
Math 4242 Fall 2016 midterm #2 practice page 1

Math 4242 Fall 2016 (Darij Grinberg): midterm 2 pratice problems

Exercise 1. Consider the vector space R3.
(a) The list a =

(
(1, 2,−1)T , (1, 1, 0)T , (0, 1,−1)T , (1, 1, 1)T

)
spans R3. Shrink

this list to a basis of R3 by removing some redundant elements.
(b) The list b =

(
(−1, 0, 1)T , (2, 3, 4)T

)
is linearly independent. Extend this

list to a basis of R3 by appending to it some elements from the list a.

Solution. (I am going to be very detailed here. You don’t need to write half as much
when solving this kind of problem!)

(a) We proceed using the standard algorithm1: We scan the list a from left to
right. Each time we read an entry of a, we check if this entry is a linear combination
of the entries before it. If it is, then we remove this entry from a and start from
scratch with the new (shorter) a. If it is not, then we proceed to the next entry. If
we have arrived at the end of the list, then our list has no redundant entries, and
thus is a basis of R3.

Let us execute this algorithm step by step:

• We scan the list a from left to right. Thus, we begin at its first entry, which is
(1, 2,−1)T.

• Is this first entry (1, 2,−1)T a linear combination of the entries before it? There
are no entries before it, and thus the only linear combination of the entries
before it is

−→
0 (because the only linear combination of no vectors is

−→
0 ). But

our entry (1, 2,−1)T is not
−→
0 ; thus, (1, 2,−1)T is not a linear combination of

the entries before it. Hence, we proceed to the second entry.

• Is this second entry (1, 1, 0)T a linear combination of the entries before it?
There is only one entry before it, namely (1, 2,−1)T. Hence, we are asking
whether (1, 1, 0)T is a linear combination of the vector (1, 2,−1)T. In other
words, we are asking whether (1, 1, 0)T = λ1 (1, 2,−1)T for some λ1 ∈ R.

Equivalently, we want to know whether


1 = 1λ1;
1 = 2λ1;

0 = −1λ1

for some λ1 ∈ R (be-

cause the equation (1, 1, 0)T = λ1 (1, 2,−1)T is equivalent to the system of

equations


1 = 1λ1;
1 = 2λ1;

0 = −1λ1

). In other words, we want to know whether the sys-

tem


1 = 1λ1;
1 = 2λ1;

0 = −1λ1

of linear equations (in the unknown λ1) has a solution.

1In this algorithm, we treat a as a mutable variable.
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But this question is easy to answer (e.g., by Gaussian elimination2), and the
answer is “no”. Thus, our entry (1, 1, 0)T is not a linear combination of the
entries before it. Hence, we proceed to the third entry.

• Is this third entry (0, 1,−1)T a linear combination of the entries before it? The
entries before it are (1, 2,−1)T and (1, 1, 0)T. Hence, we are asking whether
(0, 1,−1)T is a linear combination of the vectors (1, 2,−1)T and (1, 1, 0)T. In
other words, we are asking whether (0, 1,−1)T = λ1 (1, 2,−1)T + λ2 (1, 1, 0)T

for some λ1 ∈ R. Equivalently, we want to know whether


0 = 1λ1 + 1λ2;
1 = 2λ1 + 1λ2;
−1 = −1λ1 + 0λ2

for some λ1, λ2 ∈ R (because the equation (0, 1,−1)T = λ1 (1, 2,−1)T +

λ2 (1, 1, 0)T is equivalent to the system of equations


0 = 1λ1 + 1λ2;
1 = 2λ1 + 1λ2;
−1 = −1λ1 + 0λ2

).

In other words, we want to know whether the system


0 = 1λ1 + 1λ2;
1 = 2λ1 + 1λ2;
−1 = −1λ1 + 0λ2

of linear equations (in the unknowns λ1, λ2) has a solution. But this ques-
tion is easy to answer (e.g., by Gaussian elimination3), and the answer is

2Of course, for this particular system, it is clear by inspection. But Gaussian elimination is a
method that works in all situations.

3Let me give details on how this is done. (I will not be using the matrix form of Gaussian elimi-
nation, but work with plain equations instead, since I want to avoid the overhead of translating
between matrices and their entries.)

