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Math 4242 Fall 2016 (Darij Grinberg): midterm 2 with solutions
Mon, 7 Nov 2016, in class (75 minutes). Proofs are NOT required.

Exercise 1. (a) The list a =
(
(2,−4, 2)T , (−3, 6, 3)T , (1,−2, 1)T , (3, 1, 3)T , (2, 1, 0)T

)
spans R3. Shrink this list to a basis of R3 by removing some redundant elements.

[5 points]
(b) The list b =

(
(1, 0, 1)T

)
is linearly independent. Extend this list to a basis

of R3 by appending to it some elements from the list a. [5 points]

Solution. The method for this exercise is the same as for Exercise 1 on the midterm
#2 practice sheet; thus, I’ll be briefer this time.

(a) We proceed using the standard algorithm1: We scan the list a from left to
right. Each time we read an entry of a, we check if this entry is a linear combination
of the entries before it. If it is, then we remove this entry from a and start from
scratch with the new (shorter) a. If it is not, then we proceed to the next entry. If
we have arrived at the end of the list, then our list has no redundant entries, and
thus is a basis of R3.

Let us execute this algorithm step by step:

• We scan the list a from left to right. Thus, we begin at its first entry, which is
(2,−4, 2)T.

• Is this first entry (2,−4, 2)T a linear combination of the entries before it? There
are no entries before it, and thus the only linear combination of the entries
before it is

−→
0 . Our first entry (2,−4, 2)T is not

−→
0 . Thus, the answer is “No”.

We proceed to the second entry.

• Is this second entry (−3, 6, 3)T a linear combination of the entries before it?
There is only one entry before it, namely (2,−4, 2)T. Hence, we are asking
whether (−3, 6, 3)T is a linear combination of the vector (2,−4, 2)T. Using
Gaussian elimination (or just common sense2), we see that it is not. Thus, the
answer is “No”. Hence, we proceed to the third entry.

• Is this third entry (1,−2, 1)T a linear combination of the entries before it? The
entries before it are (2,−4, 2)T and (−3, 6, 3)T. Hence, we are asking whether
(1,−2, 1)T is a linear combination of the vectors (2,−4, 2)T and (−3, 6, 3)T.
Once again, we can use Gaussian elimination to arrive at the answer, which
is “Yes” this time3. Thus, we remove the entry from a, and start from scratch
with the new (shorter) a.

1In this algorithm, we treat a as a mutable variable.
2Namely, observe that every linear combination of the vector (2,−4, 2)T has its first entry equal to

its third entry, but the vector (−3, 6, 3)T does not have this property.
3And, again, we can tell this immediately without Gaussian elimination as well, by observing that

(1,−2, 1)T =
1
2
(2,−4, 2)T .
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• We scan the new list a =
(
(2,−4, 2)T , (−3, 6, 3)T , (3, 1, 3)T , (2, 1, 0)T

)
(the

result of removing (1,−2, 1)T from the old list a) from left to right. Thus, we
begin at its first entry, which is (2,−4, 2)T.

• Is this first entry (1, 2,−1)T a linear combination of the entries before it?
Once again, this is a question we have already answered the last time we
encountered this entry; the answer is “no”, and so we proceed to the second
entry.

• Is this second entry (1, 1, 0)T a linear combination of the entries before it?
Again, we already have answered this question, and the answer is “no”. We
proceed to the third entry.

• Is this third entry (3, 1, 3)T a linear combination of entries before it? The
entries before it are (2,−4, 2)T and (−3, 6, 3)T. Hence, we are asking whether
(3, 1, 3)T is a linear combination of the vectors (2,−4, 2)T and (−3, 6, 3)T. As
usual, we can answer this using Gaussian elimination; the answer is “no”. We
thus proceed to the fourth entry.

• Is this fourth entry (2, 1, 0)T a linear combination of entries before it? Again,
we can use Gaussian elimination to answer this; but there is also a more
obvious reason why the answer is “Yes”: Namely, let us once again take a
look at the first three entries of a. There are no redundant entries among
these (because any redundant entries would have already been removed in
the previous steps); thus, they are linearly independent. But any 3 linearly
independent vectors in R3 must form a basis of R3. Hence, the first three
entries of a form a basis of R3. Therefore, the fourth entry (2, 1, 0)T must (like
any vector in R3) be a linear combination of these first three entries. Thus, we
remove the entry from a, and start from scratch with the new (shorter) a.

• We scan the new list a =
(
(2,−4, 2)T , (−3, 6, 3)T , (3, 1, 3)T

)
from left to right.

Thus, we ask again whether the first entry is a linear combination of the
entries before it, and then the same question for the second and the third
entries. All of these questions have already been answered with a “no”, and
so we arrive at the end of the list.

We have thus ended up with the list
(
(2,−4, 2)T , (−3, 6, 3)T , (3, 1, 3)T

)
. This list

is therefore a basis of R3 obtained by shrinking our (old) list a.
(b) We solve this using the following algorithm4: We scan the list a from left to

right. Each time we read an entry of a, we check if this entry is a linear combination
of the (current) entries of b. If it isn’t, then we append this entry to b. In either
case, we proceed to the next entry. By the time we have scanned all entries of a, the
list b has become a basis of R3.

