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Math 4242 Fall 2016 (Darij Grinberg): midterm 3 pratice problems

Exercise 1. (a) Diagonalize the matrix
(

1 2
1 2

)
.

(b) Diagonalize the matrix

 1 2 3
1 2 3
1 2 3

.

(c) Diagonalize the matrix


1 2 3 4
1 2 3 4
1 2 3 4
1 2 3 4

.

(d) Diagonalize the matrix


a1 a2 · · · an
a1 a2 · · · an
...

... . . . ...
a1 a2 · · · an

 for arbitrary n nonzero reals

a1, a2, . . . , an satisfying a1 + a2 + · · ·+ an 6= 0.
[Part (d) is supposed to be challenging! Things like this won’t be on the exam.]

(e) Can the matrix
(

1 −1
1 −1

)
be diagonalized? (This is to show that the

a1 + a2 + · · ·+ an 6= 0 condition in part (d) is needed.)

Solution to Exercise 1. In each case, we follow Algorithm 0.1 from problem set #8. I
shall go into details in part (a), and then be brief in parts (b), (c) and (e) (since the
method is the same). I will then sketch an approach to part (d).

Let me repeat once again that diagonalization is not a deterministic process (i.e.,
you have some freedom during the process), so there are several distinct correct
answers. Thus, do not be disheartened if my answers don’t match yours!

(a) Set A =

(
1 2
1 2

)
.

Step 1: We have n = 2 and thus

det (A− xIn) = det
(

1− x 2
1 2− x

)
= (1− x) (2− x)− 2 · 1 = x2 − 3x.

Step 2: Now we must find the roots of this polynomial det (A− xIn) = x2 − 3x.
This is easy: The roots are 0 and 3, since the factorization det (A− xIn) = x2− 3x =
x (x− 3) immediately catches the eye. Thus, the eigenvalues of A are 0 and 3. Let
me number them λ1 = 0 and λ2 = 3.

Step 3: Now, we must find a basis of Ker
(

A− λj In
)

for each j ∈ {1, 2}. This is a
straightforward exercise in Gaussian elimination:

Computing Ker (A− λ1 In): We have

Ker

A− λ1︸︷︷︸
=0

In

 = Ker (A− 0In) = Ker
(

1 2
1 2

)
.

http://www.cip.ifi.lmu.de/~grinberg/t/16f/hw8.pdf
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Hence,
((
−2
1

))
is a basis of Ker (A− λ1 In). (This can be easily found by the

standard algorithm for finding a basis of a kernel.)
Computing Ker (A− λ2 In): We have

Ker

A− λ2︸︷︷︸
=3

In

 = Ker (A− 3In) = Ker
(
−2 2
1 −1

)
.

Hence,
((

1
1

))
is a basis of Ker (A− λ2 In). (This can be easily found by the

standard algorithm for finding a basis of a kernel.)
Step 4: Now, we concatenate these three bases into one big list (s1, s2, . . . , sm) of

vectors. So this big list is

(s1, s2) =


(
−2
1

)
︸ ︷︷ ︸
a basis of

Ker(A−λ1 In)

,
(

1
1

)
︸ ︷︷ ︸
a basis of

Ker(A−λ2 In)

 .

Thus, m = 2, so that m = n, and thus A can be diagonalized.
Step 5: Since s1 belongs to a basis of Ker (A− λ1 In), we have µ1 = λ1 = 0.

Similarly, µ2 = λ2 = 3.
Step 6: Now, S is the n × n-matrix whose columns are s1, s2, . . . , sn. In other

words,

S =

(
−2 1
1 1

)
.

Furthermore, Λ is the diagonal matrix whose diagonal entries (from top-left to
bottom-right) are µ1, µ2, . . . , µn. In other words,

Λ =

(
0 0
0 3

)
.

These are the S and Λ we were seeking.

(b) Set A =

 1 2 3
1 2 3
1 2 3

.

Step 1: We have n = 3 and thus

det (A− xIn) = det

 1− x 2 3
1 2− x 3
1 2 3− x

 = −x3 + 6x2

(after some computation).
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Step 2: Now we must find the roots of this polynomial det (A− xIn) = −x3 +
6x2. This is easy: The roots are 0 and 6, since the factorization det (A− xIn) =
−x3 + 6x2 = −x2 (x− 6) immediately catches the eye. Thus, the eigenvalues of A
are 0 and 6. Let me number them λ1 = 0 and λ2 = 6.