Our system


0 = 1λ1 + 1λ2;
1 = 2λ1 + 1λ2;
−1 = −1λ1 + 0λ2

rewrites as


1λ1 + 1λ2 = 0;
2λ1 + 1λ2 = 1;
−1λ1 + 0λ2 = −1

(just to bring the un-

knowns onto the left-hand side). Subtracting twice the first equation from the second equation,

we transform it into


1λ1 + 1λ2 = 0;
−1λ2 = 1;

−1λ1 + 0λ2 = −1
. Adding the first equation to the third equation, we

transform this further into


1λ1 + 1λ2 = 0;
−1λ2 = 1;
1λ2 = −1

. Adding the second equation to the third equa-

tion, we transform this further into

 1λ1 + 1λ2 = 0;
−1λ2 = 1;

0 = 0
. The system we now have can be solved

by back-substitution: The third equation (0 = 0) says nothing and thus can be discarded; the
second equation (−1λ2 = 1) lets us compute λ2 (namely, λ2 = −1); finally, the first equation
(1λ1 + 1λ2 = 0) lets us compute λ1 (namely, λ1 = 1). Thus, we see that the only solution is
(λ1, λ2) = (1,−1).

Remark: In general, solving a system of linear equations can lead to free variables (when there
is more than one solution). However, this won’t happen in this particular kind of situation,
because the first redundant element in a list can always be written as a linear combination of the
elements before it in a unique way (this is not hard to prove, if you are so inclined), and thus
the system of equations that determines this combination will have a unique solution.
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“yes”. Thus, our entry (0, 1,−1)T is a linear combination of the entries before
it4. Thus, we remove the entry from a, and start from scratch with the new
(shorter) a.

• We scan the new list a =
(
(1, 2,−1)T , (1, 1, 0)T , (1, 1, 1)T

)
(the result of re-

moving (0, 1,−1)T from the old list a) from left to right. Thus, we begin at its
first entry, which is (1, 2,−1)T.

• Is this first entry (1, 2,−1)T a linear combination of the entries before it?
We have already answered this question during our previous scan of the list
(since the segment of our list a up to its first entry has not changed when
we removed (0, 1,−1)T), and thus we already know that the answer is “no”.
Hence, we proceed to the second entry.

• Is this second entry (1, 1, 0)T a linear combination of the entries before it?
Again, this is a question we have already answered during our previous scan
of the list (since the segment of our list a up to its second entry has not
changed when we removed (0, 1,−1)T), and thus we already know that the
answer is “no”. Hence, we proceed to the third entry.

• Is this third entry (1, 1, 1)T a linear combination of entries before it? The
entries before it are (1, 2,−1)T and (1, 1, 0)T. Hence, we are asking whether
(1, 1, 1)T is a linear combination of the vectors (1, 2,−1)T and (1, 1, 0)T. In
other words, we are asking whether (1, 1, 1)T = λ1 (1, 2,−1)T + λ2 (1, 1, 0)T

for some λ1 ∈ R. Equivalently, we want to know whether


1 = 1λ1 + 1λ2;
1 = 2λ1 + 1λ2;

1 = −1λ1 + 0λ2

for some λ1, λ2 ∈ R (because the equation (1, 1, 1)T = λ1 (1, 2,−1)T +λ2 (1, 1, 0)T

is equivalent to the system of equations


1 = 1λ1 + 1λ2;
1 = 2λ1 + 1λ2;

1 = −1λ1 + 0λ2

). In other words,

we want to know whether the system


1 = 1λ1 + 1λ2;
1 = 2λ1 + 1λ2;

1 = −1λ1 + 0λ2

of linear equations

(in the unknowns λ1, λ2) has a solution. But this question is easy to answer
(e.g., by Gaussian elimination), and the answer is “no”. Thus, our entry
(1, 1, 1)T is not a linear combination of the entries before it. Thus, we have
arrived at the end of the list.

We have thus ended up with the list
(
(1, 2,−1)T , (1, 1, 0)T , (1, 1, 1)T

)
. This list

is therefore a basis of R3 obtained by shrinking our (old) list a.