4In this algorithm, we treat b as a mutable variable.
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In order to simplify our life, we use not the original list

a =
(
(2,−4, 2)T , (−3, 6, 3)T , (1,−2, 1)T , (3, 1, 3)T , (2, 1, 0)T

)
,

but the shorter list

a =
(
(2,−4, 2)T , (−3, 6, 3)T , (3, 1, 3)T

)
obtained at the end of the shrinking process in part (a) of the problem. Indeed, this
shorter list works just as well (it is a basis of R3 and thus spans R3), and clearly its
elements are elements of the original list a as well.

Let us now execute our algorithm step by step:

• We scan the list a from left to right. Thus, we begin at its first entry, which is
(2,−4, 2)T.

• Is this first entry (2,−4, 2)T a linear combination of the entries of b? The
entries of b are (1, 0, 1)T. Hence, we are asking whether (2,−4, 2)T is a linear
combination of the vector (1, 0, 1)T. This can be answered by Gaussian elim-
ination5. The answer is “no”. Thus, we append this entry (2,−4, 2)T to b, so
that b becomes

(
(1, 0, 1)T , (2,−4, 2)T

)
. We now proceed to the second entry

of a.

• Is this second entry (−3, 6, 3)T a linear combination of the entries of b? The
entries of b are (1, 0, 1)T and (2,−4, 2)T (keep in mind that b has changed in
the previous step!). We can answer this using Gaussian elimination; the an-
swer is “no”. Hence, we append this entry (−3, 6, 3)T to b, so that b becomes(
(1, 0, 1)T , (2,−4, 2)T , (−3, 6, 3)T

)
. We now proceed to the third entry of a.

• Is this third entry (3, 1, 3)T a linear combination of the entries of b? The
answer is “yes”; this can be checked either by Gaussian elimination or by
observing that the list b has three linearly independent elements and thus
spans R3 (we have done something very similar in part (a) above). Thus, the
list b does not change at this step. We have now arrived at the end of the list
a.

We have thus ended up with the list b =
(
(1, 0, 1)T , (2,−4, 2)T , (−3, 6, 3)T

)
. This

list is therefore a basis of R3 obtained by appending some elements from a to the
(old) list b.

5or by a quick glance at the second entry, which has to be 0 for any linear combination of (1, 0, 1)T

but fails to be 0 for (2,−4, 2)T
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Exercise 2. (a) Find bases of the four subspaces of the 3 × 3-matrix A = 1 2 3
2 3 4
3 4 5

. [6 points]

(b) Find a basis of the column space of the 4× 4-matrix B =


1 2 3 4
2 3 4 5
3 4 5 6
4 5 6 7

.

[6 points]

Solution. (a) Column space: A basis of Col A is
(
(1, 2, 3)T , (2, 3, 4)T

)
.

[Proof: Since Col A is the span of the columns of A, we have

Col A = span
(
(1, 2, 3)T , (2, 3, 4)T , (3, 4, 5)T

)
.

But the vector (3, 4, 5)T is redundant in this list, since it is a linear combination of
the previous vectors (namely, it is 2 · (2, 3, 4)T− (1, 2, 3)T). Thus, we can throw it out
and obtain Col A = span

(
(1, 2, 3)T , (2, 3, 4)T

)
. The vectors (1, 2, 3)T and (2, 3, 4)T

are fairly obviously linearly independent, and so they form a basis of Col A.]
Row space: A basis of Row A is ((1, 2, 3) , (2, 3, 4)).
[Proof: The matrix A is symmetric, i.e., we have A = AT. But recall that Row A =Col

(
AT
)

︸ ︷︷ ︸
=A


T

= (Col A)T. Thus, knowing a basis of Col A, we can immediately

obtain a basis of Row A.]
Kernel: A basis of Ker A is

(
(1,−2, 1)T

)
.

[Proof: We have rank A = dim (Col A) = 2 (since we have found a basis of
Col A, and this basis has size 2). Now, the rank-nullity theorem yields rank A +
dim (Ker A) = 3, so that dim (Ker A) = 3− rank A︸ ︷︷ ︸

=2

= 3− 2 = 1.

But it is easy to see that (1,−2, 1)T ∈ Ker A (indeed, this is a restatement of the
linear dependency relation

1 · col1 A + (−2) · col2 A + 1 · col3 A =
−→
0 ,

which in turn is equivalent to our old observation that the third column (3, 4, 5)T

of A is the linear combination 2 · (2, 3, 4)T − (1, 2, 3)T of the previous two columns).
Hence, the linearly independent list

(
(1,−2, 1)T

)
consists of 1 element of Ker A.

Since dim (Ker A) = 1, this shows that this list is a basis of Ker A.
(Of course, we could have found this using Gaussian elimination as well.)]
Left kernel: A basis of

(
Ker

(
AT))T is

(
(1,−2, 1)T

)
.
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[Proof: Again, recall that A = AT. Thus,

Ker
(

AT
)

︸ ︷︷ ︸
=A


T

= (Ker A)T. Thus,

knowing a basis of Ker A, we can immediately obtain a basis of
(
Ker

(
AT))T.]