Step 3: Now, we must find a basis of Ker
(

A− λj In
)

for each j ∈ {1, 2}. This is
just as straightforward as in part (a), so let me merely give the results:

Computing Ker (A− λ1 In): The list

 −2
1
0

 ,

 −3
0
1

 is a basis of Ker (A− λ1 In).

Computing Ker (A− λ2 In): The list

 1
1
1

 is a basis of Ker (A− λ2 In).

Step 4: Now, we concatenate these three bases into one big list (s1, s2, . . . , sm) of
vectors. So this big list is

(s1, s2, s3) =


 −2

1
0

 ,

 −3
0
1


︸ ︷︷ ︸

a basis of
Ker(A−λ1 In)

,

 1
1
1


︸ ︷︷ ︸
a basis of

Ker(A−λ2 In)


.

Thus, m = 3, so that m = n, and thus A can be diagonalized.
Step 5: Since s1 belongs to a basis of Ker (A− λ1 In), we have µ1 = λ1 = 0.

Since s2 also belongs to a basis of Ker (A− λ1 In), we have µ2 = λ1 = 0. Similarly,
µ2 = λ2 = 6.

Step 6: Now, S is the n × n-matrix whose columns are s1, s2, . . . , sn. In other
words,

S =

 −2 −3 1
1 0 1
0 1 1

 .

Furthermore, Λ is the diagonal matrix whose diagonal entries (from top-left to
bottom-right) are µ1, µ2, . . . , µn. In other words,

Λ =

 0 0 0
0 0 0
0 0 6

 .

These are the S and Λ we were seeking.
(c) The procedure is precisely the same as for parts (a) and (b), so let us merely

note down the answer:

S =


−2 −3 −4 1
1 0 0 1
0 1 0 1
0 0 1 1


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and

Λ =


0 0 0 0
0 0 0 0
0 0 0 0
0 0 0 10

 .

(e) Set A =

(
1 −1
1 −1

)
.

Step 1: We have n = 2 and thus

det (A− xIn) = det
(

1− x −1
1 −1− x

)
= (1− x) (−1− x)− (−1) · 1 = x2.

Step 2: Now we must find the roots of this polynomial det (A− xIn) = x2. This
is easy: The only root is 0. Let me number it λ1 = 0.

Step 3: Now, we must find a basis of Ker
(

A− λj In
)

for each j ∈ {1}. As

usual, we can do it by Gaussian elimination, thus obtaining the basis
((

1
1

))
of

Ker (A− λ1 In).
Step 4: Now, we concatenate these three bases into one big list (s1, s2, . . . , sm) of

vectors. This is easy, because there is only one basis. So this big list is

(s1, s2) =


(

1
1

)
︸ ︷︷ ︸
a basis of

Ker(A−λ1 In)

 .

Thus, m = 1, so that m < n, and thus A cannot be diagonalized.
(d) There are various ways to do this. We can try following the same algorithm as

before, but the fact that n is variable complicates it significantly – e.g., how do we
compute det (A− xIn) in full generality? (It is possible, but requires some deeper
study of determinants.)

Instead, let me show another way to do so: We guess a general form for S and
Λ based on the results we have obtained in parts (a), (b) and (c). Namely, let
s = a1 + a2 + · · ·+ an. We set

S =



−a2 −a3 −a4 · · · −an 1
a1 0 0 · · · 0 1
0 a1 0 · · · 0 1
0 0 a1 · · · 0 1
...

...
... . . . ...

...
0 0 0 · · · a1 1


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and

Λ =


0 0 · · · 0 0
0 0 · · · 0 0
...

... . . . ...
...

0 0 · · · 0 0
0 0 · · · 0 s

 .

Now, we claim that S is invertible and satisfies A = SΛS−1. Obviously, once this is
proven, it will follow that S and Λ provide a diagonalization of A.

• Let us prove that S is invertible. There are various ways to check that an n× n-
matrix is invertible: for example, it suffices to check that its determinant is
nonzero, or that its n columns are linearly independent, or that its n rows
are linearly independent; or it also suffices to construct an inverse. The one
method that seems to work best for our matrix S is by checking that its n
rows are linearly independent. So let me do that. (I will then explain why
this suffices.)

