Math 4242 Fall 2016 (Darij Grinberg): midterm 3 pratice problems

Exercise 1. (a) Diagonalize the matrix $\begin{pmatrix} 1 & 2 \\ 1 & 2 \end{pmatrix}$.

- (b) Diagonalize the matrix $\begin{pmatrix} 1 & 2 & 3 \\ 1 & 2 & 3 \\ 1 & 2 & 3 \end{pmatrix}$.

 (c) Diagonalize the matrix $\begin{pmatrix} 1 & 2 & 3 & 4 \\ 1 & 2 & 3 & 4 \\ 1 & 2 & 3 & 4 \\ 1 & 2 & 3 & 4 \end{pmatrix}$.

 (d) Diagonalize the matrix $\begin{pmatrix} a_1 & a_2 & \cdots & a_n \\ a_1 & a_2 & \cdots & a_n \\ \vdots & \vdots & \ddots & \vdots \\ a_1 & a_2 & \cdots & a_n \end{pmatrix}$ for arbitrary n nonzero reals $\begin{pmatrix} a_1 & a_2 & \cdots & a_n \\ \vdots & \vdots & \ddots & \vdots \\ a_1 & a_2 & \cdots & a_n \end{pmatrix}$

 $a_1, a_2, ..., a_n$ satisfying $a_1 + a_2 + \cdots + a_n \neq 0$

[Part (d) is supposed to be challenging! Things like this won't be on the exam.]

(e) Can the matrix $\begin{pmatrix} 1 & -1 \\ 1 & -1 \end{pmatrix}$ be diagonalized? (This is to show that the $a_1 + a_2 + \cdots + a_n \neq 0$ condition in part (d) is needed.)

Exercise 2. A 3 × 3-matrix $\begin{pmatrix} a_1 & b_1 & c_1 \\ a_2 & b_2 & c_2 \\ a_3 & b_3 & c_3 \end{pmatrix}$ is said to be *magic* if it satisfies the chain of equalities

$$a_1 + b_1 + c_1 = a_2 + b_2 + c_2 = a_3 + b_3 + c_3$$

= $a_1 + a_2 + a_3 = b_1 + b_2 + b_3 = c_1 + c_2 + c_3$
= $a_1 + b_2 + c_3 = c_1 + b_2 + a_3$.

(When the entries of the matrix are integers, it is what is commonly called a

"magic square".) For example,
$$\begin{pmatrix} -3 & 8 & -2 \\ 2 & 1 & 0 \\ 4 & -6 & 5 \end{pmatrix}$$
 is a magic 3×3 -matrix.

The magic 3×3 -matrices form a subspace of $\mathbb{R}^{3 \times 3}$. Denote this subspace by \mathcal{M}_3 .

- (a) Find a basis of this space.
- **(b)** Consider the map $\operatorname{col}_1: \mathcal{M}_3 \to \mathbb{R}^3$ that sends any magic 3×3 -matrix to its

first column. (Thus,
$$\operatorname{col}_1\left(\begin{pmatrix} a_1 & b_1 & c_1 \\ a_2 & b_2 & c_2 \\ a_3 & b_3 & c_3 \end{pmatrix}\right) = \begin{pmatrix} a_1 \\ a_2 \\ a_3 \end{pmatrix}$$
.

Is col₁ linear? If so, find the matrix representing it with respect to your chosen basis of \mathcal{M}_3 and the standard basis (e_1, e_2, e_3) of \mathbb{R}^3 .

Is col₁ injective? Surjective? Bijective?

(**Note:** The question whether col_1 is injective is tantamount to asking whether a magic 3×3 -matrix is uniquely determined by its first column. For example, if

you know that the first column of a magic 3×3 -matrix is $\begin{pmatrix} 3 \\ 1 \\ 7 \end{pmatrix}$, then can you

reconstruct the whole matrix?

The question whether col_1 is surjective is tantamount to asking whether every column vector of size 3 appears as a first column of a magic 3×3 -matrix. For

example, is there a magic 3×3 -matrix with first column $\begin{pmatrix} 2 \\ 4 \\ 1 \end{pmatrix}$?