4Namely, (0, 1,−1)T = 1 (1, 2,−1)T + (−1) (1, 1, 0)T . But we don’t need to know these specifics.
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(b) There are various ways to do this. One particularly simple way is the follow-
ing5: We scan the list a from left to right. Each time we read an entry of a, we check
if this entry is a linear combination of the (current) entries of b. If it isn’t, then we
append this entry to b. In either case, we proceed to the next entry. By the time we
have scanned all entries of a, the list b has become a basis of R3. (This is easy to
prove6.)

In order to simplify our life, we use not the original list

a =
(
(1, 2,−1)T , (1, 1, 0)T , (0, 1,−1)T , (1, 1, 1)T

)
,

but the shorter list

a =
(
(1, 2,−1)T , (1, 1, 0)T , (1, 1, 1)T

)
obtained at the end of the shrinking process in part (a) of the problem. Indeed, this
shorter list works just as well (it is a basis of R3 and thus spans R3), and clearly its
elements are elements of the original list a as well.

Let us now execute our algorithm step by step:

• We scan the list a from left to right. Thus, we begin at its first entry, which is
(1, 2,−1)T.

• Is this first entry (1, 2,−1)T a linear combination of the entries of b? The
entries of b are (−1, 0, 1)T and (2, 3, 4)T. Hence, we are asking whether
(1, 2,−1)T is a linear combination of the vectors (−1, 0, 1)T and (2, 3, 4)T. In
other words, we are asking whether (1, 2,−1)T = λ1 (−1, 0, 1)T + λ2 (2, 3, 4)T

for some λ1, λ2 ∈ R. Equivalently, we want to know whether

 1 = (−1) λ1 + 2λ2;
2 = 0λ1 + 3λ2;
−1 = 1λ1 + 4λ2

for some λ1, λ2 ∈ R (because the equation (1, 2,−1)T = λ1 (−1, 0, 1)T +

5In this algorithm, we treat b as a mutable variable.
6Proof. Consider the following:

• Every time we append an entry of a to the list b, the list b remains linearly independent
(because we append an entry to b only if this entry is not a linear combination of the
existing entries of b; but this guarantees that the linear independence of the list b is
preserved).

• By the time we have scanned all entries of a, the list b has the property that each entry of
a is a linear combination of the entries of b (because when we scanned this entry, we have
ensured that it became such a linear combination by appending it to b, if it wasn’t already
one). In other words, every entry of a belongs to span (b). Thus, span (a) ⊆ span (b).
But since a spans R3, we have span (a) = R3, so that R3 = span (a) ⊆ span (b) and thus
span (b) = R3.

Hence, by the time we have scanned all entries of a, the list b is linearly independent and
satisfies span (b) = R3. In other words, this list b has become a basis of R3.
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λ2 (2, 3, 4)T is equivalent to the system of equations

 1 = (−1) λ1 + 2λ2;
2 = 0λ1 + 3λ2;
−1 = 1λ1 + 4λ2

).

In other words, we want to know whether the system

 1 = (−1) λ1 + 2λ2;
2 = 0λ1 + 3λ2;
−1 = 1λ1 + 4λ2

of linear equations (in the unknowns λ1, λ2) has a solution. But this ques-
tion is easy to answer (e.g., by Gaussian elimination), and the answer is “no”.
Thus, our entry (1, 2,−1)T is not a linear combination of the entries of b.
Thus, we append this entry to b, so that b becomes

(
(−1, 0, 1)T , (2, 3, 4)T , (1, 2,−1)T

)
.

We now proceed to the second entry of a.

• Is this second entry (1, 1, 0)T a linear combination of the entries of b? The
entries of b are (−1, 0, 1)T, (2, 3, 4)T and (1, 2,−1)T (keep in mind that b has
changed in the previous step!). Hence, we are asking whether (1, 1, 0)T is a
linear combination of the vectors (−1, 0, 1)T, (2, 3, 4)T and (1, 2,−1)T. By now,
we have seen often enough how to answer such questions (of course, we now
have to solve a system of equations in three unknowns λ1, λ2, λ3). The answer
is “yes”. Thus, our entry (1, 1, 0)T is a linear combination of the entries of b.
Hence, we proceed to the third entry of a (without adding anything to b).
Recall that we have used the shorter list a =

(
(1, 2,−1)T , (1, 1, 0)T , (1, 1, 1)T

)
as our a, so this third entry is (1, 1, 1)T.