Let λ1, λ2, . . . , λn be n real numbers such that

λ1 row1 S + λ2 row2 S + · · ·+ λn rown S =
−→
0 . (1)

We shall show that all of λ1, λ2, . . . , λn are 0.

Indeed, based on the way we defined S, we can easily see that

λ1 row1 S + λ2 row2 S + · · ·+ λn rown S
= (−λ1a2 + λ2a1, −λ1a3 + λ3a1, . . . , −λ1an + λna1, λ1 + λ2 + · · ·+ λn) .

Thus,

(−λ1a2 + λ2a1, −λ1a3 + λ3a1, . . . , −λ1an + λna1, λ1 + λ2 + · · ·+ λn)

= λ1 row1 S + λ2 row2 S + · · ·+ λn rown S =
−→
0

(by (1)). In other words, we have

−λ1a2 + λ2a1 = 0,
−λ1a3 + λ3a1 = 0,

· · · ,
−λ1an + λna1 = 0,

λ1 + λ2 + · · ·+ λn = 0.

The first n− 1 of these equations can be summarized as follows:

−λ1ak + λka1 = 0 for each k ∈ {2, 3, . . . , n} .
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Thus, for each k ∈ {2, 3, . . . , n}, we have

λka1 = λ1ak. (2)

We have just proven the equality (2) for all k ∈ {2, 3, . . . , n}; but it also holds
for k = 1 (since λ1a1 = λ1a1). Hence, it holds for all k ∈ {1, 2, . . . , n}. In other
words, we have

λka1 = λ1ak for all k ∈ {1, 2, . . . , n} . (3)

Now, recall that λ1 + λ2 + · · · + λn = 0. Multiplying this by a1, we obtain
(λ1 + λ2 + · · ·+ λn) a1 = 0, so that

0 = (λ1 + λ2 + · · ·+ λn) a1 = λ1a1︸︷︷︸
=λ1a1
(by (3))

+ λ2a1︸︷︷︸
=λ1a2
(by (3))

+ · · ·+ λna1︸︷︷︸
=λ1an
(by (3))

= λ1a1 + λ1a2 + · · ·+ λ1an = λ1 (a1 + a2 + · · ·+ an) . (4)

Now, recall that a1 + a2 + · · ·+ an 6= 0 (by assumption). Hence, we can divide
the equality (4) by a1 + a2 + · · ·+ an, and thus obtain 0 = λ1. Hence, λ1 = 0.

Now, for each k ∈ {1, 2, . . . , n}, we have

λka1 = λ1︸︷︷︸
=0

ak (by (3))

= 0

and thus λk = 0 (here, we have divided by a1, which is legitimate because a1
is nonzero). In other words, all of λ1, λ2, . . . , λn are 0.

Now, forget that we fixed λ1, λ2, . . . , λn. We thus have shown that if λ1, λ2, . . . , λn
are n real numbers such that (1) holds, then all of λ1, λ2, . . . , λn are 0. In
other words, the n vectors row1 S, row2 S, . . . , rown S are linearly independent.
Hence, they form a basis of their span. Since their span is Row S (that is, the
row space of S), this rewrites as follows: The n vectors row1 S, row2 S, . . . , rown S
form a basis of Row S. Thus, dim (Row S) = n.

But the rank of a matrix equals the dimension of its row space. Thus, rank S =
dim (Row S) = n.

Now, in homework set #4, we have seen that an n×m-matrix A is invertible if
and only if rank A = n = m. Applying this to n and S instead of m and A, we
conclude that the n× n-matrix S is invertible if and only if rank S = n = n.
Thus, the n× n-matrix S is invertible (since rank S = n = n).

• Now, it remains to show that A = SΛS−1. This is clearly equivalent to AS =
SΛ, so let us show the latter.
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We know how the matrices A, S and Λ look like, so we can compute their
products easily. We obtain

AS =



a1 (−a2) + a2a1 a1 (−a3) + a3a1 · · · a1 (−an) + ana1 a1 + a2 + · · ·+ an
a1 (−a2) + a2a1 a1 (−a3) + a3a1 · · · a1 (−an) + ana1 a1 + a2 + · · ·+ an
a1 (−a2) + a2a1 a1 (−a3) + a3a1 · · · a1 (−an) + ana1 a1 + a2 + · · ·+ an
a1 (−a2) + a2a1 a1 (−a3) + a3a1 · · · a1 (−an) + ana1 a1 + a2 + · · ·+ an

...
... . . . ...