(c) Consider the map $NW_2 : \mathcal{M}_3 \to \mathbb{R}^{2 \times 2}$ that sends any magic 3×3 -matrix to its "northwestern 2×2 -submatrix":

$$NW_2\left(\left(\begin{array}{ccc} a_1 & b_1 & c_1 \\ a_2 & b_2 & c_2 \\ a_3 & b_3 & c_3 \end{array}\right)\right) = \left(\begin{array}{ccc} a_1 & b_1 \\ a_2 & b_2 \end{array}\right).$$

Is NW₂ linear? If so, find the matrix representing it with respect to your chosen basis of \mathcal{M}_3 and the standard basis $(E_{1,1}, E_{1,2}, E_{2,1}, E_{2,2})$ of $\mathbb{R}^{2\times 2}$.

Is NW₂ injective? Surjective? Bijective?

(d) Consider the map mid : $\mathcal{M}_3 \to \mathbb{R}$ that sends any magic 3×3 -matrix to its "middle entry":

$$\operatorname{mid}\left(\left(\begin{array}{ccc} a_1 & b_1 & c_1 \\ a_2 & b_2 & c_2 \\ a_3 & b_3 & c_3 \end{array}\right)\right) = b_2.$$

Is mid linear? If so, find the matrix representing it with respect to your chosen basis of \mathcal{M}_3 and the standard basis (1) of \mathbb{R} .

Is mid injective? Surjective? Bijective?

(e) The *Siamese map* $S: \mathbb{R}^2 \to \mathcal{M}_3$ is defined as follows:

$$S((a,b)^{T}) = \begin{pmatrix} a+7b & a & a+5b \\ a+2b & a+4b & a+6b \\ a+3b & a+8b & a+b \end{pmatrix}.$$

(This corresponds to the Siamese method of constructing magic squares.)

Is *S* linear? If so, find the matrix representing it with respect to the standard basis (e_1, e_2) of \mathbb{R}^2 and your chosen basis of \mathcal{M}_3 .

(f) The map $T: \mathcal{M}_3 \to \mathcal{M}_3$ is defined as follows:

$$T(A) = A^T$$
.

(In other words, it sends a magic 3×3 -matrix to its transpose. Notice that the transpose is magic, too, as you can easily see.)

Is T linear? If so, find the matrix representing it with respect to your chosen basis of \mathcal{M}_3 and your chosen basis of \mathcal{M}_3 .

Eigenvectors and eigenvalues make sense not only for square matrices, but also for linear maps from a vector space to itself. (This is not that surprising, seeing that square matrices are used to represent such linear maps.) Here is how they are defined:

Definition 0.1. Let V be a vector space, and $F: V \to V$ a linear map. (We work with real numbers in this exercise, so all vector spaces are over \mathbb{R} , and all scalars are in \mathbb{R} . The downside of this is that we miss some eigenvalues; but that's OK for an introduction.)

- Given a scalar $\lambda \in \mathbb{R}$ and a vector $v \in V$, we say that v is an *eigenvector of* F *for eigenvalue* λ if and only if we have $F(v) = \lambda v$.
- A scalar $\lambda \in \mathbb{R}$ is said to be an *eigenvalue* of F if and only if there exists a nonzero eigenvector of F for eigenvalue λ . (Of course, the zero vector $\overrightarrow{0}$ is an eigenvector of F for eigenvalue λ for any $\lambda \in \mathbb{R}$; thus, in order to have an interesting notion, we must require "nonzero".)

One way to find eigenvalues and eigenvectors of linear maps is the following: Let \mathbf{v} be any basis of V (assuming that V is finite-dimensional). Then, the eigenvalues of F are precisely the eigenvalues of the matrix $M_{\mathbf{v},\mathbf{v},F}$. Moreover, the eigenvectors of F for a given eigenvalue λ are the images of the eigenvectors of $M_{\mathbf{v},\mathbf{v},F}$ for λ under the map $L_{\mathbf{v}}$. (See homework set #7 for the definition of $L_{\mathbf{v}}$.)

Example 0.2. Let P_2 be the vector space of all polynomials of degree ≤ 2 . Let $F: P_2 \to P_2$ be the map that sends every polynomial $f \in P_2$ to $(f[x^2])''$ (that is, the second derivative of $f[x^2]$). Here, I am again using the notation f[y] for "f evaluated at y" (which would usually be denoted by f(y), but that would risk being mistaken for a product).

The map F is well-defined (this is easy to check: evaluating a polynomial f at x^2 raises the degree of f to 4 (in the worst case), but then differentiating it twice pulls it back to \leq 2) and linear (this is, again, straightforward to check). For example,

$$F(x^{2}) = \left(\underbrace{x^{2} \left[x^{2}\right]}_{=(x^{2})^{2} = x^{4}}\right)^{"} = \left(x^{4}\right)^{"} = \left(4x^{3}\right)^{'} = 12x^{2}.$$
 (1)

What are the eigenvalues and eigenvectors of *F* ?