• Is this third entry (1, 1, 1)T a linear combination of the entries of b? The
answer is “yes” (found in the same way as many times before). Hence, we
arrive at the end of a (without adding anything to b).

We have thus ended up with the list b =
(
(−1, 0, 1)T , (2, 3, 4)T , (1, 2,−1)T

)
. This

list is therefore a basis of R3 obtained by appending some elements from a to the
(old) list b.

[Remark: We could have made our life much easier. In fact, we could have
stopped our algorithm immediately after adding (1, 2,−1)T to the list b, because
the list b had become a basis of R3 at that moment (being a linearly independent
list of 3 vectors in R3).

There are other ways to solve this exercise, and some of them lead to different
results. For example,

(
(−1, 0, 1)T , (2, 3, 4)T , (0, 1,−1)T

)
is an equally valid answer

to part (b).]

Exercise 2. (a) Find bases of the four subspaces of the 3 × 4-matrix A = 1 1 1 1
1 2 2 2
1 2 3 3

.
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(b) [Too tricky for a midterm, but worth thinking about!] More generally: Let
n ∈ N and m ∈ N. Let An×m be the n×m-matrix (min {i, j})1≤i≤n, 1≤j≤m. (This
is the n× m-matrix whose (i, j)-th entry is min {i, j}. For example, A3×4 is the
matrix A from part (a) of this exercise.)

Find bases of the four subspaces of An×m.

Solution. (a) Let me first give the answers, then remind you how they can be ob-
tained by safe-and-stupid algorithms, and finally how they can be obtained quickly
using certain shortcuts.

The answers:
Column space: A basis of Col A is

(
(1, 1, 1)T , (1, 2, 2)T , (1, 2, 3)T

)
. (There are other

bases, of course. For example, (e1, e2, e3) is a basis of Col A, since Col A is simply
R3.)

Row space: A basis of Row A is ((1, 1, 1, 1) , (1, 2, 2, 2) , (1, 2, 3, 3)). (Again, there
are other bases. For example, ((1, 1, 1, 1) , (0, 1, 1, 1) , (0, 0, 1, 1)) is another basis of
Row A.)

Kernel: A basis of Ker A is
(
(0, 0, 1,−1)T

)
.

Left kernel: A basis of
(
Ker

(
AT))T is () (that is, the empty list).

The algorithms:
Column space: How to find a basis of Col A ? Recall that Col A is the span of the

columns of A. Thus, the columns of A span Col A. Now, it remains to shrink the
list of te columns of A to a basis of Col A by removing redundant elements. We
know how to do such shrinking (see Exercise 1 (a) for an example). Once we have
done it, we are left with a basis of Col A.

(There are faster algorithms for finding a basis of Col A around; for example,
Olver and Shakiban show two such algorithms on pp. 117–118 of their book. Feel
free to use them.)

Row space: Finding a basis of Row A is similar to finding a basis of Col A, except
that we are now dealing with rows instead of columns.

(Again, there are faster algorithms for finding a basis of Row A. Probably the
fastest one is to transform A into row echelon form, and take the nonzero rows
of the resulting matrix. These form a basis of Row A because they are linearly
independent7 and span Row A.)

Kernel: See Examples 4.34, 4.35 and 4.36 in my notes for how to find a basis of
Ker A.

Left kernel: In order to find a basis of
(
Ker

(
AT))T, we just have to find a basis of

Ker
(

AT) and then transpose each vector. Again, we know how to do this.
The shortcuts:
Column space: The matrix formed by the first three columns of A can be trans-

7This is not hard to see, using the fact that they have their pivot entries in different positions.

http://www.cip.ifi.lmu.de/~grinberg/t/16f/lina.pdf


Math 4242 Fall 2016 midterm #2 practice page 7

formed by row operations as follows: 1 1 1
1 2 2
1 2 3

 A−1
2,1−→

 1 1 1
0 1 1
1 2 3

 A−1
3,1−→

 1 1 1
0 1 1
0 1 2


A−1

3,2−→

 1 1 1
0 1 1
0 0 1

 .