...
a1 (−a2) + a2a1 a1 (−a3) + a3a1 · · · a1 (−an) + ana1 a1 + a2 + · · ·+ an



=



0 0 · · · 0 a1 + a2 + · · ·+ an
0 0 · · · 0 a1 + a2 + · · ·+ an
0 0 · · · 0 a1 + a2 + · · ·+ an
0 0 · · · 0 a1 + a2 + · · ·+ an
...

... . . . ...
...

0 0 · · · 0 a1 + a2 + · · ·+ an


=



0 0 · · · 0 s
0 0 · · · 0 s
0 0 · · · 0 s
0 0 · · · 0 s
...

... . . . ...
...

0 0 · · · 0 s


(since a1 + a2 + · · ·+ an = s) and

SΛ =



0 0 · · · 0 s
0 0 · · · 0 s
0 0 · · · 0 s
0 0 · · · 0 s
...

... . . . ...
...

0 0 · · · 0 s


.

Comparing these two results clearly yields AS = SΛ. Multiplying by S−1 on
the right hand side, we now obtain A = SΛS−1.

So our S and Λ form a diagonalization of A.
[Remark: In part (d) of the exercise, we have assumed that a1, a2, . . . , an are

nonzero; but in the solution, we have only used the assumption that a1 is nonzero.
Actually, we can avoid making even this assumption; indeed, the matrix A can be
diagonalized even when a1 is zero, although the matrices S and Λ would have to
be chosen differently in this situation. On the other hand, the assumption that
a1 + a2 + · · ·+ an is nonzero is crucial; if a1 + a2 + · · ·+ an = 0, then A cannot be
diagonalized (unless a1 = a2 = · · · = an = 0).]

Exercise 2. A 3× 3-matrix

 a1 b1 c1
a2 b2 c2
a3 b3 c3

 is said to be magic if it satisfies the

chain of equalities

a1 + b1 + c1 = a2 + b2 + c2 = a3 + b3 + c3

= a1 + a2 + a3 = b1 + b2 + b3 = c1 + c2 + c3

= a1 + b2 + c3 = c1 + b2 + a3.
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(When the entries of the matrix are integers, it is what is commonly called a

“magic square”.) For example,

 −3 8 −2
2 1 0
4 −6 5

 is a magic 3× 3-matrix.

The magic 3× 3-matrices form a subspace of R3×3. Denote this subspace by
M3.

(a) Find a basis of this space.
(b) Consider the map col1 :M3 → R3 that sends any magic 3× 3-matrix to its

first column. (Thus, col1

 a1 b1 c1
a2 b2 c2
a3 b3 c3

 =

 a1
a2
a3

.)

Is col1 linear? If so, find the matrix representing it with respect to your chosen
basis ofM3 and the standard basis (e1, e2, e3) of R3.

Is col1 injective? Surjective? Bijective?
(Note: The question whether col1 is injective is tantamount to asking whether

a magic 3× 3-matrix is uniquely determined by its first column. For example, if

you know that the first column of a magic 3× 3-matrix is

 3
1
7

, then can you

reconstruct the whole matrix?
The question whether col1 is surjective is tantamount to asking whether every

column vector of size 3 appears as a first column of a magic 3× 3-matrix. For

example, is there a magic 3× 3-matrix with first column

 2
4
1

 ?)

(c) Consider the map NW2 : M3 → R2×2 that sends any magic 3× 3-matrix
to its “northwestern 2× 2-submatrix”:

NW2

 a1 b1 c1
a2 b2 c2
a3 b3 c3

 =

(
a1 b1
a2 b2

)
.

Is NW2 linear? If so, find the matrix representing it with respect to your chosen
basis ofM3 and the standard basis (E1,1, E1,2, E2,1, E2,2) of R2×2.

