0-1+ 7 >

Now, for any 4,b € R, we have

Gla+bx)=G(a-14b-x)=a G(1) +b G(x)
~—~—

\v/
_3~|—x _1+x
2 2

(since the map G is linear)

3+x 1+x 3a+b a-+b
a 5 +b =5 + > X.

]

Exercise 4. For each of the following maps, answer whether it is linear, injective,
surjective, or any combination of these:
[Please write a “T” into a box to indicate that the answer is “True”, and write
an “F” to indicate that the answer is “False”.]
[2 points per question per part, totalling to 2 - 3 - 7 = 42 points]
(a) The map R? — P, that sends each (g, b)T € R?>toax*+b € P,.
linear? T| |injective? T| |surjective? F

(b) The map R? — P, that sends each (a,b)" € R? to (ax + b)* € P,.
linear? F| |injective? F| |surjective? F
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(c) The map P, — IR? that sends each f € P, to (f (0), f (1))".
linear? T| |injective? F| |surjective? T

2%2 2%2 a b a b
(d) The map R — R that sends each ( - ) to < atad bap )

linear? T| |injective? T| |surjective? T

() The map R? — C that sends each (a,b)" € R? to a + bi € C.
linear? T| |injective? T | |surjective? T

[

(f) The map C2 — C that sends each (a,b)" € C2 to a + bi € C.
linear? T| |injective? F| |surjective? T

(g) The map R?*2 — P, that sends each 2 x 2-matrix A to det (A — xIp).
linear? F| |injective? F| |surjective? F

[

Solution to Exerciseldl (a) The map is linear (this can be checked straightforwardly).
It is injective (since (a,b)T € R? can be reconstructed from ax? + b; indeed, a is
the x2-coefficient of ax? + b, whereas b is the xY-coefficient of ax?> + b). It is not
surjective (since the polynomial x € P, is not the image of any (a, b)T € R? under
this map).

(b) The map is not linear (for example, it sends (1,1)” to (x +1)%, but2- (1,1)" =
(2,2)" to (2x+2)* # 2(x+1)%. It is not injective (since it sends (1,0)" and
(-1, O)T to the same polynomial). It is not surjective (since the polynomial —1 € P,
is not the image of any (a, b)T € RR? under this map; indeed, —1 is not the square
of any polynomial with real coefficients!).

(c) The map is linear (this is easy to check). It is not injective (since it sends the
two polynomials x and x? to one and the same pair (0, 1)T). It is surjective (since
every (a,b)" € R? can be obtained as the image of the polynomial a + (b —a) x €
P,).

id) The map is linear (again, this is easy to check). It is both injective and surjec-
tive. In fact, it is invertible; the inverse map is the map R**? — IR2*2 that sends

b/
inverse: The former adds the first row of the matrix to the second, whereas the
latter subtracts the first row of the matrix from the second. These two operations
obviously undo each other.)

(e) The map is linear. It is both injective and surjective. In fact, it is essentially
the identity map, assuming that we are willing to blur the distinction between
pairs of real numbers and elements of IR2. More rigorously speaking, the argument
proceeds as follows: Recall that complex numbers are pairs of real numbers, and
specifically we have a + bi = (a,b) for each a,b € R. Thus, our map sends each

(a,b)" € R? to (a,b) € C. Therefore, this map is invertible (and the inverse map

each < ;, b ) to o Li — b_ b ) (It is clear why these two maps are mutually
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sends each (a,b) € C to (a, b)T € R?). Of course, an invertible map is injective and
surjective.

(f) The map is linear (easy to check). It is not injective (since it sends the two
pairs (i, O)T and (0, 1)T to the same complex number i). It is surjective (since every
z € C is the image of (z, O)T under this map).

(g) The map is not linear (for example, the zero matrix 0 is sent to det (0242 — xIp) =
x?, which is not zero). It is not injective (for example, it sends both matrices
( 8 8 > and ( (1) 8 ) to one and the same polynomial x?). It is not surjective

a

(because it sends any matrix A = to the polynomial

b
d
b

a—x
det(A—sz)—det< oy

) =(a—x)(d—x)—bc=x*—(a+d)x+ (ad —bc),

whose x2-coefficient is 1; therefore, no polynomial with an x?-coefficient different
from 1 can be obtained as an image under the map). O

Exercise 5. Which of the following claims are true, and which are false?
[Please write a “T” into a box to indicate that the answer is “True”, and write
an “F” to indicate that the answer is “False”.]
[2 points for each of the 10 claims]

(@) |T|If A is an n X n-matrix with n distinct eigenvalues, then A is diagonal-
izable.