The result is a row echelon matrix with three pivot entries and thus rank 3. Since
the rank of a matrix does not change when you apply row operations (check this!),
we thus conclude that the original matrix formed by the first three columns of A
has rank 3. Hence, the first three columns of A are linearly independent. Hence,
dim (Col A) ≥ 3, so that Col A = R3 (since A is a subspace of R3). Hence, to find
a basis of Col A is to find a basis of R3. We can either take the first three columns
of A, or take any basis of R3 that we know (for example, (e1, e2, e3)).

Row space: We have dim (Row A) = rank A = dim (Col A) ≥ 3 (as we have just
seen). Thus, the three rows of A are linearly independent (since otherwise, at least
one of them would be redundant, and thus Row A would have a basis of size < 3,
which contradicts dim (Row A) ≥ 3). Hence, the three rows of A form a basis of
Row A.

Kernel: We have just shown that the three rows of A form a basis of Row A.
Hence, dim (Row A) = 3, so that rank A = dim (Row A) = 3.

The rank-nullity theorem yields rank A+dim (Ker A) = 4, so that dim (Ker A) =
4− rank A︸ ︷︷ ︸

=3

= 4− 3 = 1. Thus, in order to find a basis of Ker A, it suffices to find

one linearly independent vector in Ker A.
It is easy to observe that (0, 0, 1,−1)T ∈ Ker A (because the product A (0, 0, 1,−1)T

equals the third column of A minus the fourth column of A, but this is clearly
−→
0

because the third and the fourth columns of A are equal). Thus,
(
(0, 0, 1,−1)T

)
is

a list of 1 linearly independent element of Ker A, and therefore is a basis of Ker A
(since dim (Ker A) = 1).

Left kernel: The rank-nullity theorem yields rank
(

AT) + dim
(
Ker

(
AT)) = 3.

Thus, dim
(
Ker

(
AT)) = 3− rank

(
AT
)

︸ ︷︷ ︸
=rank A=3

= 3− 3 = 0, so that Ker
(

AT) = {−→0 } and

therefore
(
Ker

(
AT))T

=
{−→

0
}

. Hence, a basis of
(
Ker

(
AT))T is the empty list.

(b) I am going to just state the answers and very briefly hint at the proofs.
The answers:
I shall abbreviate the n×m-matrix An×m by A.
Column space: The first min {n, m} columns of A form a basis of Col A.
Row space: The first min {n, m} rows of A form a basis of Row A.
Kernel: A basis of Ker A consists of all vectors ej− ej+1 with j ∈ {n, n + 1, . . . , m− 1}.
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(When n ≥ m, the set {n, n + 1, . . . , m− 1} is empty, whence the basis of Ker A is
an empty list in this case.)

Left kernel: A basis of
(
Ker

(
AT))T consists of all vectors (ei − ei+1)

T with j ∈
{m, m + 1, . . . , n− 1}. (When m ≥ n, the set {m, m + 1, . . . , n− 1} is empty, whence
the basis of

(
Ker

(
AT))T is an empty list in this case.)

Proof ideas:
First of all, recall that if we know the four subspaces of some matrix B, then we

get the four subspaces of BT for free (since Row
(

BT) = (Col B)T, etc.). Observe
that (An×m)

T = Am×n. Thus, it suffices to solve the case when n ≤ m (because in
the case n ≥ m, we can just switch n and m). Hence, WLOG assume that n ≤ m.
Let A = An×m.

The first n columns of A are linearly independent (indeed, Gaussian elimination

transforms them into the upper-triangular n× n-matrix


1 1 · · · 1
0 1 · · · 1
...

... . . . ...
0 0 · · · 1

, which

is a row-echelon matrix with n pivots and thus has rank n). Hence, rank A ≥ n.
But rank A ≤ n as well (since A is an n × m-matrix), and thus rank A = n.