Is NW2 injective? Surjective? Bijective?
(d) Consider the map mid :M3 → R that sends any magic 3× 3-matrix to its

“middle entry”:

mid

 a1 b1 c1
a2 b2 c2
a3 b3 c3

 = b2.

Is mid linear? If so, find the matrix representing it with respect to your chosen
basis ofM3 and the standard basis (1) of R.

Is mid injective? Surjective? Bijective?



Math 4242 Fall 2016 midterm #3 practice page 9

(e) The Siamese map S : R2 →M3 is defined as follows:

S
(
(a, b)T

)
=

 a + 7b a a + 5b
a + 2b a + 4b a + 6b
a + 3b a + 8b a + b

 .

(This corresponds to the Siamese method of constructing magic squares.)
Is S linear? If so, find the matrix representing it with respect to the standard

basis (e1, e2) of R2 and your chosen basis ofM3.
(f) The map T :M3 →M3 is defined as follows:

T (A) = AT.

(In other words, it sends a magic 3× 3-matrix to its transpose. Notice that the
transpose is magic, too, as you can easily see.)

Is T linear? If so, find the matrix representing it with respect to your chosen
basis ofM3 and your chosen basis ofM3.

Solution to Exercise 2 (sketched). (a) The elements ofM3 are the magic 3× 3-matrices,

i.e., the 3× 3-matrices

 a1 b1 c1
a2 b2 c2
a3 b3 c3

 satisfying the system of linear equations



a1 + b1 + c1 = a2 + b2 + c2;
a2 + b2 + c2 = a3 + b3 + c3;
a3 + b3 + c3 = a1 + a2 + a3;
a1 + a2 + a3 = b1 + b2 + b3;
b1 + b2 + b3 = c1 + c2 + c3;
c1 + c2 + c3 = a1 + b2 + c3;
a1 + b2 + c3 = c1 + b2 + a3

. (5)

This system (5) can be solved by Gaussian elimination (like any other system).
There are various ways the answer can look like, depending on the choices made
in the elimination process (i.e., which row operations to perform, and how to order
the variables and equations). I am going to “cheat” and present what is perhaps
the simplest way to parametrize the solutions:

(a1, a2, a3, b1, b2, b3, c1, c2, c3)
T

= (c− b, c + a + b, c− a, c− a + b, c, c + a− b, c + a, c− a− b, c + b)T

for a, b, c ∈ R arbitrary. In other words, a1 b1 c1
a2 b2 c2
a3 b3 c3

 =

 c− b c + a + b c− a
c− a + b c c + a− b

c + a c− a− b c + b

 (6)

https://en.wikipedia.org/wiki/Siamese_method
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for a, b, c ∈ R arbitrary. This is Lucas’s method for constructing a magic square of
order 3. (Lucas went further and found the precise conditions on a, b, c to ensure
that the entries of the matrix are pairwise distinct positive integers, which is what
one usually means when speaking of a “magic square”.)

We can rewrite (6) as follows: a1 b1 c1
a2 b2 c2
a3 b3 c3

 =

 c− b c + a + b c− a
c− a + b c c + a− b

c + a c− a− b c + b


= aP + bQ + cR,

where

P =

 0 1 −1
−1 0 1
1 −1 0

 , Q =

 −1 1 0
1 0 −1
0 −1 1

 ,

R =

 1 1 1
1 1 1
1 1 1

 .

Thus,
M3 = span (P, Q, R) .

Moreover, it is easy to see that the matrices P, Q, R are linearly independent1. Thus,
(P, Q, R) is a basis ofM3. We shall denote this basis by v.

Of course, you may have obtained a different basis. (Needless to say, it should
have size 3.)

(b) The map col1 is linear, and the matrix representing it is

Mv,e,col1 =

 0 −1 1
−1 1 1
1 0 1


(where e denotes the standard basis (e1, e2, e3) of R3).

[Note that the columns of Mv,e,col1 are precisely the first columns of P, Q, R. This
is because the coordinates of a vector in R3 with respect to the basis e are simply
the entries of this vector.]

The map col1 is bijective, since rank
(

Mv,e,col1

)
= 3 = 3. Thus, col1 is injective

and surjective.