(b) [F|If f: X — Y and g : Y — X are two maps such that f o ¢ = idy, then f
is injective and g is surjective.

() [T|If f: X — Yand g: Y — X are two maps such that f o ¢ = idy, then f
is surjective and g is injective.

(d) | T| The eigenvalues of a lower-triangular matrix are its diagonal entries.

(e) | F | Every lower-triangular matrix is diagonalizable.

§3) If U,V,W are vector spacesand g : U — V and f : V — W are two
isomorphisms, then the composition f o g is an isomorphism as well.

(g A diagonalization of the matrix A = Z :g ) is givenby A = SAS1,
1 6 -3 0
where S = (2 3)andA—< 0 3>.
(h) A diagonalization of the matrix A = Z :;L is given by A =

3 2 0 -3
(i) |[F|If v and w are two bases of a vector space V, and if F : V — V is an
invertible linear map, then M ,, p-1 = (lew,p)_l.

SAS‘I,WhereS:(6 1>andA:(3 0 )
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(j) | T]If v and w are two bases of a vector space V, and if F : V — V is an
invertible linear map, then M, ,, p-1 = (MW,V,F)_l.

Solution to Exercise[Bl (a) True.

Proof. We can diagonalize it using Algorithm 0.1 from homework set #8. Let
the n distinct eigenvalues be Ay, Ay,...,A,. For each k € {1,2,...,n}, the kernel
Ker (A — Agl,) is nonzero, and thus has a basis consisting of at least one vector.
Concatenating these n bases, we therefore obtain a list which contains at least n
vectors. Thus, our big list contains at least n vectors. Therefore, the dreaded case
m < n cannot happen, and A is diagonalizable.

(b) False. For example, take X = {1,2} and Y = {1}, and let f and g be any
maps (there is one choice for f and two choices for g). Then, f o ¢ = idy is always
true, but f is never injective, and g is never surjective.

(c) True.

Proof. Let f : X — Y and g: Y — X be two maps such that f o g = idy.

1. Let us show that f is surjective. To this aim, we must prove that for each
y €Y, there exists some x € X satisfying f (x) = y. Thus, fixy € Y.

Recall that f o g = idy. Thus, (fog) (y) =idy (y) =y,sothaty = (fo g) (y) =
f(g(y)). Hence, there exists some x € X satisfying f(x) = y (namely,
x = g (y)). This completes the proof that f is surjective.

2. Let us now show that g is injective. To this aim, we must prove that if
x1 and x; are two elements of Y satisfying ¢ (x1) = g (x2), then x; = xp.
Thus, let x; and x, be two elements of Y satisfying g (x1) = g (x2). We have

f(g(x)) = (lig)/ (x1) = idy (x1) = x1 and similarly f (g (x2)) = x2. Now,
=idy

x1=f|g(x1) | = f(g(x2)) = xp, which is exactly what we wanted to show.

=8(x2)
Hence, we have proven that g is injective.

(d) True.

Proof. Let A be a lower-triangular n X n matrix. We must show that the eigenval-
ues of A are Ay1,A22,..., Aun.

The matrix A — xI,, is lower-triangular (since both A and xI,, are lower-triangular),
with diagonal entries A1 — x, Ao — x,..., Ay — x. Hence, its determinant is

det (A —xI,) = (A11—x) (Ago —x) -+ (Apn — X) (1)

(since the determinant of a lower-triangular matrix is the product of its diagonal
entries). But the eigenvalues of A are the roots of the polynomial det (A — xI,).
Because of , these roots are precisely Aj1, A2p,..., Ay n. Hence, the eigenvalues
of Aare A11,A22,..., Ann.
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[Remark: Of course, the same claim holds for upper-triangular matrices.]

(e) False. For example, the lower-triangular matrix ( (1) 8 ) is not diagonaliz-

able.

[Remark: Actually, more can be proven: Any strictly lower-triangular matrix that
is not the zero matrix is not diagonalizable. This is because its only eigenvalue is 0
(by part (d) of this problem), but the corresponding kernel Ker (A — 0I,) = Ker A
does not have n basis vectors.]

(f) True.

Proof. Let U,V,W be vector spaces and g : U — V and f : V — W be two
isomorphisms.

The maps f and g are isomorphisms. In other words, they are linear and in-
vertible. Hence, their composition f o g is linear (since the composition of two
linear maps is linear) and invertible (since the composition of two invertible maps
is invertible). In other words, f o g is an isomorphism.