Therefore, the first n columns of A form a basis of Col A.
Also, the n rows of A are linearly independent (since dim (Row A) = rank A =

n), and thus form a basis of Row A.
The rank-nullity theorem yields rank A+dim (Ker A) = m, so that dim (Ker A) =

m− rank A︸ ︷︷ ︸
=n

= m− n. The vectors ej − ej+1 with j ∈ {n, n + 1, . . . , m− 1} belong to

Ker A (because A
(
ej − ej+1

)
is the difference between the j-th and the (j + 1)-th

columns of A, but these two columns are equal, and thus the difference is
−→
0 ),

and are linearly independent (this is not hard to check). Hence, they form a ba-
sis of Ker A (since they are m − n linearly independent elements of the (m− n)-
dimensional vector space Ker A).

The rank-nullity theorem yields rank
(

AT)+dim
(
Ker

(
AT)) = n, so that dim

(
Ker

(
AT)) =

n − rank
(

AT
)

︸ ︷︷ ︸
=rank A=n

= n − n = 0. Hence, Ker
(

AT) =
{−→

0
}

, so that
(
Ker

(
AT))T

=

{−→
0
}

. Thus, the empty list () is a basis of
(
Ker

(
AT))T.

If A is an n× k-matrix whose columns are linearly independent, then a QR de-
composition of A means a way to write A in the form A = QR, where:

• Q is an n× k-matrix with orthonormal columns (this is equivalent to saying
that Q is an n× k-matrix satisfying QTQ = Ik);

• R is an upper-triangular k× k-matrix with nonzero diagonal entries.
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For example, a QR decomposition of

 2 17
4 13
8 5

 is

 2 17
4 13
8 5

 =



1√
21

2√
6

2√
21

1√
6

4√
21
−1√

6


︸ ︷︷ ︸

this is the Q

(
2
√

21 3
√

21
0 7

√
6

)
︸ ︷︷ ︸

this is the R

.

Exercise 3. (a) Find a QR decomposition of the matrix

 0 1 1
1 0 1
1 1 0

.

(b) Find a QR decomposition of the matrix

 1 1 1
0 1 1
0 0 1

.

(c) Find a QR decomposition of the matrix

 0 0 1
0 1 0
1 0 0

.

[Hint: Two of the three parts are easy and can be done with no computations
whatsoever!]

Solution. (a) Let A be our matrix

 0 1 1
1 0 1
1 1 0

. Let w1, w2, w3 be the three columns

of A; thus,

w1 = (0, 1, 1)T , w2 = (1, 0, 1)T , w3 = (1, 1, 0)T .

Now, we apply the Gram-Schmidt process to w1, w2, w3:

1. At the first step, we set u1 = w1. Thus,

u1 = w1 = (0, 1, 1)T .

2. At the second step, we set u2 = w2 − λ2,1u1, where λ2,1 =
〈w2, u1〉
〈u1, u1〉

. We

compute these explicitly:

λ2,1 =
〈w2, u1〉
〈u1, u1〉

=

〈
(1, 0, 1)T , (0, 1, 1)T

〉
〈
(0, 1, 1)T , (0, 1, 1)T

〉 =
1
2

and thus

u2 = w2 − λ2,1u1 = (1, 0, 1)T − 1
2
(0, 1, 1)T =

(
1,−1

2
,

1
2

)T
.
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3. At the third step, we set u3 = w3− λ3,1u1− λ3,2u2, where λ3,1 =
〈w3, u1〉
〈u1, u1〉

and

λ3,2 =
〈w3, u2〉
〈u2, u2〉

. We compute these explicitly:

λ3,1 =
〈w3, u1〉
〈u1, u1〉

=

〈
(1, 1, 0)T , (0, 1, 1)T

〉
〈
(0, 1, 1)T , (0, 1, 1)T

〉 =
1
2

and

λ3,2 =
〈w3, u2〉
〈u2, u2〉

=

〈
(1, 1, 0)T ,

(
1,−1

2
,

1
2

)T
〉

〈(
1,−1

2
,

1
2

)T
,
(

1,−1
2

,
1
2

)T
〉 =

(
1
2

)
(

3
2

) =
1
3

and thus

u3 = w3 − λ3,1u1 − λ3,2u2

= (1, 1, 0)T − 1
2
(0, 1, 1)T − 1

3

(
1,−1

2
,

1
2

)T

=

(
2
3

,
2
3

,
−2
3

)T
.