1In fact, if a, b, c ∈ R are such that aP + bQ + cR = 0, then

0 = aP + bQ + cR =

 c− b c + a + b c− a
c− a + b c c + a− b

c + a c− a− b c + b

 ,

from which it follows that the entries c− b, c and c + a are all 0, from which it easily follows
that a = b = c = 0.

https://en.wikipedia.org/wiki/Magic_square#Method_for_constructing_a_magic_square_of_order_3
https://en.wikipedia.org/wiki/Magic_square#Method_for_constructing_a_magic_square_of_order_3
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(c) The map NW2 is linear, and the matrix representing it is

Mv,f,NW2 =


0 −1 1
1 1 1
−1 1 1
0 0 1


(where f denotes the standard basis (E1,1, E1,2, E2,1, E2,2) of R2×2).

The map NW2 is injective, since rank
(

Mv,f,NW2

)
= 3. But it is not surjective,

since rank
(

Mv,f,NW2

)
6= 4. Hence, it is not bijective either.

(d) The map mid is linear, and the matrix representing it is

Mv,g,mid =
(

0 0 1
)

(where g denotes the standard basis (1) of R).
The map mid is surjective, since rank

(
Mv,g,mid

)
= 1. But it is not injective, since

rank
(

Mv,g,mid
)
6= 3. Hence, it is not bijective either.

(e) The map S is linear, and the matrix representing it is

Mh,v,S =

 0 −1
0 −3
1 4


(where h denotes the standard basis (e1, e2) of R2).

The map S is injective, since rank (Mh,v,S) = 2. But it is not surjective, since
rank (Mh,v,S) 6= 3. Hence, it is not bijective either.

(f) The map T is linear, and the matrix representing it is

Mv,v,T =

 −1 0 0
0 1 0
0 0 1

 .

The map T is bijective, since rank (Mv,v,T) = 3 = 3. Thus, T is injective and
surjective. (Of course, the bijectivity of T can be seen in a simpler way as well: T
is invertible, its inverse being itself. After all, every matrix A satisfies

(
AT)T

=
A.)

Eigenvectors and eigenvalues make sense not only for square matrices, but also
for linear maps from a vector space to itself. (This is not that surprising, seeing
that square matrices are used to represent such linear maps.) Here is how they are
defined:

Definition 0.1. Let V be a vector space, and F : V → V a linear map. (We work
with real numbers in this exercise, so all vector spaces are over R, and all scalars
are in R. The downside of this is that we miss some eigenvalues; but that’s OK
for an introduction.)
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• Given a scalar λ ∈ R and a vector v ∈ V, we say that v is an eigenvector of
F for eigenvalue λ if and only if we have F (v) = λv.

• A scalar λ ∈ R is said to be an eigenvalue of F if and only if there exists a
nonzero eigenvector of F for eigenvalue λ. (Of course, the zero vector

−→
0 is

an eigenvector of F for eigenvalue λ for any λ ∈ R; thus, in order to have
an interesting notion, we must require “nonzero”.)

One way to find eigenvalues and eigenvectors of linear maps is the following: Let
v be any basis of V (assuming that V is finite-dimensional). Then, the eigenvalues
of F are precisely the eigenvalues of the matrix Mv,v,F. Moreover, the eigenvectors
of F for a given eigenvalue λ are the images of the eigenvectors of Mv,v,F for λ
under the map Lv. (See homework set #7 for the definition of Lv.)

Example 0.2. Let P2 be the vector space of all polynomials of degree ≤ 2. Let
F : P2 → P2 be the map that sends every polynomial f ∈ P2 to

(
f
[
x2])′′ (that is,

the second derivative of f
[
x2]). Here, I am again using the notation f [y] for “ f

evaluated at y” (which would usually be denoted by f (y), but that would risk
being mistaken for a product).

The map F is well-defined (this is easy to check: evaluating a polynomial f at
x2 raises the degree of f to 4 (in the worst case), but then differentiating it twice
pulls it back to ≤ 2) and linear (this is, again, straightforward to check). For
example,

F
(

x2
)
=

 x2
[

x2
]

︸ ︷︷ ︸
=(x2)

2=x4


′′

=
(

x4
)′′

=
(

4x3
)′

= 12x2. (7)

What are the eigenvalues and eigenvectors of F ?
Actually, we have seen one of these already: The equality (7) shows that x2 is

an eigenvector of F for eigenvalue 12. But there are more; let’s find them all.
We let v be the basis

(
1, x, x2) of P2. Then, it is straightforward to compute

Mv,v,F =

 0 2 0
0 0 0
0 0 12

 .