(g) True.

The easiest way to check this is to verify that S is invertible (e.g., because det S =
1-3—2-6 #0) and that AS = SA.

(h) True.

You can check this in the same way as part (g).

(i) False. One quick way to convince yourself of the falsehood of the claim is
the following: For F = idy, the claim would say that My 4, = (lew,idv)_l
(since (idy)f1 = idy). In other words, it would say that the change-of-basis matrix
My w iq, must always be its own inverse. But any invertible matrix can be a change-
of-basis matrix; in particular, it is easy to come up with one that is not its own
inverse (e.g., we can take V =R?, v = (e1,e,) and w = (e, e1 + e2).

(j) True.

Proof. Let me derive this from the following two facts

Theorem 0.1. Let U, V and W be three vector spaces with bases u, v and w,
respectively. Let F : U — V and G : V — W be two linear maps. Then, their
composition G o F : U — W is again a linear map, and we have

Mu,w,GcF = Mv,w,G Mu,v,F-

Theorem 0.2. Let v be a basis of a vector space V. Let n be the size of v (that is,
the number of entries of v). Then, M, ; iq, = In.

Theorem is Theorem 0.7 on homework set #7 (where I give a reference to a
proof in Lankham/Nachtergaele/Schilling). Theorem follows easily from the
definition of My y iq, -

Now, let me prove something stronger than the claim of part (j):
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Proposition 0.3. Let V and W be two vector spaces. Let v be a basis of V. Let
w be a basis of W. Let F : V. — W be an invertible linear map. Then, the matrix

My w,F is invertible, and its inverse is M, , -1 = (lew,p)_l.

Proposition |0.3| generalizes Exercise [5] (j), because it allows v and w to be bases
of two different vector spaces. (Attention: The roles of v and w in Exercise [3] (j)
are switched as compared to Proposition [0.3]) Let me now prove Proposition

Proof of Proposition First of all, F~! is the inverse of a linear map, and thus itself
is linear (by Proposition 6.7.3 in Lankham/Nachtergaele/Schilling). Hence, the
matrix My, p-1 is well-defined.

Let n be the size of v. Let m be the size of w. (It is easy to see that n = m, but
we will not need this.)

Theorem (appliedto V, W, V, v, w, v, Fand F “linstead of U, V, W, u, v, w,
F and G) yields that the composition F~1 o F : V — V is again a linear map, and
that we have

Mv,v,FfloF = Mw,v,FflMV,W,F'

Thus,
Mw,v,F—lMV,W,F = MV,V,F_loF = MV,V,idv (since F_l oF = idv)
=1, (by Theorem . (2)

On the other hand, Theorem (appliedto W, V, W, w, v, w, F ~1 and F instead
of U, V, W, u, v, w, F and G) yields that the composition F o F 1. WS Wis again
a linear map, and that we have

M

w,w,FoF—1 — MV,W,FMW,V,F*L
Thus,
MV,W,FMW,V,F*1 = ]\/Iw,w,FoF*1 = Mw,w,idw (Since FoF ™' = idW)
_ by Theorem [0.2] applied to W, w and m 3)
o instead of V, v and n '

The equalities (2) and (3) (combined) show that the matrix M,, | -1 is inverse to
My w,r- In other words, the matrix My w r is invertible, and its inverse is M, , p-1 =

(Myw,r) " This proves Proposition O
[
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A few reminders on notations and terminology (NOT a complete list of things
you will want to use!):
Maps:

e Amap f: X — Y between two sets X and Y is said to be injective (or one-to-
one) if it has the following property:

— If x1 and x; are two elements of X satisfying f (x1) = f (x2), then x; = x».

e Amap f: X — Y between two sets X and Y is said to be surjective (or onto) if
it has the following property:

— For each y € Y, there exists some x € X satisfying f (x) = y.

e Amap f : X — Y between two sets X and Y is bijective if it is both injective
and surjective (or, equivalently, if it is invertible).

e A map between vector spaces is said to be an isomorphism if and only if it is
linear and bijective.

e The composition fog of amap f : X — Y with amap g: Z — X is the map
Z — Y that sends each z € Z to f (g (2)).

Determinants:

e Adding a multiple of some row to another row preserves the determinant.
e Scaling a row by A multiplies the determinant by A.
e Swapping two rows negates the determinant (i.e., multiplies it by —1).

e The determinant of a lower-triangular or upper-triangular matrix equals the
product of its diagonal entries.