(b) Column space: A basis of Col B is
(
(1, 2, 3, 4)T , (2, 3, 4, 5)T

)
.

[Proof: Since Col B is the span of the columns of B, we have

Col B = span
(
(1, 2, 3, 4)T , (2, 3, 4, 5)T , (3, 4, 5, 6)T , (4, 5, 6, 7)T

)
.

But the vector (4, 5, 6, 7)T is redundant in this list, since it is a linear combination
of the previous vectors (namely, it is 2 · (3, 4, 5, 6)T − (2, 3, 4, 5)T). Similarly, the
vector (3, 4, 5, 6)T is redundant. Thus, we can throw them both out, and obtain
Col B = span

(
(1, 2, 3, 4)T , (2, 3, 4, 5)T

)
. The vectors (1, 2, 3, 4)T and (2, 3, 4, 5)T are

fairly obviously linearly independent, and so they form a basis of Col B.]

Exercise 3. (a) Find a basis of the vector space of all upper-triangular 3 × 3-
matrices.

[7 points]

(b) A 3× 3-matrix

 a1 b1 c1
a2 b2 c2
a3 b3 c3

 is said to be zero-sum if it satisfies the equal-

ities

a1 + b1 + c1 = 0, a2 + b2 + c2 = 0, a3 + b3 + c3 = 0, (1)
a1 + a2 + a3 = 0, b1 + b2 + b3 = 0, c1 + c2 + c3 = 0 (2)

(in other words: each row sums to 0, and each column sums to 0).
The zero-sum 3 × 3-matrices form a subspace of R3×3. Find a basis of this

subspace. [7 points]

Solution. (a) The list (E1,1, E1,2, E1,3, E2,2, E2,3, E3,3) is a basis of this space.
The proof is very similar to the proofs in the solution of Exercise 1 on homework

set #4; therefore, we leave it to the reader.
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(b) Let Z denote the subspace of R3×3 consisting of the zero-sum 3× 3-matrices.

M1 =

 1 0 −1
0 0 0
−1 0 1

 = E1,1 − E1,3 − E3,1 + E3,3, (3)

M2 =

 0 1 −1
0 0 0
0 −1 1

 = E1,2 − E1,3 − E3,2 + E3,3, (4)

M3 =

 0 0 0
1 0 −1
−1 0 1

 = E2,1 − E2,3 − E3,1 + E3,3, (5)

M4 =

 0 0 0
0 1 −1
0 −1 1

 = E2,2 − E2,3 − E3,2 + E3,3. (6)

Then, the list (M1, M2, M3, M4) is a basis of Z.
[Proof: First, it is straightforward to see that all four matrices M1, M2, M3, M4

belong to Z. Hence, span (M1, M2, M3, M4) ⊆ Z (since Z is a subspace of R3×3).
Next, we claim that Z ⊆ span (M1, M2, M3, M4). Indeed, let A ∈ Z. Then, A

is a zero-sum 3× 3-matrix. Write A in the form A =

 a1 b1 c1
a2 b2 c2
a3 b3 c3

. Then, the

equalities (1) and (2) hold (since A is zero-sum). We can use these equalities to
write the five entries c1, c2, a3, b3, c3 in terms of the four entries a1, b1, a2, b2 of our
matrix:

c1 = −a1 − b1 (by the first equality of (1)) ;
c2 = −a2 − b2 (by the second equality of (1)) ;
a3 = −a1 − a2 (by the first equality of (2)) ;
b3 = −b1 − b2 (by the second equality of (2)) ;
c3 = − c1︸︷︷︸

=−a1−b1

− c2︸︷︷︸
=−a2−b2

(by the third equality of (2))

= − (−a1 − b1)− (−a2 − b2) = a1 + b1 + a2 + b2.
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In light of these five equalities, we can rewrite A =

 a1 b1 c1
a2 b2 c2
a3 b3 c3

 as

A =

 a1 b1 −a1 − b1
a2 b2 −a2 − b2

−a1 − a2 −b1 − b2 a1 + b1 + a2 + b2


=

 a1 0 −a1
0 0 0
−a1 0 a1


︸ ︷︷ ︸

=a1


1 0 −1
0 0 0
−1 0 1

=a1 M1

(by (3))

+

 0 b1 −b1
0 0 0
0 −b1 b1


︸ ︷︷ ︸

=b1


0 1 −1
0 0 0
0 −1 1

=b1 M2

(by (3))

+

 0 0 0
a2 0 −a2
−a2 0 a2


︸ ︷︷ ︸

=a2


0 0 0
1 0 −1
−1 0 1

=a2 M3

(by (5))

+

 0 0 0
0 b2 −b2
0 −b2 b2


︸ ︷︷ ︸

=b2


0 0 0
0 1 −1
0 −1 1

=b2 M4

(by (6)) here, we have played the usual game of splitting our matrix
into a sum of many matrices, each of which isolates exactly

one of the four variables a1, b1, a2, b2


= a1M1 + b1M2 + a2M3 + b2M4 ∈ span (M1, M2, M3, M4) .

Thus, we have proven that A ∈ span (M1, M2, M3, M4) for each A ∈ Z. In other
words, Z ⊆ span (M1, M2, M3, M4). Combined with span (M1, M2, M3, M4) ⊆ Z,
this yields Z = span (M1, M2, M3, M4).