Now, what are the eigenvalues and the eigenvectors of this matrix Mv,v,F ?
It is easy to see that det (Mv,v,F − xI3) = x2 (12− x). Thus, the eigenvalues of

Mv,v,F are 0 and 12. Therefore, these are also the eigenvalues of F. Moreover:

• The eigenvectors of Mv,v,F for eigenvalue 0 are the elements of

Ker (Mv,v,F − 0I3) = span

 1
0
0

 ,

http://www.cip.ifi.lmu.de/~grinberg/t/16f/hw7s.pdf
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i.e., the multiples of

 1
0
0

.

• The eigenvectors of Mv,v,F for eigenvalue 12 are the elements of

Ker (Mv,v,F − 12I3) = span

 0
0
1

 ,

i.e., the multiples of

 0
0
1

.

(This, by the way, shows that Mv,v,F is not diagonalizable – since it does not
have 3 linearly independent eigenvectors.)

Now, recall that the eigenvectors of F for a given eigenvalue λ are the images
of the eigenvectors of Mv,v,F for λ under the map Lv. Thus:

• The eigenvectors of F for eigenvalue 0 are the elements of

Lv

span

 1
0
0

 ,

i.e., the multiples of

Lv

 1
0
0

 = 1 · 1 + 0 · x + 0 · x2 = 1.

In other words, they are the constant polynomials.

• The eigenvectors of F for eigenvalue 12 are the elements of

Lv

span

 0
0
1

 ,

i.e., the multiples of

Lv

 0
0
1

 = 0 · 1 + 0 · x + 1 · x2 = x2.
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Exercise 3. (a) Find the eigenvalues and the eigenvectors of the map Te : P2 →

P2 defined by Te ( f ) = x2 f
[

1
x

]
. (This map was discussed in Exercise 2 (e) of

homework set #6.)
(b) Find the eigenvalues and the eigenvectors of the map T :M3 →M3 from

Exercise 2 (f).
(c) Consider the map T′ : R3×3 → R3×3 that sends each matrix A ∈ R3×3 to

its transpose AT. Find the eigenvalues and the eigenvectors of this map.
[It might be good not to approach part (c) this exercise using the Mv,v,F

method, but rather think in terms of the definition. An eigenvector of the map
T′ would be a nonzero matrix A whose transpose is a scalar multiple of A. How
would such a matrix looks like? What relations would have to hold between its
entries?]

Solution to Exercise 3. (a) We follow the method from Example 0.2:
We let v be the basis

(
1, x, x2) of P2. Then, it is straightforward to compute

Mv,v,Te =

 0 0 1
0 1 0
1 0 0

 .

Now, what are the eigenvalues and the eigenvectors of this matrix Mv,v,Te ?
It is easy to see that det (Mv,v,Te − xI3) = − (x− 1)2 (x + 1). Thus, the eigen-

values of Mv,v,Te are 1 and −1. Therefore, these are also the eigenvalues of Te.
Moreover:

• The eigenvectors of Mv,v,Te for eigenvalue 1 are the elements of

Ker (Mv,v,Te − 1I3) = Ker

 −1 0 1
0 0 0
1 0 −1

 = span

 0
1
0

 ,

 1
0
1

 ,

i.e., the linear combinations of

 0
1
0

 and

 1
0
1

.

• The eigenvectors of Mv,v,Te for eigenvalue −1 are the elements of

Ker (Mv,v,Te − (−1) I3) = Ker

 1 0 1
0 2 0
1 0 1

 = span

 −1
0
1

 ,

i.e., the multiples of

 −1
0
1

.

http://www.cip.ifi.lmu.de/~grinberg/t/16f/hw6s.pdf
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Now, recall that the eigenvectors of Te for a given eigenvalue λ are the images of
the eigenvectors of Mv,v,Te for λ under the map Lv. Thus:

• The eigenvectors of Te for eigenvalue 0 are the elements of

Lv

span

 0
1
0

 ,

 1
0
1

 ,

i.e., the linear combinations of

Lv

 0
1
0

 = 0 · 1 + 1 · x + 0 · x2 = x

and

Lv

 1
0
1

 = 1 · 1 + 0 · x + 1 · x2 = 1 + x2.