Next, we normalize the vectors u1, u2, u3 – that is, we divide them by their lengths
so they become orthonormal and not just orthogonal. The resulting vectors will be
called q1, q2, q3. Explicitly:

q1 =
1
||u1||

u1 =
1√
2
(0, 1, 1)T

(
since ||u1|| =

√
〈u1, u1〉 =

√
2
)

=

(
0,

1√
2

,
1√
2

)T
,

q2 =
1
||u2||

u2 =
1√

3
2

(
1,−1

2
,

1
2

)T
(

since ||u2|| =
√
〈u2, u2〉 =

√
3
2

)

=

 1√
3
2

,

(
−1

2

)
√

3
2

,

(
1
2

)
√

3
2


T

=

(√
2√
3

,
−1√

6
,

1√
6

)T

,
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q3 =
1
||u3||

u3 =
1√

4
3

(
2
3

,
2
3

,
−2
3

)T
(

since ||u3|| =
√
〈u3, u3〉 =

√
4
3

)

=


(

2
3

)
√

4
3

,

(
2
3

)
√

4
3

,

(
−2
3

)
√

4
3


T

=

(
1√
3

,
1√
3

,
−1√

3

)T
.

Now, the Q and R in the QR decomposition A = QR of A can be determined as
follows:

• The matrix Q will be the 3× 3-matrix with columns q1, q2, q3. Plugging in the
values of q1, q2, q3 already computed, we thus find

Q =


0

√
2√
3

1√
3

1√
2
−1√

6
1√
3

1√
2

1√
6
−1√

3


.

• The matrix R will be the 3× 3-matrix whose (i, j)-th entry (for all i and j) is

Ri,j =


λj,i ||ui|| , if i < j;∣∣∣∣uj

∣∣∣∣ , if i = j;
0, if i > j

.

In other words,

R =

 ||u1|| λ2,1 ||u1|| λ3,1 ||u1||
0 ||u2|| λ3,2 ||u2||
0 0 ||u3||

 .

Plugging in the values of ||ui|| and λj,i (which have already been computed),
we obtain

R =



√
2

1
2

√
2

1
2

√
2

0

√
3
2

1
3

√
3
2

0 0

√
4
3


.
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Thus, Q and R have both been found.
(b) We can use the same algorithm as in (a). But we can also save ourselves the

hassle and read off the answer from the problem: Namely, set A =

 1 1 1
0 1 1
0 0 1

.

Then, the matrix A itself is upper-triangular. Hence, setting Q = I3 and R = A
yields a QR decomposition A = QR of A.

(c) Once again, the answer can be read off from the problem: Namely, set A = 0 0 1
0 1 0
1 0 0

. Then, the matrix A has orthonormal columns (in fact, its columns

are distinct standard basis vectors). Hence, setting Q = A and R = I3 yields a QR
decomposition A = QR of A.

Exercise 4. (a) Apply the Gram-Schmidt process to the two vectors

w1 =

 2
1
0

 , w2 =

 0
1
2


in R3.

(b) Let U be the subspace of R3 spanned by w1, w2. Find the projection u of

the vector b =

 1
1
1

 on the subspace U.

Solution. (a) We apply the Gram-Schmidt process to w1, w2:

1. At the first step, we set u1 = w1. Thus,

u1 = w1 =

 2
1
0

 .

2. At the second step, we set u2 = w2 − λ2,1u1, where λ2,1 =
〈w2, u1〉
〈u1, u1〉

. We

compute these explicitly:

λ2,1 =
〈w2, u1〉
〈u1, u1〉

=

〈 0
1
2

 ,

 2
1
0

〉
〈 2

1
0

 ,

 2
1
0

〉 =
1
5
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and thus

u2 = w2 − λ2,1u1 =

 0
1
2

− 1
5

 2
1
0

 =


−2

5
4
5
2

 .