Hence, the list (M1, M2, M3, M4) spans Z. In order to prove that this list is a basis
of Z, we therefore only need to check that this list is linearly independent. Let us
do this now:

Let λ1, λ2, λ3, λ4 be reals such that λ1M1 + λ2M2 + λ3M3 + λ4M4 =
−→
0 . (Of

course,
−→
0 is the zero vector of R3×3 here, i.e., the zero matrix 03×3.) We must show

that λ1 = λ2 = λ3 = λ4 = 0.
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We have
−→
0 = λ1M1 + λ2M2 + λ3M3 + λ4M4

= λ1

 1 0 −1
0 0 0
−1 0 1

+ λ2

 0 1 −1
0 0 0
0 −1 1


+ λ3

 0 0 0
1 0 −1
−1 0 1

+ λ4

 0 0 0
0 1 −1
0 −1 1


(by the equalities (3), (4), (5) and (6))

=

 λ1 λ2 −λ1 − λ2
λ3 λ4 −λ3 − λ4

−λ1 − λ3 −λ2 − λ4 λ1 + λ2 + λ3 + λ4

 .

Hence,  λ1 λ2 −λ1 − λ2
λ3 λ4 −λ3 − λ4

−λ1 − λ3 −λ2 − λ4 λ1 + λ2 + λ3 + λ4

 =
−→
0 = 03×3.

In other words, each entry of the matrix

 λ1 λ2 −λ1 − λ2
λ3 λ4 −λ3 − λ4

−λ1 − λ3 −λ2 − λ4 λ1 + λ2 + λ3 + λ4


must be 0. In particular, all of λ1, λ2, λ3, λ4 are 0. In other words, λ1 = λ2 = λ3 =
λ4 = 0. This completes our proof.]

Let me now remind you of how I understand the words “QR decomposition”
(your favorite book might define it differently!). If A is an n × k-matrix whose
columns are linearly independent, then a QR decomposition of A means a way to
write A in the form A = QR, where:

• Q is an n× k-matrix with orthonormal columns (this is equivalent to saying
that Q is an n× k-matrix satisfying QTQ = Ik);

• R is an upper-triangular k× k-matrix with nonzero diagonal entries.

For example, a QR decomposition of

 2 17
4 13
8 5

 is

 2 17
4 13
8 5

 =



1√
21

2√
6

2√
21

1√
6

4√
21
−1√

6


︸ ︷︷ ︸

this is the Q

(
2
√

21 3
√

21
0 7

√
6

)
︸ ︷︷ ︸

this is the R

.
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Exercise 4. (a) Find a QR decomposition of the matrix

 3 0 0
4 5 0
0 4 3

. [4 points]

(b) Find a QR decomposition of the matrix

 1 2 3
0 1 2
0 0 1

. [4 points]

(c) Find a QR decomposition of the matrix

 0 0 1
−1 0 0
0 1 0

. [4 points]

Solution. This is solved exactly like Exercise 3 on the midterm #2 practice sheet
(except that I have picked the matrix in part (a) specifically to avoid square roots
appearing in its QR decomposition).

(a) Let A be our matrix

 3 0 0
4 5 0
0 4 3

. Let w1, w2, w3 be the three columns of A;

thus,
w1 = (3, 4, 0)T , w2 = (0, 5, 4)T , w3 = (0, 0, 3)T .

Now, we apply the Gram-Schmidt process to w1, w2, w3:

1. At the first step, we set u1 = w1. Thus,

u1 = w1 = (3, 4, 0)T .

2. At the second step, we set u2 = w2 − λ2,1u1, where λ2,1 =
〈w2, u1〉
〈u1, u1〉

. We

compute these explicitly:

λ2,1 =
〈w2, u1〉
〈u1, u1〉

=

〈
(0, 5, 4)T , (3, 4, 0)T

〉
〈
(3, 4, 0)T , (3, 4, 0)T

〉 =
20
25

=
4
5

and thus

u2 = w2 − λ2,1u1 = (0, 5, 4)T − 4
5
(3, 4, 0)T =

(
−12

5
,

9
5

, 4
)T

.

3. At the third step, we set u3 = w3− λ3,1u1− λ3,2u2, where λ3,1 =
〈w3, u1〉
〈u1, u1〉

and

λ3,2 =
〈w3, u2〉
〈u2, u2〉

. We compute these explicitly:

λ3,1 =
〈w3, u1〉
〈u1, u1〉

=

〈
(0, 0, 3)T , (3, 4, 0)T

〉
〈
(3, 4, 0)T , (3, 4, 0)T

〉 =
0
25

= 0
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and

λ3,2 =
〈w3, u2〉
〈u2, u2〉

=

〈
(0, 0, 3)T ,

(
−12

5
,

9
5

, 4
)T
〉

〈(
−12

5
,

9
5

, 4
)T

,
(
−12

5
,

9
5

, 4
)T
〉 =

12
25

and thus

u3 = w3 − λ3,1u1 − λ3,2u2

= (0, 0, 3)T − 0 (3, 4, 0)T − 12
25

(
−12

5
,

9
5

, 4
)T

=

(
144
125

,−108
125

,
27
25

)T
.