In other words, they are the polynomials of the form b + ax + bx2 for a, b ∈ R.

• The eigenvectors of Te for eigenvalue −1 are the elements of

Lv

span

 −1
0
1

 ,

i.e., the multiples of

Lv

 −1
0
1

 = (−1) · 1 + 0 · x + 1 · x2 = −1 + x2.

In other words, they are the polynomials of the form −a + ax2 for a ∈ R.

(b) Recall the basis v = (P, Q, R) we chose in the solution of Exercise 2. In the
solution to Exercise 2 (f), we found that

Mv,v,T =

 −1 0 0
0 1 0
0 0 1

 .

From this, it is easy to see (as in part (a)) that the eigenvalues of T are 1 and −1,
and furthermore the eigenvectors are as follows:

• The eigenvectors of T for eigenvalue 1 are the linear combinations of Q and
R. In other words, they are the magic 3× 3-matrices of the form b− a a + b b

a + b b b− a
b b− a a + b

 with a, b ∈ R.
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• The eigenvectors of T for eigenvalue 1 are the linear combinations of P. In
other words, they are the magic 3× 3-matrices of the form 0 a −a

−a 0 a
a −a 0

 with a ∈ R.

Actually, the whole process here is easier than for part (a), because the matrix
Mv,v,T is diagonal. Finding the eigenvalues and the eigenvectors of a diagonal
matrix is particularly easy:

Proposition 0.3. Let A be a diagonal n× n-matrix. Let a1, a2, . . . , an be the diag-
onal entries of A (more precisely, let ak be the (k, k)-th entry of A). Then:

• The eigenvalues of A are a1, a2, . . . , an.

• If λ ∈ C, then the eigenvectors of A for eigenvalue λ are precisely the linear
combinations of the standard basis vectors ek for those k ∈ {1, 2, . . . , n}
satisfying ak = λ.

We leave the proof to the reader.
(c) Answer:

• The eigenvalues are 1 and −1.

• The eigenvectors for eigenvalue 1 are the symmetric 3× 3-matrices (i.e., the

matrices of the form

 a b c
b d e
c e f

 with a, b, c, d, e, f ∈ R).

• The eigenvectors for eigenvalue −1 are the skew-symmetric 3 × 3-matrices

(i.e., the matrices of the form

 0 b c
−b 0 e
−c −e 0

 with b, c, e ∈ R).

Proof. It is best to proceed directly using the definition of eigenvectors:
First, let us see what eigenvalues are possible. Indeed, let λ be an eigenvalue of

T′. Then, there exists a nonzero eigenvector A ∈ R3×3 of T′ for eigenvalue λ. (The
reason why I am calling it A rather than v is that it is a 3× 3-matrix, and we’re just
more used to denoting matrices by capital letters.)

The definition of T′ yields T′ (A) = AT. But T′ (A) = λA (since A is an eigen-
vector of T′ for eigenvalue λ). Thus, AT = T′ (A) = λA. Hence,(

AT
)T

= (λA)T = λ AT︸︷︷︸
=λA

= λλA = λ2A.
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Since
(

AT)T
= A, this rewrites as A = λ2A. Since A is nonzero, this yields λ2 = 1

(why?). Therefore, λ is either 1 or −1.
Thus, we have shown that each eigenvalue of T′ is either 1 or −1. It is easy to see

that both 1 and −1 actually are eigenvalues. (Indeed, we only need to check that at
least one nonzero eigenvector exists for each of them. This is easy: E1,1 is a nonzero
eigenvector of T′ for eigenvalue 1, whereas E1,2 − E2,1 is a nonzero eigenvector of
T′ for eigenvalue −1.)

It remains to compute the eigenvectors. But this is, again, easy: The eigenvectors
of T′ for eigenvalue −1 are the matrices A ∈ R3×3 satisfying T′ (A) = (−1) A.
In other words, they are the matrices A ∈ R3×3 satisfying AT = −A (because
T′ (A) = AT and (−1) A = −A). In other words, they are the skew-symmetric
3× 3-matrices. Similarly, the eigenvectors of T′ for eigenvalue 1 are the symmetric
3× 3-matrices.