Actually, we have seen one of these already: The equality (1) shows that x^2 is an eigenvector of F for eigenvalue 12. But there are more; let's find them all.

We let **v** be the basis $(1, x, x^2)$ of P_2 . Then, it is straightforward to compute

$$M_{\mathbf{v},\mathbf{v},F} = \left(\begin{array}{ccc} 0 & 2 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 12 \end{array} \right).$$

Now, what are the eigenvalues and the eigenvectors of this matrix $M_{\mathbf{v},\mathbf{v},F}$? It is easy to see that $\det(M_{\mathbf{v},\mathbf{v},F}-xI_3)=x^2(12-x)$. Thus, the eigenvalues of $M_{\mathbf{v},\mathbf{v},F}$ are 0 and 12. Therefore, these are also the eigenvalues of F. Moreover:

• The eigenvectors of $M_{\mathbf{v},\mathbf{v},F}$ for eigenvalue 0 are the elements of

$$\operatorname{Ker}\left(M_{\mathbf{v},\mathbf{v},F}-0I_{3}\right)=\operatorname{span}\left(\left(\begin{array}{c}1\\0\\0\end{array}\right)\right),$$

i.e., the multiples of $\begin{pmatrix} 1 \\ 0 \\ 0 \end{pmatrix}$.

• The eigenvectors of $M_{\mathbf{v},\mathbf{v},F}$ for eigenvalue 12 are the elements of

$$\operatorname{Ker}\left(M_{\mathbf{v},\mathbf{v},F}-12I_{3}\right)=\operatorname{span}\left(\left(\begin{array}{c}0\\0\\1\end{array}\right)\right),$$

i.e., the multiples of $\begin{pmatrix} 0 \\ 0 \\ 1 \end{pmatrix}$.

(This, by the way, shows that $M_{\mathbf{v},\mathbf{v},F}$ is not diagonalizable – since it does not have 3 linearly independent eigenvectors.)

Now, recall that the eigenvectors of F for a given eigenvalue λ are the images of the eigenvectors of $M_{\mathbf{v},\mathbf{v},F}$ for λ under the map $L_{\mathbf{v}}$. Thus:

• The eigenvectors of *F* for eigenvalue 0 are the elements of

$$L_{\mathbf{v}}\left(\operatorname{span}\left(\left(\begin{array}{c}1\\0\\0\end{array}\right)\right)\right)$$
,

i.e., the multiples of

$$L_{\mathbf{v}}\left(\left(\begin{array}{c}1\\0\\0\end{array}\right)\right) = 1 \cdot 1 + 0 \cdot x + 0 \cdot x^2 = 1.$$

In other words, they are the constant polynomials.

• The eigenvectors of *F* for eigenvalue 12 are the elements of

$$L_{\mathbf{v}}\left(\operatorname{span}\left(\left(\begin{array}{c}0\\0\\1\end{array}\right)\right)\right)$$
,

i.e., the multiples of

$$L_{\mathbf{v}}\left(\left(\begin{array}{c}0\\0\\1\end{array}\right)\right) = 0 \cdot 1 + 0 \cdot x + 1 \cdot x^2 = x^2.$$

Exercise 3. (a) Find the eigenvalues and the eigenvectors of the map $T_e: P_2 \to P_2$ defined by $T_e(f) = x^2 f\left[\frac{1}{x}\right]$. (This map was discussed in Exercise 2 **(e)** of homework set #6.)

- **(b)** Find the eigenvalues and the eigenvectors of the map $T: \mathcal{M}_3 \to \mathcal{M}_3$ from Exercise 2 **(f)**.
- (c) Consider the map $T': \mathbb{R}^{3\times 3} \to \mathbb{R}^{3\times 3}$ that sends each matrix $A \in \mathbb{R}^{3\times 3}$ to its transpose A^T . Find the eigenvalues and the eigenvectors of this map.

[It might be good not to approach part (c) this exercise using the $M_{\mathbf{v},\mathbf{v},F}$ method, but rather think in terms of the definition. An eigenvector of the map T' would be a nonzero matrix A whose transpose is a scalar multiple of A. How would such a matrix looks like? What relations would have to hold between its entries?]