Next, we normalize the vectors u1, u2, u3 – that is, we divide them by their lengths
so they become orthonormal and not just orthogonal. The resulting vectors will be
called q1, q2, q3. Explicitly:

q1 =
1
||u1||

u1 =
1
5
(3, 4, 0)T

(
since ||u1|| =

√
〈u1, u1〉 = 5

)
=

(
3
5

,
4
5

, 0
)T

,

q2 =
1
||u2||

u2 =
1
5

(
−12

5
,

9
5

, 4
)T (

since ||u2|| =
√
〈u2, u2〉 = 5

)
=

(
−12

25
,

9
25

,
4
5

)T
,

q3 =
1
||u3||

u3 =
1(
9
5

) (144
125

,−108
125

,
27
25

)T (
since ||u3|| =

√
〈u3, u3〉 =

9
5

)

=

(
16
25

,−12
25

,
3
5

)T
.

Now, the Q and R in the QR decomposition A = QR of A can be determined as
follows:

• The matrix Q will be the 3× 3-matrix with columns q1, q2, q3. Plugging in the
values of q1, q2, q3 already computed, we thus find

Q =


3
5
−12

25
16
25

4
5

9
25

−12
25

0
4
5

3
5

 .
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• The matrix R will be the 3× 3-matrix whose (i, j)-th entry (for all i and j) is

Ri,j =


λj,i ||ui|| , if i < j;∣∣∣∣uj

∣∣∣∣ , if i = j;
0, if i > j

.

In other words,

R =

 ||u1|| λ2,1 ||u1|| λ3,1 ||u1||
0 ||u2|| λ3,2 ||u2||
0 0 ||u3||

 .

Plugging in the values of ||ui|| and λj,i (which have already been computed),
we obtain

R =


5 4 0

0 5
12
5

0 0
9
5

 .

Thus, Q and R have both been found.
[Remark: I am sorry for this problem, which turned out much more laborious

than I wanted it to be. I had a computer find the QR decomposition, and saw that
it looked nice enough; I didn’t anticipate that the process that leads to the result

would require computations such as finding the length of u3 =

(
144
125

,−108
125

,
27
25

)T
.]

(b) We can use the same algorithm as in (a). But we can also save ourselves the

hassle and read off the answer from the problem: Namely, set A =

 1 2 3
0 1 2
0 0 1

.

Then, the matrix A itself is upper-triangular. Hence, setting Q = I3 and R = A
yields a QR decomposition A = QR of A.

(c) Once again, the answer can be read off from the problem: Namely, set A = 0 0 1
−1 0 0
0 1 0

. Then, the matrix A has orthonormal columns (in fact, its columns

are distinct standard basis vectors scaled by 1 or −1). Hence, setting Q = A and
R = I3 yields a QR decomposition A = QR of A.

Exercise 5. Consider the 2× 1-matrix A =

(
3
4

)
.

(a) Find an orthogonal basis of Col A (the column space of A). [3 points]
(b) Find a QR decomposition A = QR of A. [3 points]

(c) Let b =

(
1
1

)
. Compute the projection of b onto Col A. [3 points]

(d) Compute QQTb. [3 points]
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(e) What do you observe? [1 point]
(f) Find the x ∈ R1 for which ||Ax− b|| is minimum. [3 points]

Solution. (a) The column space Col A of A is spanned by the columns of A. In
our situation, this means that Col A = span

(
(3, 4)T

)
. Thus, the list

(
(3, 4)T

)
is a basis of Col A (since this list is clearly linearly independent). This basis is
clearly orthogonal (because it has only one entry, whereas orthogonality makes no
requirements on single entries).

(b) We can just take Q =
1
5

A =


3
5
4
5

 and R =
(

5
)
. (Indeed, the matrix

1
5

A

has orthonormal columns, whereas the matrix R is upper-triangular.)
(c) Recall the general formula that says that if b is a vector in Rn, and if (u1, u2, . . . , uk)

is an orthogonal basis of a subspace U of Rn, then the projection of b on U is

〈b, u1〉
||u1||2

u1 +
〈b, u2〉
||u2||2

u2 + · · ·+
〈b, uk〉
||uk||2

uk.

Applying this to n = 2, U = Col A, k = 1 and (u1, u2, . . . , uk) =
(
(3, 4)T

)
, we

conclude that the projection of b on Col A is〈
b, (3, 4)T

〉
∣∣∣∣∣∣(3, 4)T

∣∣∣∣∣∣2 (3, 4)T =

〈
(1, 1)T , (3, 4)T

〉
∣∣∣∣∣∣(3, 4)T

∣∣∣∣∣∣2 (3, 4)T
(

since b =

(
1
1

)
= (1, 1)T

)

=
7
25

(3, 4)T =

(
21
25

,
28
25

)T
=


21
25
28
25

 .

(d) Straightforward computations show

QQTb =


3
5
4
5




3
5
4
5


T (

1
1

)
=


21
25
28
25

 .