(b) We have just obtained an orthogonal basis (u1, u2) of U. Recall the general
formula that says that if b is a vector in Rn, and if (u1, u2, . . . , uk) is an orthogonal
basis of a subspace U of Rn, then the projection of b on U is

〈b, u1〉
||u1||2

u1 +
〈b, u2〉
||u2||2

u2 + · · ·+
〈b, uk〉
||uk||2

uk.

Applying this to our situation (in which n = 3 and k = 2), we conclude that the
projection of b on U is

〈b, u1〉
||u1||2

u1 +
〈b, u2〉
||u2||2

u2 =

〈 1
1
1

 ,

 2
1
0

〉
∣∣∣∣∣∣
∣∣∣∣∣∣
 2

1
0

∣∣∣∣∣∣
∣∣∣∣∣∣
2

 2
1
0

+

〈 1
1
1

 ,


−2

5
4
5
2


〉

∣∣∣∣∣∣∣∣∣∣

∣∣∣∣∣∣∣∣∣∣


−2

5
4
5
2


∣∣∣∣∣∣∣∣∣∣

∣∣∣∣∣∣∣∣∣∣

2


−2

5
4
5
2



=
3
5

 2
1
0

+

(
12
5

)
(

24
5

)

−2

5
4
5
2


=

 1
1
1

 .

[In hindsight, this is obvious! The projection of b on U is b itself, since b belongs
to U to begin with. If you notice this early on, you save yourself the whole messy
computation.]

Exercise 5. Find the least-squares solution to the equation Ax = b, where A =
0 1 1
1 0 1
1 1 0
1 1 1

 and b =


1
2
3
4

.
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Solution. We follow the usual method: We set K = AT A and f = ATb, and then
x = K−1 f . This works because the columns of A are linearly independent.

Here are the computations:

K = AT A =


0 1 1
1 0 1
1 1 0
1 1 1


T 

0 1 1
1 0 1
1 1 0
1 1 1

 =

 3 2 2
2 3 2
2 2 3


and

f = ATb =


0 1 1
1 0 1
1 1 0
1 1 1


T 

1
2
3
4

 =

 9
8
7

 .

Thus,

x = K−1 f =

 3 2 2
2 3 2
2 2 3

−1 9
8
7

 =


15
7
8
7
1
7

 .

Exercise 6. Let p ∈ N. Find the least-squares solution x ∈ R2 to the equation

Ax = b, where A =



1 1
1 1
...

...
1 1
1 2
1 0


and b =



1
1
...
1
−1
0


. (The matrix A has p + 2 rows

and 2 columns, and the column vector b has size p + 2. All entries of A are 1’s
except for the last two entries of the second column. All entries of b are 1 except
for the last two entries.)

(For example, if p = 3, then A =


1 1
1 1
1 1
1 2
1 0

 and b =


1
1
1
−1
0

, and the least-

squares solution is


9

10

−1
2

.)

[Feel free to check your result visually: This exercise is a data-fitting problem,
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where you are trying to fit a line y = αt + β through the p + 2 points

(1, 1) , (1, 1) , . . . , (1, 1)︸ ︷︷ ︸
p times

, (2,−1) , (0, 0) .

Thus, the least-squares solution x =

(
α
β

)
should lead to a line y = α + βt

that comes relatively close to all these points, but gets pulled closer and closer
to (1, 1) when p grows (because with growing p, the point (1, 1) gets repeated
more often and thus “pulls more weight”).]

Solution. Again, we follow the standard method: We set K = AT A and f = ATb,
and then x = K−1 f . This works because the columns of A are linearly independent.

Here are the computations:

K = AT A =



1 1
1 1
...

...
1 1
1 2
1 0



T 

1 1
1 1
...

...
1 1
1 2
1 0


=

(
p + 2 p + 2
p + 2 p + 4

)

and

f = ATb =



1 1
1 1
...

...
1 1
1 2
1 0



T 

1
1
...
1
−1
0


=

(
p− 1
p− 2

)
.

Thus,

x = K−1 f =

(
p + 2 p + 2
p + 2 p + 4

)−1( p− 1
p− 2

)
=


3p

2 (p + 2)

−1
2

 .