(e) You observe that the projection of b on Col A is QQTb.
[Remark: This is no coincidence. Indeed, the following general result holds:

Proposition 0.1. Let A be an n× k-matrix whose columns are linearly indepen-
dent. Let A = QR be the QR decomposition of A. Let b ∈ Rn. Then, the
projection of b on Col A is QQTb.
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Proof of Proposition 0.1. Set u0 = QQTb and u′0 = b− u0. We are going to prove that
u0 ∈ Col A, u′0 ∈ (Col A)⊥ and b = u0 + u′0. Once this is shown, it will follow that
b = u0 + u′0 is the (unique, as we know) decomposition of b into a vector in Col A
and a vector in (Col A)⊥; but this will obviously imply that the projection of b on
Col A is u0 = QQTb. So we will be done.

The matrix R is upper-triangular, and its diagonal entries are nonzero. Thus,
in the parlance of my lecture notes (specifically, Definition 3.30 (b)), it is invert-
ibly upper-triangular. Hence, Theorem 3.99 in my lecture notes shows that it is
invertible, and its inverse R−1 is also invertibly upper-triangular. Now,

u0 = QQTb = QR︸︷︷︸
=A

R−1QTb = AR−1QTb ∈ ARk = Col A.

Furthermore, b = u0 + u′0 follows directly from u′0 = b− u0. Hence, out of the three
claims u0 ∈ Col A, u′0 ∈ (Col A)⊥ and b = u0 + u′0, we have already proven the first
and the third. It remains to prove the second, i.e., the claim that u′0 ∈ (Col A)⊥.

Let x ∈ Col A. Then, x ∈ Col A = ARk. Thus, there exists some y ∈ Rk such that
x = Ay. Consider this y.

But recall that the entries of the matrix QTQ are the inner products between the
columns of the matrix Q. Thus, QTQ = Ik (since the columns of the matrix Q are
orthonormal). Now,〈

x, u′0
〉
= xTu′0 (by the definition of the inner product)

=

 A︸︷︷︸
=QR

y

T

u′0︸︷︷︸
=b−u0

(since x = Ay)

= (QRy)T︸ ︷︷ ︸
=yT RTQT

b− u0︸︷︷︸
=QQTb

 = yTRTQT
(

b−QQTb
)

= yTRTQTb− yTRT QTQ︸ ︷︷ ︸
=Ik

QTb = yTRTQTb− yTRTQTb = 0.

In other words, u′0 ⊥ x.
Now, we have proven that u′0 ⊥ x for every x ∈ Col A. In other words, u′0 ∈

(Col A)⊥. This proves the one claim that remained to be proven. Thus, the proof
of Proposition 0.1 is complete.

]
(f) We are looking for the least-squares solution of Ax = b.
We follow the usual method: We set K = AT A and f = ATb, and then x = K−1 f .

This works because the columns of A are linearly independent.
Here are the computations:

K = AT A =

(
3
4

)T ( 3
4

)
=
(

25
)

http://www.cip.ifi.lmu.de/~grinberg/t/16f/lina.pdf
http://www.cip.ifi.lmu.de/~grinberg/t/16f/lina.pdf
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and

f = ATb =

(
3
4

)T ( 1
1

)
=
(

7
)

.

Thus,

x = K−1 f =
(

25
)−1 ( 7

)
=

(
7

25

)
.

[Remark: Unsurprisingly, this x satisfies Ax =


21
25
28
25

, which is the projection

of b on Col A. This is an example of the standard connection between the least-
squares problem and the closest-point problem.]

Let me recall a few definitions:

• We denote by Rn the vector space Rn×1. It consists of column vectors of size
n.

• If v ∈ Rn and w ∈ Rn, then 〈v, w〉 = vTw. (This is a 1 × 1-matrix, but
we regard it as a number, just by taking its single entry and “dropping the
parentheses around it”.)

• If v ∈ Rn, then ||v|| =
√
〈v, v〉.

• If v ∈ Rn and w ∈ Rn, then we write v ⊥ w when we have 〈v, w〉 = 0.

• If U is a subspace of Rn, then U⊥ denotes the subset {x ∈ Rn | x ⊥ u for all u ∈ U}
of Rn. This subset U⊥ is itself a subspace of Rn, and is called the orthogonal
complement (or orthogonal subspace) of U.

Exercise 6. Which of the following claims are true, and which are false? (Please
write a “T” into the box for “True”, or an “F” for “False”.)
[2 points for each of the 18 claims]

(a) F If A is an n× n-matrix, then the matrix AT A is diagonal.
(b) F If A is an n× n-matrix, then the matrix AT A is invertible.
(c) T If A is an n× n-matrix, then the matrix AT A is symmetric.
(d) T If A is a lower-triangular n× n-matrix, then AT is an upper-triangular

n× n-matrix.
(e) T If a is a linearly independent list of vectors in an n-dimensional vector

space, then a contains at most n vectors.
(f) F If a linearly independent list of vectors in a vector space V and a list of

vectors that spans V have the same size, then these two lists are equal.
(g) T If v and w are two vectors in Rn, then 〈v, w〉 = 〈w, v〉.
(h) F If v and w are two vectors in Rn, then 〈2v, 2w〉 = 2 〈v, w〉.
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(i) F If v and w are two vectors in Rn satisfying 〈v, w〉 = 0, then v =
−→
0 or

w =
−→
0 .

(j) F If v and w are two vectors in Rn, then ||v||+ ||w|| ≤ ||v + w||.
(k) F If U and V are two subspaces of Rn satisfying U ⊆ V, then U⊥ ⊆ V⊥.
(l) T If A is an n× k-matrix and B is a k× n-matrix with k < n, then AB can

never be invertible.
(m) T If A is an n×m-matrix, then rank A + dim (Ker A) = m.
(n) F If A is an n×m-matrix, then rank A + dim (Ker A) = n.
(o) F If A is an n× m-matrix and b is a column vector of size n, then there

exists a unique x ∈ Rm for which ||Ax− b|| is minimum.
(p) T If A is an n× m-matrix and b is a column vector of size n, then there

exists a unique u ∈ Col A for which ||u− b|| is minimum.

(q) T The orthogonal complement of the subspace
{−→

0
}

of Rn is
{−→

0
}⊥

=

Rn.
(r) T If A and B are two n×m-matrices, then rank (A + B) ≤ rank A+ rank B.
[Hint: Many false statements are easy to refute. Sometimes, stupid things like

taking A = 0n×m or n = 0 or n = 1 or v =
−→
0 suffice to obtain a counterexample.]

Solution. I have entered the answers in the boxes above, but let me also comment
on why the answers are the right ones:

(a) This is false. For a counterexample, take A =

(
1 1
1 1

)
, and observe that

AT A =

(
2 2
2 2

)
is not diagonal.

(b) This is false. For a counterexample, take A = 0n×n, and observe that AT A =
0n×n is not invertible unless n = 0.

(c) This is true. The simplest way to see that the matrix AT A is symmetric is
to show that it equals its own transpose: Since the transpose of a product of two
matrices is the product of their transposes in reverse order, we have(

AT A
)T

= AT
(

AT
)T

︸ ︷︷ ︸
=A

= AT A.

This shows that AT A is symmetric.
(d) This is true. And it is obvious when you look at the forms of lower- and

upper-triangular matrices and recall that transposition “reflects a matrix in its di-
agonal”. A formal proof is also easy to make.

(e) This is true. If a vector space V is n-dimensional, then V has a basis b of size
n. This basis b clearly is a spanning list of V. Thus, if a is a linearly independent
list of vectors in V, then a must be at most as long as this list b (because a linearly
independent list must be at most as long as a spanning list), hence contain at most
n vectors.
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(f) This is false. For example, the two lists (e1, e2) and (e2, e1) in R2 are not equal.
One correct statement that we could make here instead is that both lists must be

bases of V.
(g) This is true. The quickest way to see this is to write v and w in the forms

v = (v1, v2, . . . , vn)
T and w = (w1, w2, . . . , wn)

T. Then,

〈v, w〉 = v1w1 + v2w2 + · · ·+ vnwn and
〈w, v〉 = w1v1 + w2v2 + · · ·+ wnvn,

which are clearly equal (because viwi = wivi for any i).
(h) This is false. Instead, we have 〈2v, 2w〉 = 4 〈v, w〉, but 〈2v, w〉 = 〈v, 2w〉 =

2 〈v, w〉.
More generally, 〈λv, µw〉 = λµ 〈v, w〉 for any reals λ and µ.
(i) This is false. Any two nonzero vectors v and w orthogonal to each other (for

example, v = e1 and w = e2 in R2) provide a counterexample.
(j) This is false. The triangle inequality says ||v||+ ||w|| ≥ ||v + w|| (visually, the

detour is longer than the direct path). If v and w are linearly independent (again,
take v = e1 and w = e2 in R2 for a concrete counterexample), then the ≥ sign here
actually becomes a strict > sign, and so the claim ||v||+ ||w|| ≤ ||v + w|| cannot
hold.

(k) This is false. Instead, we have V⊥ ⊆ U⊥. In fact, U ⊆ V shows that every
u ∈ U is also an element of V. Therefore, if a vector x ∈ Rn satisfies x ⊥ u for all
u ∈ V, then this x also satisfies x ⊥ u for all u ∈ U. In other words, the set of all
x ∈ Rn satisfying x ⊥ u for all u ∈ V is a subset of the set of all x ∈ Rn satisfying
x ⊥ u for all u ∈ U. In other words,

{x ∈ Rn | x ⊥ u for all u ∈ V} ⊆ {x ∈ Rn | x ⊥ u for all u ∈ U} .

Now, the definition of V⊥ shows that

V⊥ = {x ∈ Rn | x ⊥ u for all u ∈ V}
⊆ {x ∈ Rn | x ⊥ u for all u ∈ U} = U⊥,

qed.
To provide a concrete counterexample to the false claim that U⊥ ⊆ V⊥, try n = 1,

U =
{−→

0
}

and V = R1.
(l) This is true.
Proof. Assume the contrary. Thus, AB is invertible. Hence, Proposition 0.5

(c) on homework set #4 (applied to n and AB instead of m and A) shows that
rank (AB) = n = n. But Proposition 0.2 (b) on homework set #4 (applied to k
and n instead of m and p) yields rank (AB) ≤ rank A. Finally, the equality (15)
on homework set #4 (applied to k instead of m) yields rank A ≤ min {n, k}. Thus,
n = rank (AB) ≤ rank A ≤ min {n, k} ≤ k < n, which is absurd. Hence, we
have a contradiction. This shows that our assumption was wrong, and the proof is
complete.

http://www.cip.ifi.lmu.de/~grinberg/t/16f/hw4s.pdf
http://www.cip.ifi.lmu.de/~grinberg/t/16f/hw4s.pdf
http://www.cip.ifi.lmu.de/~grinberg/t/16f/hw4s.pdf
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(m) This is true. It is just the rank-nullity theorem.
(n) This is false. It contradicts the rank-nullity theorem whenever n 6= m.
(o) This is false. For a quick counterexample, take n = 1 and m = 1 and A =

01×1, in which case Ax does not depend on x at all (in fact, Ax = 01×1 no matter
what x is) and therefore ||Ax− b|| attains its minimum value at any x.

(p) This is true. Recall the fact that if U is a subspace of Rn, then there exists a
unique u ∈ U for which ||u− b|| is minimum (namely, this u is the projection of b
on U). The claim of (p) follows by applying this fact to U = Col A.

(q) This is true. The definition of
{−→

0
}⊥

yields

{−→
0
}⊥

=
{

x ∈ Rn | x ⊥ u for all u ∈
{−→

0
}}

=
{

x ∈ Rn | x ⊥ −→0
}

(7)

(since the only u ∈
{−→

0
}

is
−→
0 ). But every x ∈ Rn satisfies x ⊥ −→0 (since

〈
x,
−→
0
〉
=

xT−→0 = 0). Therefore,
{

x ∈ Rn | x ⊥ −→0
}
= Rn. Hence, (7) rewrites as

{−→
0
}⊥

=

Rn.
(r) This is true.
Proof. Let (u1, u2, . . . , uk) be a basis of Col A. Then, k = dim (Col A) = rank A.
Let (v1, v2, . . . , v`) be a basis of Col B. Then, ` = dim (Col B) = rank B.
The list (u1, u2, . . . , uk, v1, v2, . . . , v`) might not be a basis of anything, but it spans

the vector space span (u1, u2, . . . , uk, v1, v2, . . . , v`) (obviously). Hence, a basis of
span (u1, u2, . . . , uk, v1, v2, . . . , v`) can be found by shrinking this list (i.e., by remov-
ing redundant elements from it). Thus, this basis will have size ≤ k + ` (because
the list (u1, u2, . . . , uk, v1, v2, . . . , v`) has size k + `). In other words,

dim (span (u1, u2, . . . , uk, v1, v2, . . . , v`)) ≤ k + `. (8)

Now, I claim that

Col (A + B) is a subspace of span (u1, u2, . . . , uk, v1, v2, . . . , v`) . (9)

Indeed, let me show this. Let w be a column of A + B. Then, w is the sum of
some column of A with the respective column of B. In other words, w = a + b
for some column a of A and some column b of B. Consider these a and b. The
vector a (being a column of A) must lie in the span of the columns of A. In other
words, a ∈ Col A = span (u1, u2, . . . , uk) (since (u1, u2, . . . , uk) is a basis of Col A).
In other words, a = λ1u1 +λ2u2 + · · ·+λkuk for some reals λ1, λ2, . . . , λk. Similarly,
b = µ1v1 + µ2v2 + · · ·+ µ`v` for some reals µ1, µ2, . . . , µ`. Adding the two equalities
a = λ1u1 + λ2u2 + · · ·+ λkuk and b = µ1v1 + µ2v2 + · · ·+ µ`v`, we obtain

a + b = (λ1u1 + λ2u2 + · · ·+ λkuk) + (µ1v1 + µ2v2 + · · ·+ µ`v`)
∈ span (u1, u2, . . . , uk, v1, v2, . . . , v`) .

Thus,
w = a + b ∈ span (u1, u2, . . . , uk, v1, v2, . . . , v`) .
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Thus, we have shown that every column w of A + B satisfies
w ∈ span (u1, u2, . . . , uk, v1, v2, . . . , v`). Therefore, the span of all columns of A + B
is a subset of span (u1, u2, . . . , uk, v1, v2, . . . , v`). In other words,

Col (A + B) ⊆ span (u1, u2, . . . , uk, v1, v2, . . . , v`) . (10)

Moreover, Col (A + B) contains the zero vector and is closed under addition and
scaling (since Col (A + B) is a subspace of Rn). Hence, (10) shows that Col (A + B)
is actually a subspace of span (u1, u2, . . . , uk, v1, v2, . . . , v`). This proves (9).

Hene, Proposition 0.1 (b) on homework set #4 shows that

dim (Col (A + B)) ≤ dim (span (u1, u2, . . . , uk, v1, v2, . . . , v`))
≤ k︸︷︷︸

=rank A

+ `︸︷︷︸
=rank B

(by (8))

= rank A + rank B.

Since rank (A + B) = dim (Col (A + B)), this rewrites as rank (A + B) ≤ rank A +
rank B. The proof is complete.

http://www.cip.ifi.lmu.de/~grinberg/t/16f/hw4s.pdf

